1,571
Views
47
CrossRef citations to date
0
Altmetric
Articles

Impact of the environmental conditions and substrate pre-treatment on whey protein hydrolysis: A review

&

References

  • Acharya, K. R., Stuart, D. I., Walker, N. P. C., Lewis, M. and Phillips, D. C. (1989). Refined structure of baboon α-lactalbumin at 1.7 Å resolution: Comparison with C-type lysozyme. J. Mol. Biol. 208:99–127.
  • Adamberg, K., Kostyra, H., Kostyra, E., Swiatecki, A. and Swiatecka, D. (2005). Influence of non-enzymatic glycosylation of whey proteins and concentration of glucose on their hydrolysis by trypsin and growth and survival of selected bacteria. Milchwiss.-Milk Sci. Int. 60:422–426.
  • Adler-Nissen, J. (1976). Enzymatic hydrolysis of proteins for increased solubility. J. Agric. Food. Chem. 24:1090–1093.
  • Adler-Nissen, J. (1979). Determination of the degree of hydrolysis of food protein hydrolysates by trinitrobenzenesulfonic acid. J. Agric. Food. Chem. 27:1256–1262.
  • Adler-Nissen, J. (1982). Limited enzymic degradation of proteins: A new approach in the industrial application of hydrolases. J. Chem. Technol. Biotechnol. 32:138–156.
  • Adler-Nissen, J. (1986). Enzymic Hydrolysis of Food Proteins. Elsevier Applied Science Publishers Ltd, London.
  • Akhtar, M. and Dickinson, E. (2003). Emulsifying properties of whey protein–dextran conjugates at low pH and different salt concentrations. Colloids Surf. B. Biointerfaces 31:125–132.
  • Akhtar, M. and Dickinson, E. (2007). Whey protein–maltodextrin conjugates as emulsifying agents: An alternative to gum arabic. Food Hydrocoll. 21:607–616.
  • Almaas, H., Berner, V., Holm, H., Langsrud, T. and Vegarud, G. E. (2008). Degradation of whey from caprine milk by human proteolytic enzymes, and the resulting antibacterial effect against Listeria monocytogenes. Small Rumin. Res. 79:11–15.
  • Alonso, M. L. and Zapico, J. (1994). Changes in sugars and lysine in baby foods during storage. J. Food Biochem. 18:393–403.
  • Amiot, J., Germain, L., Turgeon, S., Lemay, M., Ory-Salam, C. and Auger, F. A. (2004). Peptides from milk protein hydrolysates to improve the growth of human keratinocytes in culture. Int. Dairy J. 14:619–626.
  • Andrić, P., Meyer, A. S., Jensen, P. A. and Dam-Johansen, K. (2010). Reactor design for minimizing product inhibition during enzymatic lignocellulose hydrolysis: I. Significance and mechanism of cellobiose and glucose inhibition on cellulolytic enzymes. Biotechnol. Adv. 28:308–324.
  • Antila, P., Paakkari, I., Järvinen, A., Mattila, M. J., Laukkanen, M., Pihlanto-Leppälä, A., Mäntsälä, P. and Hellman, J. (1991). Opioid peptides derived from in-vitro proteolysis of bovine whey proteins. Int. Dairy J. 1:215–229.
  • Apar, D. K. and Özbek, B. (2010). Corn gluten hydrolysis by alcalase: Kinetics of hydrolysis. Chem. Eng. Commun. 197:963–973.
  • Asao, T., Tsuji, I., Tashiro, M., Iwami, K. and Ibuki, F. (1992). Trypsin hydrolysis of the Tyr42-Ser43 Bond, the chymotrypsin reactive-site peptide bond, of faba bean bowman-birk type inhibitor. Biosci., Biotechnol., Biochem. 56:521–522.
  • Asselin, J., Amiot, J., Gauthier, S. F., Mourad, W. and Hebert, J. (1988). Immunogenicity and Allergenicity of Whey Protein Hydrolysates. J. Food Sci. 53:1208–1211.
  • Barros, R. M., Extremina, C. I., Gonçalves, I. C., Braga, B. O., Balcão, V. M. and Malcata, F. X. (2003). Hydrolysis of a-lactalbumin by cardosin A immobilized on highly activated supports. Enzyme Microb. Technol. 33:908–916.
  • Barros, R. M. and Malcata, F. X. (2002). Modeling the kinetics of whey protein hydrolysis brought about by enzymes from Cynara cardunculus. J. Agric. Food. Chem. 50:4347–4356.
  • Baumy, J. J. and Brule, G. (1988). Binding of bivalent cations to a-lactalbumin and b-lactoglobulin: Effect of pH and ionic strength. Lait 68:33–48.
  • Bellamy, W., Takase, M., Yamauchi, K., Wakabayashi, H., Kawase, K. and Tomita, M. (1992). Identification of the bactericidal domain of lactoferrin. Biochim. Biophys. Acta 1121:130–136.
  • Beran, M., Klubal, R., Molik, P., Strohalm, J., Urban, M., Klaudyova, A. A. and Prajzlerova, K. (2009). Influence of high-hydrostatic pressure on tryptic and chymotryptic hydrolysis of milk proteins. High Press. Res. 29:23–27.
  • Bezerra, R. M., Dias, A. A., Fraga, I. and Pereira, A. N. (2011). Cellulose hydrolysis by cellobiohydrolase Cel7A shows mixed hyperbolic product inhibition. Appl. Biochem. Biotechnol. 165:178–189.
  • Bordenave, S., Sannier, F., Ricart, G. and Piot, J. M. (1999). Continuous hydrolysis of goat whey in an ultrafiltration reactor: Generation of alpha-lactorphin. Prep. Biochem. Biotechnol. 29:189–202.
  • Bowman, D. E. (1979). Limited proteolysis patterns of the B chain of insulin. Biochem. Biophys. Res. Commun. 87:78–84.
  • Boye, J. I., Alli, I. and Ismail, A. A. (1997). Use of differential scanning calorimetry and infrared spectroscopy in the study of thermal and structural stability of a-lactalbumin. J. Agric. Food. Chem. 45:1116–1125.
  • Bramaud, C., Aimar, P. and Daufin, G. (1997). Optimisation of a whey protein fractionation process based on the selective precipitation of a-lactalbumin. Lait 77:411–423.
  • Broering, J. M. and Bommarius, A. S. (2005). Evaluation of hofmeister effects on the kinetic stability of proteins. J. Phys. Chem. 109:20612–20619.
  • Bruce, G. and Pawlett, D. (1997). The use of exopeptidases in bitter taste modification. In: Modifying bitterness: Mechanism, ingredients, and applications. pp 227–253 Roy, G. M., ed. Technomic Publishing Company, Lancaster, Pa.
  • Brück, W. M., Shannon, L. K., Gibson, G. R., Graverholt, G. and Lönnerdal, B. L. (2006). The effects of a-lactalbumin and glycomacropeptide on the association of CaCo-2 cells by enteropathogenic Escherichia coli, Salmonella typhimurium and Shigella flexneri. FEMS Microbiol. Lett. 259:158–162.
  • Camacho, F., Gonzalez-Tello, P. and Guadix, E. M. (1998). Influence of enzymes, pH and temperature on the kinetics of whey protein hydrolysis/Influencia de los enzimas, pH y temperatura en la cinetica de la hidrolisis de las proteinas del lactosuero. Food Sci. Technol. Int. 4:79–84.
  • Camacho, F., González-Tello, P., Páez-Dueñas, M. P., Guadix, E. M. and Guadix, A. (2001). Correlation of base consumption with the degree of hydrolysis in enzymic protein hydrolysis. J. Dairy Res. 68:251–265.
  • Casal, H. L., Köhler, U. and Mantsch, H. H. (1988). Structural and conformational changes of b-lactoglobulin B: an infrared spectroscopic study of the effect of pH and temperature. Biochim. Biophys. Acta 957:11–20.
  • Chaplin, L. C. and Lyster, R. L. J. (1986). Irreversible heat denaturation of bovine α-lactalbumin. J. Dairy Res. 53:249–258.
  • Chatterton, D. E. W., Smithers, G., Roupas, P. and Brodkorb, A. (2006). Bioactivity of b-lactoglobulin and a-lactalbumin-Technological implications for processing. Int. Dairy J. 16:1229–1240.
  • Chawla, S. P., Chander, R. and Sharma, A. (2009). Antioxidant properties of Maillard reaction products obtained by gamma-irradiation of whey proteins. Food Chem. 116:122–128.
  • Cheftel, C., Ahern, M., Wang, D. I. C. and Tannenbaum, S. R. (1971). Enzymatic solubilization of fish protein concentrate: batch studies applicable to continuous enzyme recycling processes. J. Agric. Food. Chem. 19:155–161.
  • Cheison, S. C. (2013). Towards controlled hydrolysis of proteins: Impact of the hydrolysis environment on hydrolysis patterns and kinetics in whey proteins. Habilitationschrift/Postdoc Thesis, Technische Universität München, Freising, Germany. Technische Universität München, Freising, Germany.
  • Cheison, S. C., Bor, E. K., Faraj, A. K. and Kulozik, U. (2012). Selective hydrolysis of α-lactalbumin by Acid Protease A offers potential for β-lactoglobulin purification in whey proteins. Food Sci. Technol. 49:117–122.
  • Cheison, S. C., Brand, J., Leeb, E. and Kulozik, U. (2011a). Analysis of the effect of temperature changes combined with different alkaline pH on the β-lactoglobulin trypsin hydrolysis pattern using MALDI-TOF-MS/MAgric, S. J. Food. Chem. 59:1572–1581.
  • Cheison, S. C., Lai, M. Y., Leeb, E. and Kulozik, U. (2011b). Hydrolysis of β-lactoglobulin by trypsin under acidic pH and analysis of the hydrolysates with MALDI–TOF–MS/MS. Food Chem. 125:1241–1248.
  • Cheison, S. C., Leeb, E., Letzel, T. and Kulozik, U. (2011c). Influence of buffer type and concentration on the peptide composition of trypsin hydrolysates of β-lactoglobulin. Food Chem. 125:121–127.
  • Cheison, S. C., Leeb, E., Toro-Sierra, J. and Kulozik, U. (2011d). Influence of hydrolysis temperature and pH on the selective hydrolysis of whey proteins by trypsin and potential recovery of native alpha-lactalbumin. Int. Dairy J. 21:166–171.
  • Cheison, S. C., Schmitt, M., Leeb, E., Letzel, T. and Kulozik, U. (2010). Influence of temperature and degree of hydrolysis on the peptide composition of trypsin hydrolysates of β-lactoglobulin: Analysis by LC–ESI-TOF/MS. Food Chem. 121:457–467.
  • Cheison, S. C. and Wang, Z. (2003). Bioactive milk peptides: Redefining the food-drug interphase- Review. Afric. J. Food. Agric. Nutri. Sci. Dev. 3:29–38.
  • Cheison, S. C., Wang, Z. and Xu, S.-Y. (2006a). Hydrolysis of whey protein isolate in a tangential flow filter membrane reactor: I. Characterisation of permeate flux and product recovery by multivariate data analysis. J. Membr. Sci. 283:45–56.
  • Cheison, S. C., Wang, Z. and Xu, S.-Y. (2006b). Hydrolysis of whey protein isolate in a tangential flow filter membrane reactor: II. Characterisation for the fate of the enzyme by multivariate data analysis. J. Membr. Sci. 286:322–332.
  • Cheison, S. C., Wang, Z. and Xu, S.-Y. (2007a). Multivariate strategy in screening of enzymes to be used for whey protein hydrolysis in an enzymatic membrane reactor. Int. Dairy J. 17:393–402.
  • Cheison, S. C., Wang, Z. and Xu, S.-Y. (2007b). Preparation of whey protein hydrolysates using a single- and two-stage enzymatic membrane reactor and their immunological and antioxidant properties:  Characterization by multivariate data analysis. J. Agric. Food. Chem. 55:3896–3904.
  • Cheison, S. C., Wang, Z. and Xu, S. Y. (2007c). Use of macroporous adsorption resin for simultaneous desalting and debittering of whey protein hydrolysates. Int. J. Food Sci. Tech. 42:1228–1239.
  • Cheison, S. C., Zhang, S.-B., Wang, Z. and Xu, S.-Y. (2009). Comparison of a modified spectrophotometric and the pH-stat methods for determination of the degree of hydrolysis of whey proteins hydrolysed in a tangential-flow filter membrane reactor. Food Res. Int. 42:91–97.
  • Chen, S., Hardin, C. and Swaisgood, H. (1993). Purification and characterization of β-structural domains of β-lactoglobulin liberated by limited proteolysis. J. Protein Chem. 12:613–625.
  • Chevalier, F., Chobert, J.-M., Dalgalarrondo, M. and Haertlé, T. (2001). Characterization of the Maillard reaction products of β-lactoglobulin glucosylated in mild conditions. J. Food Biochem. 25:33–55.
  • Chevalier, F., Chobert, J. M., Dalgalarrondo, M., Choiset, Y. and Haertlé, T. (2002). Maillard glycation of β-lactoglobulin induces conformation changes. Food / Nahrung 46:58–63.
  • Chicon, R., Belloque, J., Alonso, E., Martin-Alvarez, P. J. and Lopez-Fandino, R. (2008). Hydrolysis under high hydrostatic pressure as a means to reduce the binding of beta-lactoglobulin to immunoglobulin E from human sera. J. Food Prot. 71:1453–1459.
  • Chicon, R., Belloque, J., Recio, I. and Lopez-Fandino, R. (2006a). Influence of high hydrostatic pressure on the proteolysis of b-lactoglobulin A by trypsin. J. Dairy Res. 73:121–128.
  • Chicon, R., Lopez-Fandino, R. Quiros, A. and Belloque, J. (2006b). Changes in chymotrypsin hydrolysis of beta-lactoglobulin A induced by high hydrostatic pressure. J. Agric. Food. Chem. 54:2333–2341.
  • Chirico, G., Gasparoni, A., Ciardelli, L., De, A. M., Colombo, A. and Rondini, G. (1997). Immunogenicity and antigenicity of a partially hydrolyzed cow's milk infant formula. Allergy 52:82–88.
  • Cho, M. J., Unklesbay, N., Hsieh, F. H. and Clarke, A. D. (2004). Hydrophobicity of bitter peptides from soy protein hydrolysates. J. Agric. Food. Chem. 52:5895–5901.
  • Chobert, J.-M., Bertrand-Harb, C. and Nicolas, M.-G. (1988). Solubility and emulsifying properties of caseins and whey proteins modified enzymatically by trypsin. J. Agric. Food. Chem. 36:883–892.
  • Choi, G. H., Yoo, S. H., Yoon, Y. C. and Paik, H. D. (2009). Cytotoxic effects of whey protein hydrolysates prepared by enzymatic hydrolysis. Milchwiss.-Milk Sci. Int. 64:406–408.
  • Choi, S. J., Kim, H. J., Park, K. H. and Moon, T. W. (2005). Molecular characteristics of ovalbumin–dextran conjugates formed through the Maillard reaction. Food Chem. 92:93–99.
  • Christensen, L. K. (1949). Trypsin splitting and denaturation of b-lactoglobulin. Nature 163:1003–1004.
  • Chrysina, E. D., Brew, K. and Acharya, K. R. (2000). Crystal structures of apo- and holo-bovine α-Lactalbumin at 2.2-Å resolution reveal an effect of calcium on inter-lobe interactions. J. Biol. Chem. 275:37021–37029.
  • Church, F. C., Porter, D. H., Catignani, G. L. and Swaisgood, H. E. (1985). An O-phthalaldehyde spectrophotometric assay for proteinases. Anal. Biochem. 146:343–348.
  • Claeys, W. L., Ludikhuyze, L. R., Van Loey, A. M. and Hendrickx, M. E. (2001). Inactivation kinetics of alkaline phosphatase and lactoperoxidase, and denaturation kinetics of β-lactoglobulin in raw milk under isothermal and dynamic temperature conditions. J. Dairy Res. 68:95–107.
  • Connors, K. A. (1989). Chemical Kinetics: The Study of Reaction Rates in Solution. Wiley-VCH Publishers, New York.
  • Considine, T., Patel, H. A., Anema, S. G., Singh, H. and Creamer, L. K. (2007). Interactions of milk proteins during heat and high hydrostatic pressure treatments — A Review. Innov. Food Sci. Emerg. Technol. 8:1–23.
  • Corzo-Martínez, M., Soria, A. C., Belloque, J., Villamiel, M. and Moreno, F. J. (2010). Effect of glycation on the gastrointestinal digestibility and immunoreactivity of bovine β-lactoglobulin. Int. Dairy J. 20:742–752.
  • Costa, R. M. and Malcata, F. X. (1994). Multisubstrate Michaëlis-Menten kinetics: Explicit dependence of substrate concentration on time for batch reactors. Bioprocess Biosystems Eng. 10:155–159.
  • Creamer, L. K., Bienvenue, A., Nilsson, H., Paulsson, M., van Wanroij, M., Lowe, E. K., Anema, S. G., Boland, M. J. and Jimenez-Flores, R. (2004a). Heat-Induced redistribution of disulfide bonds in milk proteins. 1. Bovine b-Lactoglobulin. J. Agric. Food. Chem. 52:7660–7668.
  • Creamer, L. K., Nilsson, H. C., Paulsson, M. A., Coker, C. J., Hill, J. P. and Jimenez-Flores, R. (2004b). Effect of genetic variation on the tryptic hydrolysis of bovine b-Lactoglobulin A, B, and C. J. Dairy Sci. 87:4023–4032.
  • Croguennec, T., Bouhallab, S. d., Mollé, D., O'Kennedy, B. T. and Mehra, R. (2003). Stable monomeric intermediate with exposed Cys-119 is formed during heat denaturation of β-lactoglobulin. Biochem. Biophys. Res. Commun. 301:465–471.
  • Croguennec, T., O'Kennedy, B. T. and Mehra, R. (2004). Heat-induced denaturation/aggregation of b-lactoglobulin A and B: kinetics of the first intermediates formed. Int. Dairy J. 14:399–409.
  • Dalgleish, D. G., Senaratne, V. and Francois, S. (1997). Interactions between α-Lactalbumin and β-lactoglobulin in the early stages of heat denaturation. J. Agric. Food. Chem. 45:3459–3464.
  • Dannenberg, F. and Kessler, H.-G. (1988). Reaction kinetics of the denaturation of whey proteins in milk. J. Food Sci. 53:258–263.
  • Davis, P. J. and Williams, S. C. (1998). Protein modification by thermal processing. Allergy 53:102–105.
  • De Souza Otero, A., Rogana, E. and Mares-Guia, M. (1980). Thermal behavior of bovine β-trypsin at physiological temperature range. Arch. Biochem. Biophys. 204:109–116.
  • de Wit, J. N. (1998). Nutritional and functional characteristics of whey proteins in food products. J. Dairy Sci. 81:597–608.
  • de Wit, J. N. (2009). Thermal behaviour of bovine b-lactoglobulin at temperatures up to 150°C. A review. Trends Food Sci. Technol. 20:27–34.
  • Demirhan, E., Apar, D. K. and Özbek, B. (2007). Product inhibition of whey lactose hydrolysis. Chem. Eng. Commun. 195:293–304.
  • Demirhan, E., Apar, D. K. and Özbek, B. (2011). A kinetic study on sesame cake protein hydrolysis by alcalase. J. Food Sci. 76:C64–C67.
  • Dickinson, E. (2001). Milk protein interfacial layers and the relationship to emulsion stability and rheology. Colloids Surf. B. Biointerfaces 20:197–210.
  • Didelot, S., Bordenave-Juchereau, S., Rosenfeld, E., Fruitier-Arnaudin, I., Piot, J.-M. and Sannier, F. (2006). Preparation of angiotensin-I-converting enzyme inhibitory hydrolysates from unsupplemented caprine whey fermentation by various cheese microflora. Int. Dairy J. 16:976–983.
  • Diermayr, P. and Dehne, L. (1990). Kontrollierte enzymatische Proteinhydrolyse im Bereich niedriger pH-Werte. Z. Lebensm. Unters. Forsch. 190:516–520.
  • Diniz, F. M. and Martin, A. M. (1996). Use of response surface methodology to describe the combined effects of pH, temperature and E/S ratio on the hydrolysis of dogfish (Squalus acanthias) muscle. Int. J. Food Sci. Technol. 31:419–426.
  • Doi, E., Shibata, D. and Matoba, T. (1981). Modified colorimetric ninhydrin methods for peptidase assay. Anal. Biochem. 118:173–184.
  • Dominy, B. N., Perl, D., Schmid, F. X. and Brooks, C. L. (2002). The effects of ionic strength on protein stability: The cold shock protein family. J. Mol. Biol. 319:541–554.
  • Dong, A., Matsuura, J., Allison, S. D., Chrisman, E., Manning, M. C. and Carpenter, J. F. (1996). Infrared and circular dichroism spectroscopic characterization of structural differences between β-Lactoglobulin A and B. Biochem. 35:1450–1457.
  • Doucet, D., Otter, D. E., Gauthier, S. F. and Foegeding, E. A. (2003). Enzyme-induced gelation of extensively hydrolyzed whey proteins by Alcalase: peptide identification and determination of enzyme specificity. J. Agric. Food. Chem. 51:6300–6308.
  • Doucette, A. and Li, L. (2001). Investigation of the applicability of a sequential digestion protocol using trypsin and leucine aminopeptidase M for protein identification by matrix-assisted laser desorption/ionization – time of flight mass spectrometry. Prot 1:987–1000.
  • Dunnill, P. and Green, D. W. (1966). Sulphydryl groups and the N⇄R conformational change in β-lactoglobulin. J. Mol. Biol. 15:147–151.
  • Duringer, C., Hamiche, A., Gustafsson, L., Kimura, H. and Svanborg, C. (2003). HAMLET interacts with histones and chromatin in tumor cell nuclei. J. Biol. Chem. 278:42131–42135.
  • Earnest, T., Fauman, E., Craik, C. S. and Stroud, R. (1991). 1.59 A structure of trypsin at 120 K: comparison of low temperature and room temperature structures. Proteins 10:171–187.
  • El-Zahar, K., Sitohy, M., Choiset, Y., Métro, F., Haertlé, T. and Chobert, J.-M. (2005). Peptic hydrolysis of ovine β-lactoglobulin and α-lactalbumin Exceptional susceptibility of native ovine β-lactoglobulin to pepsinolysis. Int. Dairy J. 15:17–27.
  • Enomoto, H., Hayashi, Y., Li, C. P., Ohki, S., Ohtomo, H., Shiokawa, M. and Aoki, T. (2009). Glycation and phosphorylation of α-lactalbumin by dry heating: Effect on protein structure and physiological functions. J. Dairy Sci. 92:3057–3068.
  • Espinoza, A. D., Morawicki, R. O. and Hager, T. (2012). Hydrolysis of whey protein isolate using subcritical water. J. Food Sci. 77:C20–C26.
  • Exl, B. M. and Fritsche, R. (2001). Cow's milk protein allergy and possible means for its prevention. Nutrition 17:642–651.
  • Farrell, H. M., Jr., Jimenez-Flores, R. Bleck, G. T., Brown, E. M., Butler, J. E., Creamer, L. K., Hicks, C. L., Hollar, C. M., Ng-Kwai-Hang, K. F. and Swaisgood, H. E. (2004). Nomenclature of the proteins of cows' milk-sixth revision. J. Dairy Sci. 87:1641–1674.
  • Ferreira, I. M. P. L. V. O., Pinho, O., Mota, M. V., Tavares, P., Pereira, A., Goncalves, M. P., Torres, D., Rocha, C. and Teixeira, J. A. (2007). Preparation of ingredients containing an ACE-inhibitory peptide by tryptic hydrolysis of whey protein concentrates. Int. Dairy J. 17:481–487.
  • Fischer, W., Gustafsson, L., Mossberg, A. K., Gronli, J., Mork, S., Bjerkvig, R. and Svanborg, C. (2004). Human a-lactalbumin made lethal to tumor cells (HAMLET) kills human glioblastoma cells in brain xenografts by an apoptosis-like mechanism and prolongs survival. Cancer Res. 64:2105–2112.
  • Floris, R., Bodnár, I., Weinbreck, F. and Alting, A. C. (2008). Dynamic rearrangement of disulfide bridges influences solubility of whey protein coatings. Int. Dairy J. 18:566–573.
  • Foegeding, E. A., Davis, J. P., Doucet, D. and McGuffey, M. K. (2002). Advances in modifying and understanding whey protein functionality. Trends Food Sci. Technol. 13:151–159.
  • Fox, P. F. and Hearn, C. M. (1978). Heat stability of milk: Influence of κ-casein hydrolysis. J. Dairy Res. 45:173–181.
  • Fox, P. F., Morrissey, P. A. and Mulvihill, D. M. (1982). Chemical and enzymatic modification of food proteins. In: Developments in Food Proteins. Vol. 1. pp 1–60 Hudson, B. J. F., ed. Applied Science Publishers, London.
  • Frenzen, C. L. and Maini, P. K. (1988). Enzyme kinetics for a two-step enzymic reaction with comparable initial enzyme-substrate ratios. J. Math. Biology 26:689–703.
  • Galvão, C. M., Silva, A. F., Custódio, M. F., Monti, R. and Giordano, R. L. (2001). Controlled hydrolysis of cheese whey proteins using trypsin and alpha-chymotrypsin. Appl. Biochem. Biotechnol. 91:761–776.
  • Garrett, R. and Grisham, C. M. (2007). Biochemistry. 2nd ed. Thomson Brooks/Cole, Belmont, CA- USA.
  • Gauthier, S. F. and Pouliot, Y. (2003). Functional and biological properties of peptides obtained by enzymatic hydrolysis of whey proteins. J. Dairy Sci. 86:E78–87.
  • Ge Pan, G. and Melton, L. D. (2007). Nonenzymatic browning of lactose and caseinate during dry heating at different relative humidities. J. Agric. Food. Chem. 55:10036–10042.
  • Gill, I., Lopez-Fandino, R., Jorba, X. and Vulfson, E. N. (1996). Biologically active peptides and enzymatic approaches to their production. Enzyme Microb. Technol. 18:162–183.
  • Giorno, L. and Drioli, E. (2000). Biocatalytic membrane reactors: Applications and perspectives. Trends Biotechnol. 18:339–349.
  • Gonzàlez-Tello, P., Camacho, F., Jurado, E., Páez, M. P. and Guadix, E. M. (1994). Enzymatic hydrolysis of whey proteins: I. Kinetic models. Biotechnol. Bioeng. 44:523–528.
  • Greene, L. J. and Giordano, J. S. (1969). The structure of the bovine pancreatic secretory trypsin inhibitor—kazal's inhibitor: I. The isolation and amino acid sequences of the tryptic peptides from reduced aminoethylated inhibitor. J. Biol. Chem. 244:285–298.
  • Greis, K. D. (2007). Mass spectrometry for enzyme assays and inhibitor screening: An emerging application in pharmaceutical research. Mass Spectrom. Rev. 26:324–339.
  • Gu, F.-L., Kim, J. M., Abbas, S., Zhang, X. M., Xia, S.-Q. and Chen, Z.-X. (2010). Structure and antioxidant activity of high molecular weight Maillard reaction products from casein–glucose. Food Chem. 120:505–511.
  • Guadix, A., Camacho, F. and Guadix, E. M. (2006). Production of whey protein hydrolysates with reduced allergenicity in a stable membrane reactor. J. Food Eng. 72:398–405.
  • Gulzar, M., Bouhallab, S., Jeantet, R., Schuck, P. and Croguennec, T. (2011). Influence of pH on the dry heat-induced denaturation/aggregation of whey proteins. Food Chem. 129:110–116.
  • Guo, M. R., Fox, P. F., Flynn, A. and Kindstedt, P. S. (1995). Susceptibility of b-lactoglobulin and sodium caseinate to proteolysis by pepsin and trypsin. J. Dairy Sci. 78:2336–2344.
  • Hambling, S. G., McAlpine, A. S. and Sawyer, L. (1992). b-Lactoglobulin. In: Advanced Dairy Chemistry. Vol. 1: Proteins, pp. 141–190. Fox, P. F., ed. Elsevier Science Publishers Ltd., Essex, UK.
  • Harris, W. A., Janecki, D. J. and Reilly, J. P. (1990). Use of matrix clusters and trypsin autolysis fragments as mass calibrants in matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Rapid Commun. Mass Spectrom. 16:1714–1722.
  • Hattori, M., Miyakawa, S., Ohama, Y., Kawamura, H., Yoshida, T., To-o, K., Kuriki, T. and Takahashi, K. (2004). Reduced immunogenicity of β-lactoglobulin by conjugation with acidic oligosaccharides. J. Agric. Food. Chem. 52:4546–4553.
  • Hatzinikolaou, D. G., Katsifas, E., Mamma, D., Karagouni, A. D., Christakopoulos, P. and Kekos, D. (2005). Modeling of the simultaneous hydrolysis-ultrafiltration of whey permeate by a thermostable b-galactosidase from Aspergillus niger. Biochem. Eng. J. 24:161–172.
  • Havea, P., Singh, H. and Creamer, L. K. (2000). Formation of new protein structures in heated mixtures of BSA and α-Lactalbumin. J. Agric. Food. Chem. 48:1548–1556.
  • Hernandez-Ledesma, B., Amigo, L., Ramos, M. and Recio, I. (2004). Angiotensin converting enzyme inhibitory activity in commercial fermented products. formation of peptides under simulated gastrointestinal digestion. J. Agric. Food Chem. 52:1504–1510.
  • Hernández-Ledesma, B., Dávalos, A., Bartolomé, B. and Amigo, L. (2005). Preparation of antioxidant enzymatic hydrolysates from a-lactalbumin and b-lactoglobulin. Identification of active peptides by HPLC-MS/MAgric, S. J. Food. Chem. 53:588–593.
  • Hernández-Ledesma, B., Ramos, M., Recio, I. and Amigo, L. (2006). Effect of b-lactoglobulin hydrolysis with thermolysin under denaturing temperatures on the release of bioactive peptides. J. Chromatogr. 1116:31–37.
  • Hernández-Ledesma, B., Recio, I. and Amigo, L. (2008). β-Lactoglobulin as source of bioactive peptides. Amino Acids 35:257–265.
  • Hiller, B. and Lorenzen, P.-C. (2008). Effect of buffer systems on the extent of enzymatic oligomerisation of milk proteins. Food Sci. Technol. 41:1140–1144.
  • Hines, M. E. and Foegeding, E. A. (1993). Interactions of a-lactalbumin and bovine serum albumin with b-lactoglobulin in thermally induced gelation. J. Agric. Food. Chem. 41:341–346.
  • Hinrichs, J. and Rademacher, B. (2004). High pressure thermal denaturation kinetics of whey proteins. J. Dairy Res. 71:480–488.
  • Hinrichs, J., Rademacher, B. and Kessler, H. G. (1996). Reaction kinetics of pressure-induced denaturation of whey proteins. Milchwiss. 51:504–508.
  • Hong, Y.-H. and Creamer, L. K. (2002). Changed protein structures of bovine b-lactoglobulin B and a-lactalbumin as a consequence of heat treatment. Int. Dairy J. 12:345–359.
  • Hu, X., Robin, S., O'Connell, S., Walsh, G. and Wall, J. G. (2010). Engineering of a fungal β-galactosidase to remove product inhibition by galactose. Appl. Microbiol. Biotechnol. 87:1773–1782.
  • Iametti, S., Rasmussen, P., Frokiaer, H., Ferranti, P., Addeo, F. and Bonomi, F. (2002). Proteolysis of bovine b-lactoglobulin during thermal treatment in subdenaturing conditions highlights some structural features of the temperature-modified protein and yields fragments with low immunoreactivity. Eur. J. Biochem. 269:1362–1372.
  • Ipsen, R., Otte, J., Dominguez, E. and Qvist, K. B. (2000a). Gelation of whey protein induced by proteolysis or high pressure treatment. Aust. J. Dairy Technol. 55:49–52.
  • Ipsen, R., Otte, J., Lomholt, S. B. and Qvist, K. B. (2000b). Standardized reaction times used to describe the mechanism of enzyme-induced gelation in whey protein systems. J. Dairy Res. 67:403–413.
  • Ipsen, R., Otte, J., Sharma, R., Nielsen, A., Gram Hansen, L. and Bruun Qvist, K. (2001). Effect of limited hydrolysis on the interfacial rheology and foaming properties of β-lactoglobulin A. Colloids Surf. B. Biointerfaces 21:173–178.
  • Ishibashi, N., Ono, I., Kato, K., Shigenaga, T., Shinoda, I., Okai, H. and Fukui, S. (1988). Role of the hydrophobic amino acid residue in the bitterness of peptides. Agric. Biol. Chem. 52:91–94.
  • Jakobsson, I., Borulf, S., Lindberg, T. and Benediktsson, B. (1983). Partial hydrolysis of cow's milk proteins by human trypsins and elastases in vitro. J. Pediatr. Gastroenterol. Nutr. 2:613–616.
  • Jaziri, M. H., Migliore-Samour, D., Casabianca-Pignède, M.-R., Keddad, K., Morgat, J. L. and Jollès, P. (1992). Specific binding sites on human phagocytic blood cells for Gly-Leu-Phe and Val-Glu-Pro-Ile-Pro-Tyr, immunostimulating peptides from human milk proteins. Biochim. Biophys. Acta 1160:251–261.
  • Jiménez-Castaño, L., López-Fandiño, R. Olano, A. and Villamiel, M. (2005). Study on β-lactoglobulin glycosylation with dextran: effect on solubility and heat stability. Food Chem. 93:689–695.
  • Jiménez-Castaño, L., Villamiel, M. and López-Fandiño, R. (2007). Glycosylation of individual whey proteins by Maillard reaction using dextran of different molecular mass. Food Hydrocoll. 21:433–443.
  • Jing, H. and Kitts, D. D. (2004). Antioxidant activity of sugar–lysine Maillard reaction products in cell free and cell culture systems. Arch. Biochem. Biophys. 429:154–163.
  • Johnson, W. C. (1988). Secondary structure of proteins through circular dichroism spectroscopy. Annu. Rev. Biophys. Biophys. Chem. 17:145–166.
  • Kagan, B. L., Ganz, T. and Lehrer, R. I. (1994). Defensins: a family of antimicrobial and cytotoxic peptides. Toxicology 87:131–149.
  • Kalisz, H. M., Hendle, J. and Schmid, R. D. (1997). Structural and biochemical properties of glycosylated and deglycosylated glucose oxidase from Penicillium amagasakiense. Appl. Microbiol. Biotechnol. 47:502–507.
  • Kamau, S. M., Cheison, S. C., Chen, W., Liu, X. M. and Lu, R. R. (2010). Alpha‐Lactalbumin: Its production technologies and bioactive peptides. Compr. Rev. Food Sci. Food Saf. 9:197–212.
  • Kanda, Y., Hisayasu, S., Abe, Y., Katsura, K. and Mashimo, K. (2007). Growth-active peptides are produced from alpha-lactalbumin and lysozyme. Life Sci. 81:449–457.
  • Kehoe, J., Wang, L., Morris, E. and Brodkorb, A. (2011). Formation of Nonnative β-lactoglobulin during heat-induced denaturation. Food Biophys. 6:487–496.
  • Keil-Dlouhá, V., Zylber, N., Imhoff, J. M., Tong, N. T. and Keil, B. (1971a). Proteolytic activity of pseudotrypsin. FEBS Lett. 16:291–295.
  • Keil-Dlouhá, V., Zylber, N., Tong, N. T. and Keil, B. (1971b). Cleavage of glucagon by α- and β-trypsin. FEBS Lett. 16:287–290.
  • Khalloufi, S., Alexander, M., Douglas Goff, H. and Corredig, M. (2008). Physicochemical properties of whey protein isolate stabilized oil-in-water emulsions when mixed with flaxseed gum at neutral pH. Food Res. Int. 41:964–972.
  • Kim, H.-O. and Li-Chan, E. C. Y. (2006). Quantitative structure-activity relationship study of bitter peptides. J. Agric. Food. Chem. 54:10102–10111.
  • Kim, S. B., Ki, K. S., Khan, M. A., Lee, W. S., Lee, H. J., Ahn, B. S. and Kim, H. S. (2007a). Peptic and tryptic hydrolysis of native and heated whey protein to reduce its antigenicity. J. Dairy Sci. 90:4043–4050.
  • Kim, S. B., Ku, M. J., Cho, W. M., Ki, K. S., Kim, H. S. and Nam, M. S. (2010). Production of iron-binding peptides from colostral whey by enzymatic hydrolysis. Korean J. Food Sci. Anim. Resour. 30:923–929.
  • Kim, S. B., Seo, I. S., Khan, M. A., Ki, K. S., Nam, M. S. and Kim, H. S. (2007b). Separation of iron-binding protein from whey through enzymatic hydrolysis. Int. Dairy J. 17:625–631.
  • Kitabatake, N. and Kinekawa, Y.-I. (1998). Digestibility of bovine milk whey protein and β-lactoglobulin in vitro and in vivo. J. Agric. Food. Chem. 46:4917–4923.
  • Konrad, G. and Kleinschmidt, T. (2008). A new method for isolation of native a-lactalbumin from sweet whey. Int. Dairy J. 18:47–54.
  • Korhonen, H. and Pihlanto, A. (2006). Bioactive peptides: Production and functionality. Int. Dairy J. 16:945–960.
  • Kostyra, H., Wocior, A., Rudnicka, B., Rydzewski, M. and Kostyra, E. (2010). Influence of non-enzymatic glycosylation of sodium caseinate on the kinetics of its enzymatic hydrolysis. Milchwiss.-Milk Sci. Int. 65:302–305.
  • Kukman, I. L., Zelenik-Blatnik, M. and Abram, V. (1995). Isolation of low-molecular-mass hydrophobic bitter peptides in soybean protein hydrolysates by reversed-phase high-performance liquid chromatography. J. Chromatogr. 704:113–120.
  • Lalasidis, G. and Sjoberg, L.-B. (1978). Two new methods of debittering protein hydrolysates and a fraction of hydrolysates with exceptionally high content of essential amino acids. J. Agric. Food. Chem. 26:742–749.
  • Lapolla, A., Fedele, D., Reitano, R., Aric∫, N. C., Seraglia, R., Traldi, P., Marotta, E. and Tonani, R. (2004). Enzymatic digestion and mass spectrometry in the study of advanced glycation end products/peptides. J. Am. Soc. Mass. Spectrom. 15:496–509.
  • Laroque, D., Inisan, C., Berger, C., Vouland, É., Dufossé, L. and Guérard, F. (2008). Kinetic study on the Maillard reaction. consideration of sugar reactivity. Food Chem. 111:1032–1042.
  • Larson, B. L. and Rolleri, G. D. (1955). Heat Denaturation of the specific serum proteins in milk. J. Dairy Sci. 38:351–360.
  • Leeb, E., Kulozik, U. and Cheison, S. (2011). Thermal pre-treatment of β-Lactoglobulin as a tool to steer enzymatic hydrolysis and control the release of peptides. Procedia Food Science 1:1540–1546.
  • Leksrisompong, P. P., Miracle, R. E. and Drake, M. (2010). Characterization of flavor of whey protein hydrolysates. J. Agric. Food. Chem. 58:6318–6327.
  • Li, Z., Luo, Y. and Feng, L. (2011). Effects of Maillard reaction conditions on the antigenicity of α-lactalbumin and β-lactoglobulin in whey protein conjugated with maltose. Eur. Food Res. Technol. 233:387–394.
  • Lieske, B. and Konrad, G. (1996). Physico-chemical and functional properties of whey protein as affected by limited papain proteolysis and selective ultrafiltration. Int. Dairy J. 6:13–31.
  • Lisak, K., Toro-Sierra, J. Kulozik, U., Božanić, R. and Cheison, S. C. (2013). Chymotrypsin selectively digests β-lactoglobulin in whey protein isolate away from enzyme optimal conditions: Potential for native α-lactalbumin purification. J. Dairy Res. 80:14–20.
  • Liškovaá, K., Kelly, A. L., O'Brien, N. and Brodkorb, A. (2010). Effect of denaturation of α-Lactalbumin on the formation of BAMLET (Bovine α-Lactalbumin made lethal to tumor cells). J. Agric. Food. Chem. 58:4421–4427.
  • Liu, D., Zhou, P., Liu, X. and Labuza, T. P. (2011). Moisture-induced alpha-lactalbumin: effects of temperature, cations, and pH aggregation of. J. Food Sci. 76:C817–C823.
  • Lourenco da Costa, E., Antonio da Rocha Gontijo, J. and Netto, F. M. (2007). Effect of heat and enzymatic treatment on the antihypertensive activity of whey protein hydrolysates. Int. Dairy J. 17:632–640.
  • Lucca, P. A. and Tepper, B. J. (1994). Fat replacers and the functionality of fat in foods. Trends Food Sci. Technol. 5:12–19.
  • Lund, M. N., Olsen, K., Sørensen, J. and Skibsted, L. H. (2005). Kinetics and mechanism of lactosylation of α-lactalbumin. J. Agric. Food. Chem. 53:2095–2102.
  • Madureira, A. R., Pereira, C. I., Gomes, A. M. P., Pintado, M. E. and Xavier Malcata, F. (2007). Bovine whey proteins—Overview on their main biological properties. Food Res. Int. 40:1197–1211.
  • Mahmoud, M. I., Malone, W. T. and Cordle, C. T. (1992). Enzymatic hydrolysis of casein: Effect of degree of hydrolysis on antigenicity and physical properties. J. Food Sci. 57:1223–1229.
  • Margot, A., Flaschel, E. and Renken, A. (1997). Empirical kinetic models for tryptic whey-protein hydrolysis. Process Biochem. 32:217–223.
  • Marques, D., Pessela, B. C., Betancor, L., Monti, R., Carrascosa, A. V., Rocha-Martin, J., Guisán, J. M. and Fernandez-Lorente, G. (2011). Protein hydrolysis by immobilized and stabilized trypsin. Biotechnol. Progr. 27:677–683.
  • Márquez, M. C. and Vázquez, M. A. (1999). Modeling of enzymatic protein hydrolysis. Process Biochem. 35:111–117.
  • Martin-Orue, C., Henry, G. and Bouhallab, S. (1999). Tryptic hydrolysis of k-caseinomacropeptide: Control of the enzymatic reaction in a continuous membrane reactor. Enzyme Microb. Technol. 24:173–180.
  • Martínez-Araiza, G., Castaño-Tostado, E., Amaya-Llano, S., Regalado-González, C., Martínez-Vera, C. and Ozimek, L. (2012). Modeling of enzymatic hydrolysis of whey proteins. Food Bioprocess Technol. 5:2596–2601.
  • Marvin, L. F., Parisod, V., Fay, L. B. and Guy, P. A. (2002). Characterization of lactosylated proteins of infant formula powders using two-dimensional gel electrophoresis and nanoelectrospray mass spectrometry. Electrophoresis 23:2505–2512.
  • Mathews, C. K. and van Holde, K. E. (1995). Biochemistry. 2nd ed. Benjamin-Cummings Publishing Company, Menlo Park, California—USA.
  • Matsumoto, H., Shimokawa, Y., Ushida, Y., Toida, T. and Hayasawa, H. (2001). New biological function of bovine a-lactalbumin: protective effect against ethanol- and stress-induced gastric mucosal injury in rats. Biosci., Biotechnol., Biochem. 65:1104–1111.
  • Maynard, F., Weingand, A., Hau, J. and Jost, R. (1998). Effect of High-pressure Treatment on the Tryptic Hydrolysis of Bovine β-Lactoglobulin AB. Int. Dairy J. 8:125–133.
  • McKenzie, H. A. and Sawyer, W. H. (1967). Effect of pH on b-Lactoglobulins. Nature 214:1101–1104.
  • McMahon, D. J., Alleyne, M. C., Fife, R. L. and Oberg, C. J. (1996). Use of fat replacers in low fat mozzarella cheese. J. Dairy Sci. 79:1911–1921.
  • Meisel, H. and Bockelmann, W. (1999). Bioactive peptides encrypted in milk proteins: Proteolytic activation and thropho-functional properties. Antonie Van Leeuwenhoek 76:207–215.
  • Meltretter, J. and Pischetsrieder, M. (2008). Application of mass spectrometry for the detection of glycation and oxidation products in milk proteins. Ann. N.Y. Acad. Sci. 1126:134–140.
  • Mennella, C., Visciano, M., Napolitano, A., Del Castillo, M. D. and Fogliano, V. (2006). Glycation of lysine-containing dipeptides. J. Pept. Sci. 12:291–296.
  • Mihalyi, E. (1972). Application of proteolytic enzymes to protein structure studies. CRC Press, Cleveland.
  • Mills, O. E. (1976). Effect of temperature on tryptophan fluorescence of β-lactoglobulin B. Biochim. Biophys. Acta 434:324–332.
  • Miranda, G., Hazé, G., Scanff, P. and Pélissier, J. P. (1989). Hydrolysis of α-lactalbumin by chymosin and pepsin. Effect of conformation and pH. Lait 69:451–459.
  • Molinari, H., Ragona, L., Varani, L., Musco, G., Consonni, R., Zetta, L. and Monaco, H. L. (1996). Partially folded structure of monomeric bovine β-lactoglobulin. FEBS Lett. 381:237–243.
  • Morgan, F., Léonil, J., Mollé, D. and Bouhallab, S. (1997). Nonenzymatic lactosylation of bovine β-lactoglobulin under mild heat treatment leads to structural heterogeneity of the glycoforms. Biochem. Biophys. Res. Commun. 236:413–417.
  • Mota, M. V. T., Ferreira, I. M. P. L. V. O., Oliveira, M. B. P., Rocha, C., Teixeira, J. A., Torres, D. and Goncalves, M. P. (2006). Trypsin hydrolysis of whey protein concentrates: Characterization using multivariate data analysis. Food Chem. 94:278–286.
  • Mota, M. V. T., Ferreira, I. M. P. L. V. O., Oliveira, M. B. P., Rocha, C., Teixeira, J. A., Torres, D. and Gonçalves, M. P. (2004). Enzymatic hydrolysis of whey protein concentrates: Peptide HPLC Profiles. J. Liq. Chromatogr. Rel. Technol. 27:2625–2639.
  • Mullally, M. M., Mehra, R. and FitzGerald, R. J. (1998). Thermal effects on the conformation and susceptibility of b-lactoglobulin to hydrolysis by gastric and pancreatic endoproteinases. Ir. J. Agric. Food Res. 37:51–60.
  • Mullally, M. M., Meisel, H. and FitzGerald, R. J. (1996). Synthetic peptides corresponding to a-lactalbumin and b-lactoglobulin sequences with angiotensin-I converting enzyme inhibitory activity. Biol. Chem. Hoppe Seyler 377:259–260.
  • Mullally, M. M., Meisel, H. and FitzGerald, R. J. (1997a). Angiotensin-I converting enzyme inhibitory activities of gastric and pancreatic proteinase digests of whey proteins. Int. Dairy J. 7:299–303.
  • Mullally, M. M., Meisel, H. and FitzGerald, R. J. (1997b). Identification of a novel angiotensin-I converting enzyme inhibitory peptide corresponding to a tryptic fragment of bovine b-lactoglobulin. FEBS Lett. 402:99–101.
  • Murthy, S. N. S., Kostman, J. and Dinoso, V. P. (1980). Effect of pH, substrate, and temperature on tryptic activity of duodenal samples. Dig. Dis. Sci. 25:289–294.
  • Mutilangi, W. A. M., Panyam, D. and Kilara, A. (1995). Hydrolysates from proteolysis of heat-denatured whey proteins. J. Food Sci. 60:1104–1109.
  • Mutilangi, W. A. M., Panyam, D. and Kilara, A. (1996). Functional properties of hydrolysates from proteolysis of heat-denatured whey protein isolate. J. Food Sci. 61:270–274.
  • N'Negue, M. A., Miclo, L., Girardet, J. M., Campagna, S., Mollé, D. and Gaillard, J. L. (2006). Proteolysis of bovine a-lactalbumin by thermolysin during thermal denaturation. Int. Dairy J. 16:1157–1167.
  • Nacka, F., Chobert, J.-M., Burova, T., Léonil, J. and Haertlé, T. (1998). Induction of new physicochemical and functional properties by the glycosylation of whey proteins. J. Protein Chem. 17:495–503.
  • Nagaoka, S., Futamura, Y., Miwa, K., Awano, T., Yamauchi, K., Kanamaru, Y., Tadashi, K. and Kuwata, T. (2001). Identification of novel hypocholesterolemic peptides derived from bovine milk [beta]-Lactoglobulin. Biochem. Biophys. Res. Commun. 281:11–17.
  • Nagasawa, K., Takahashi, K. and Hattori, M. (1996). Improved emulsifying properties of β-lactoglobulin by conjugating with carboxymethyl dextran. Food Hydrocoll. 10:63–67.
  • Nakamura, T., Sado, H. and Syukunobe, Y. (1993). Production of low antigenic whey-protein hydrolysates by enzymatic-hydrolysis and denaturation with high-pressure. Milchwiss. 48:141–144.
  • Naranjo, G. B., Malec, L. S. and Vigo, M. (1998). Reducing sugars effect on available lysine loss of casein by moderate heat treatment. Food Chem. 62:309–313.
  • O'Loughlin, I. B., Murray, B. A., Kelly, P. M., FitzGerald, R. J. and Brodkorb, A. (2012). Enzymatic hydrolysis of heat-induced aggregates of whey protein isolate. J. Agric. Food. Chem. 60:4895–4904.
  • Oevermann, A., Engels, M., Thomas, U. and Pellegrini, A. (2003). The antiviral activity of naturally occurring proteins and their peptide fragments after chemical modification. Antiviral Res. 59:23–33.
  • Oldfield, D. J., Singh, H. and Taylor, M. W. (2005). Kinetics of heat-induced whey protein denaturation and aggregation in skim milks with adjusted whey protein concentration. J. Dairy Res. 72:369–378.
  • Oliver, C. M. (2011). Insight into the glycation of milk proteins: An ESI- and MALDI-MS Perspective (Review). Crit. Rev. Food Sci. Nutr. 51:410–431.
  • Olsen, J. V., Ong, S.-E. and Mann, M. (2004). Trypsin cleaves exclusively c-terminal to arginine and lysine residues. Mol. Cell. Proteomics 3:608–614.
  • Ortiz-Chao, P., Gómez-Ruiz, J. A. Rastall, R. A., Mills, D., Cramer, R., Pihlanto, A., Korhonen, H. and Jauregi, P. (2009). Production of novel ACE inhibitory peptides from b-lactoglobulin using Protease N Amano. Int. Dairy J. 19:69–76.
  • Otte, J., Shalaby, S. M., Zakora, M., Pripp, A. H. and El-Shabrawy, S. A. (2007a). Angiotensin-converting enzyme inhibitory activity of milk protein hydrolysates: Effect of substrate, enzyme and time of hydrolysis. Int. Dairy J. 17:488–503.
  • Otte, J., Shalaby, S. M. A., Zakora, M. and Nielsen, M. S. (2007b). Fractionation and identification of ACE-inhibitory peptides from a-lactalbumin and b-casein produced by thermolysin-catalysed hydrolysis. Int. Dairy J. 17:1460–1472.
  • Otte, J., Zakora, M., Qvist, K. B., Olsen, C. E. and Barkholt, V. (1997). Hydrolysis of Bovine b-Lactoglobulin by various proteases and identification of selected peptides. Int. Dairy J. 7:835–848.
  • Papiz, M. Z., Sawyer, L., Eliopoulos, E. E., North, A. C. T., Findlay, J. B. C., Sivaprasadarao, R., Jones, T. A., Newcomer, M. E. and Kraulis, P. J. (1986). The structure of b-lactoglobulin and its similarity to plasma retinol-binding protein. Nature 324:383–385.
  • Parekh, V. J., Rathod, V. K. and Pandit, A. B. (2011). Substrate hydrolysis: Methods, mechanism, and industrial applications of substrate hydrolysis. In: Comprehensive Biotechnology (Second Edition). pp. 103–118 Moo-Young, M. ed., Academic Press, Burlington.
  • Pelegrine, D. H. G. and Gasparetto, C. A. (2005). Whey proteins solubility as function of temperature and pH. Lebensm. Wiss. Technol. 38:77–80.
  • Pellegrini, A., Dettling, C., Thomas, U. and Hunziker, P. (2001). Isolation and characterization of four bactericidal domains in the bovine [beta]-lactoglobulin. Biochim. Biophys. Acta 1526:131–140.
  • Pellegrini, A., Thomas, U., Bramaz, N., Hunziker, P. and von Fellenberg, R. (1999). Isolation and identification of three bactericidal domains in the bovine a-lactalbumin molecule. Biochim. Biophys. Acta 1426:439–448.
  • Pellegrini, A., Thomas, U., Fellenberg, R. and Wild, P. (1992). Bactericidal activities of lysozyme and aprotinin against Gram-negative and Gram-positive bacteria related to their basic character. J. Appl. Microbiol. 72:180–187.
  • Peña-Ramos, E. A. and Xiong, Y. L. (2001). Antioxidative activity of whey protein hydrolysates in a liposomal system. J. Dairy Sci. 84:2577–2583.
  • Peñas, E., Préstamo, G., Luisa Baeza, M., Martínez-Molero, M. I. and Gomez, R. (2006). Effects of combined high pressure and enzymatic treatments on the hydrolysis and immunoreactivity of dairy whey proteins. Int. Dairy J. 16:831–839.
  • Perea, A. and Ugalde, U. (1996). Continuous hydrolysis of whey proteins in a membrane recycle reactor. Enzyme Microb. Technol. 18:29–34.
  • Pereyra Gonzales, A. S., Naranjo, G. B., Leiva, G. E. and Malec, L. S. (2010). Maillard reaction kinetics in milk powder: Effect of water activity at mild temperatures. Int. Dairy J. 20:40–45.
  • Pérez, M. D. and Calvo, M. (1995). Interaction of β-lactoglobulin with retinol and fatty acids and its role as a possible biological function for this protein: A review. J. Dairy Sci. 78:978–988.
  • Permyakov, E. A. and Berliner, L. J. (2000). a-Lactalbumin: structure and function. FEBS Lett. 473:269–274.
  • Permyakov, E. A., Shnyrov, V. L., Kalinichenko, L. P., Kuchar, A., Reyzer, I. L. and Berliner, L. J. (1991). Binding of Zn(II) ions to α-lactalbumin. J. Protein Chem. 10:577–584.
  • Pessen, H., Purcell, J. M. and Farrell, H. M., Jr. (1985). Proton relaxation rates of water in dilute solutions of β-lactoglobulin. Determination of cross relaxation and correlation with structural changes by the use of two genetic variants of a self-associating globular protein. Biochim. Biophys. Acta 828:1–12.
  • Pihlanto-Leppälä, A., Koskinen, P., Piilola, K., Tupasela, T. and Korhonen, H. (2000). Angiotensin-I converting enzyme inhibitory properties of whey protein digests: Concentration and characterization of active peptides. J. Dairy Res. 67:53–64.
  • Pihlanto-Leppälä, A., Marnila, P., Hubert, L., Rokka, T., Korhonen, H. J. T. and Karp, M. (1999). The effect of a-lactalbumin and b-lactoglobulin hydrolysates on the metabolic activity of Escherichia coli JM103. J. Appl. Microbiol. 87:540–545.
  • Pike, A. C. W., Brew, K. and Acharya, K. R. (1996). Crystal structures of guinea-pig, goat and bovine a-lactalbumin highlight the enhanced conformational flexibility of regions that are significant for its action in lactose synthase. Structure 4:691–703.
  • Pintado, M. E., Pintado, A. E. and Malcata, F. X. (1999). Controlled whey protein hydrolysis using two alternative proteases. J. Food Eng. 42:1–13.
  • Polverino de Laureto, P., De Filippis, V., Di Bello, M., Zambonin, M. and Fontana, A. (1995). Probing the molten globule state of alpha.-lactalbumin by limited proteolysis. Biochem. 34:12596–12604.
  • Potier, M. and Tom, D. (2008). Comparison of digestibility and quality of intact proteins with their respective hydrolysates. J. AOAC Int. 91:1002–1005.
  • Pouliot, Y., Gauthier, S. F. and L'Heureux, J. (2000). Effect of peptide distribution on the fractionation of whey protein hydrolysates by nanofiltration membranes. Lait 80:113–120.
  • Prieto, C. A., Guadix, A., Gonzalez-Tello, P. and Guadix, E. M. (2007). A cyclic batch membrane reactor for the hydrolysis of whey protein. J. Food Eng. 78:257–265.
  • Ptitsyn, O. B. (1995). Molten Globule and Protein Folding. In: Adv. Protein Chem, Vol. 47, pp. 83–229. C.B. Anfinsen, F. M. Richards, J. T. Edsall, and S. E.., eds. Academic Press, London, UK.
  • Purcell, J. M. and Susi, H. (1984). Solvent denaturation of proteins as observed by resolution-enhanced Fourier transform infrared spectroscopy. J. Biochem. Bioph. Methods 9:193–199.
  • Qi, X. L., Brownlow, S., Holt, C. and Sellers, P. (1995). Thermal denaturation of b-lactoglobulin: effect of protein concentration at pH 6.75 and 8.05. Biochim. Biophys. Acta 1248:43–49.
  • Qi, X. L., Holt, C., McNulty, D., Clarke, D. T., Brownlow, S. and Jones, G. R. (1997). Effect of temperature on the secondary structure of b-lactoglobulin at pH 6.7, as determined by CD and IR spectroscopy: a test of the molten globule hypothesis. Biochem. J 324(Pt 1):341–346.
  • Qin, B. Y., Bewley, M. C., Creamer, L. K., Baker, H. M., Baker, E. N. and Jameson, G. B. (1998). Structural Basis of the Tanford Transition of Bovine b-Lactoglobulin. Biochem. 37:14014–14023.
  • Rasmussen, B. W. and Bjerrum, M. J. (2003). Ca2+ and Na+ binding to high affinity sites of calcium-containing proteins measured by capillary electrophoresis. J. Inorg. Biochem. 95:113–123.
  • Ravi K., Acharya, Ren, J., Stuart, D. I., Phillips, D. C. and Fenna, R. E. (1991). Crystal structure of human a-lactalbumin at 1·7 Å resolution. J. Mol. Biol. 221:571–581.
  • Relkin, P. and Mulvihill, D. M. (1996). Thermal unfolding of β-lactoglobulin, α-lactalbumin, and bovine serum albumin. A thermodynamic approach. Crit. Rev. Food Sci. Nutr. 36:565–601.
  • Rocha, C., Gonçalves, M. P. and Teixeira, J. A. (2011). Immobilization of trypsin on spent grains for whey protein hydrolysis. Process Biochem. 46:505–511.
  • Rüegg, M., Moor, U. and Blanc, B. (1977). A calorimetric study of the thermal denaturation of whey proteins in simulated milk ultrafiltrate. J. Dairy Res. 44:509–520.
  • Rutherfurd-Markwick, K. J. and Moughan, P. J. (2005). Bioactive peptides derived from food. J. AOAC Int. 88:955–966.
  • Saha, B. C. and Hayashi, K. (2001). Debittering of protein hydrolyzates. Biotechnol. Adv. 19:355–370.
  • Saint-Sauveur, D., Gauthier, S. F., Boutin, Y. and Montoni, A. (2008). Immunomodulating properties of a whey protein isolate, its enzymatic digest and peptide fractions. Int. Dairy J. 18:260–270.
  • Sandoval-Castilla, O., Lobato-Calleros, C., Aguirre-Mandujano, E. and Vernon-Carter, E. J. (2004). Microstructure and texture of yogurt as influenced by fat replacers. Int. Dairy J. 14:151–159.
  • Sawyer, L. (2003). b-Lactoglobulin. In: Advanced Dairy Chemistry. Vol. 1: Proteins, 3rd ed., pp. 319–386. Fox, P. F. and McSweeney, P. L. H. Ed., Kluwer Academic/ Plenum Publishers, New York.
  • Sawyer, L., Brownlow, S., Polikarpov, I. and Wu, S.-Y. (1998). b-Lactoglobulin: Structural studies, biological clues. Int. Dairy J. 8:65–72.
  • Sawyer, L. and James, M. N. G. (1982). Carboxyl-carboxylate interactions in proteins. Nature 295:79–80.
  • Sawyer, W. H. (1969). Complex between β-lactoglobulin and κ-casein. A review. J. Dairy Sci. 52:1347–1355.
  • Schechter, I. and Berger, A. (1967). On the size of the active site in proteases. I. Papain. Biochem. Biophys. Res. Commun. 27:157–162.
  • Schellenberger, V., Turck, C. W., Hedstrom, L. and Rutter, W. J. (1993). Mapping the S' subsites of serine proteases using acyl transfer to mixtures of peptide nucleophiles. Biochem. 32:4349–4353.
  • Schellenberger, V., Turck, C. W. and Rutter, W. J. (1994). Role of the S' subsites in serine protease catalysis. Active-site mapping of rat chymotrypsin, rat trypsin, alpha-lytic protease, and cercarial protease from schistosoma mansoni. Biochem. 33:4251–4257.
  • Schmidt, D. G. and Poll, J. K. (1991). Enzymatic hydrolysis of whey proteins. Hydrolysis of α-lactalbumin and β-lactoglobulin in buffer solutions by proteolytic enzymes. Neth. Milk Dairy J. 45:225–240.
  • Schmidt, D. G. and van Markwijk, B. W. (1993). Enzymatic hydrolysis of whey proteins Influence of heat treatment of α-lactalbumin and β-lactoglobulin of their proteolysis of pepsin and papain. Neth. Milk Dairy J. 47:15–22.
  • Schober, Y., Yoo, S. H., Paik, H. D., Park, E. J., Spengler, B., Rompp, A., Jayaprakasha, H. M. and Yoon, Y. C. (2012). Characterization of bioactive peptides derived by enzymatic hydrolysis of whey protein concentrate. Milchwiss. 67:55–57.
  • Schokker, E. P., Singh, H., Pinder, D. N., Norris, G. E. and Creamer, L. K. (1999). Characterization of intermediates formed during heat-induced aggregation of β-lactoglobulin AB at neutral pH. Int. Dairy J. 9:791–800.
  • Schwartz, T. B. and Engel, F. L. (1950). A photometric ninhydrin method for the measurement of proteolysis. J. Biol. Chem. 184:197–202.
  • Shi, D., He, Z. and Qi, W. (2005). Lumping kinetic study on the process of tryptic hydrolysis of bovine serum albumin. Process Biochem. 40:1943–1949.
  • Shimoyamada, M., Yoshimura, H., Tomida, K. and Watanabe, K. (1996). Stabilities of Bovine β-lactoglobulin/retinol or retinoic acid complexes against tryptic hydrolysis, heating and light-induced oxidation. Food Sci. Technol. 29:763–766.
  • Siciliano, R., Rega, B., Amoresano, A. and Pucci, P. (1999). Modern mass spectrometric methodologies in monitoring milk quality. Anal. Chem. 72:408–415.
  • Silva, S. V. and Malcata, F. X. (2005). Caseins as source of bioactive peptides. Int. Dairy J. 15:1–15.
  • Silva, S. V., Pihlanto, A. and Malcata, F. X. (2006). Bioactive peptides in ovine and caprine cheeselike systems prepared with proteases from cynara cardunculus. J. Dairy Sci. 89:3336–3344.
  • Singh, A. M. and Dalgleish, D. G. (1998). The emulsifying properties of hydrolyzates of whey proteins. J. Dairy Sci. 81:918–924.
  • Sipos, T. and Merkel, J. R. (1970). Effect of calcium ions on the activity, heat stability, and structure of trypsin. Biochem. 9:2766–2775.
  • Sitohy, M., Chobert, J. M. and Haertlé, T. (2001). Susceptibility to trypsinolysis of esterified milk proteins. Int. J. Biol. Macromol. 28:263–271.
  • Slattery, H. and FitzGerald, R. J. (1998). Functional properties and bitterness of sodium caseinate hydrolysates prepared with a Bacillus proteinase. J. Food Sci. 63:418–422.
  • Spellman, D., McEvoy, E., O'Cuinn, G. and FitzGerald, R. J. (2003). Proteinase and exopeptidase hydrolysis of whey protein: Comparison of the TNBS, OPA and pH stat methods for quantification of degree of hydrolysis. Int. Dairy J. 13:447–453.
  • Spellman, D., O'Cuinn, G. and FitzGerald, R. J. (2005). Physicochemical and sensory characteristics of whey protein hydrolysates generated at different total solids levels. J. Dairy Res. 72:138–143.
  • Spellman, D., O'Cuinn, G. and FitzGerald, R. J. (2009). Bitterness in Bacillus proteinase hydrolysates of whey proteins. Food Chem. 114:440–446.
  • Stănciuc, N., Dumitraşcu, L., Ardelean, A., Stanciu, S. and Râpeanu, G. (2012). A kinetic study on the heat-induced changes of whey proteins concentrate at two pH Values. Food Bioprocess Technol. 5:2160–2171.
  • Steinhardt, J. and Beychok, S. (1964). Interaction of proteins with hydrogen ions and other small ions and molecules. In: The Proteins Composition, Structure, and Function. Vol. 2. 2nd ed., pp. 139–304. Neurath, H., ed. Academic Press Inc., New York.
  • Sumaya-Martinez, M. T., Thomas, S., Linard, B., Binet, A. and Guerard, F. (2005). Effect of Maillard reaction conditions on browning and antiradical activity of sugar-tuna stomach hydrolysate model. Food Res. Int. 38:1045–1050.
  • Sun, Y., Hayakawa, S., Puangmanee, S. and Izumori, K. (2006). Chemical properties and antioxidative activity of glycated α-lactalbumin with a rare sugar, d-allose, by Maillard reaction. Food Chem. 95:509–517.
  • Svensson, M., Fast, J., Mossberg, A.-K., Düringer, C., Gustafsson, L., Hallgren, O., Brooks, C. L., Berliner, L., Linse, S. and Svanborg, C. (2003). a-Lactalbumin unfolding is not sufficient to cause apoptosis, but is required for the conversion to HAMLET (human alpha-lactalbumin made lethal to tumor cells). Protein Sci. 12:2794–2804.
  • Takano, D. T. (2002). Anti-hypertensive activity of fermented dairy products containing biogenic peptides. Antonie Van Leeuwenhoek 82:333–340.
  • Tanford, C., Bunville, L. G. and Nozaki, Y. (1959). The reversible transformation of b-Lactoglobulin at pH 7.51. J. Am. Chem. Soc. 81:4032–4036.
  • Tatsumi, Y., Sasahara, Y., Kohyama, N., Ayano, S., Endo, M., Yoshida, T., Yamada, K., Totsuka, M. and Hattori, M. (2012). Introducing site-specific glycosylation using protein engineering techniques reduces the immunogenicity of β-Lactoglobulin. Biosci., Biotechnol., Biochem. 76:478–485.
  • Taulier, N. and Chalikian, T. V. (2001). Characterization of pH-induced transitions of b-lactoglobulin: ultrasonic, densimetric, and spectroscopic studies. J. Mol. Biol. 314:873–889.
  • Tauzin, J., Miclo, L., Roth, S., Mollé, D. and Gaillard, J. L. (2003). Tryptic hydrolysis of bovine aS2-casein: identification and release kinetics of peptides. Int. Dairy J. 13:15–27.
  • ter Haar, R., Schols, H. A. and Gruppen, H. (2011a). Effect of saccharide structure and size on the degree of substitution and product dispersity of α-lactalbumin glycated via the Maillard reaction. J. Agric. Food. Chem. 59:9378–9385.
  • ter Haar, R., Westphal, Y., Wierenga, P. A., Schols, H. A. and Gruppen, H. (2011b). Cross-linking behavior and foaming properties of bovine α-lactalbumin after glycation with various saccharides. J. Agric. Food. Chem. 59:12460–12466.
  • Tolkach, A. and Kulozik, U. (2007). Reaction kinetic pathway of reversible and irreversible thermal denaturation of b-lactoglobulin. Lait 87:301–315.
  • Tolkach, A., Steinle, S. and Kulozik, U. (2005). Optimization of thermal pretreatment conditions for the separation of native a-Lactalbumin from whey protein concentrates by means of selective denaturation of b-Lactoglobulin. J. Food Sci. 70:E557–E566.
  • Townend, R., Herskovits, T. T., Timasheff, S. N. and Gorbunoff, M. J. (1969). The state of amino acid residues in β-lactoglobulin. Arch. Biochem. Biophys. 129:567–580.
  • Townend, R. and Timasheff, S. N. (1956). The pH dependence of the association of β-lactoglobulin. Arch. Biochem. Biophys. 63:482–484.
  • Trusek-Holownia, A. (2008). Production of protein hydrolysates in an enzymatic membrane reactor. Biochem. Eng. J. 39:221–229.
  • Turgeon, S. L., Gauthier, S. F. and Paquin, P. (1991). Interfacial and emulsifying properties of whey peptide fractions obtained with a two-step ultrafiltration process. J. Agric. Food. Chem. 39:673–676.
  • van Boekel, M. A. J. S. (1998). Effect of heating on Maillard reactions in milk. Food Chem. 62:403–414.
  • van Boekel, M. A. J. S. (2001). Kinetic aspects of the Maillard reaction: A critical review. Food / Nahrung 45:150–159.
  • van der Ven, C., Gruppen, H., de Bont, D. B. and Voragen, A. G. (2001). Emulsion properties of casein and whey protein hydrolysates and the relation with other hydrolysate characteristics. J. Agric. Food. Chem. 49:5005–5012.
  • van der Ven, C., Gruppen, H., de Bont, D. B. A. and Voragen, A. G. J. (2002a). Correlations between biochemical characteristics and foam-forming and -stabilizing ability of whey and casein hydrolysates. J. Agric. Food. Chem. 50:2938–2946.
  • van der Ven, C., Gruppen, H., de Bont, D. B. A. and Voragen, A. G. J. (2002b). Optimisation of the angiotensin converting enzyme inhibition by whey protein hydrolysates using response surface methodology. Int. Dairy J. 12:813–820.
  • van Vliet, T., Lakemond, C. M. M. and Visschers, R. W. (2004). Rheology and structure of milk protein gels. Curr. Opin. Colloid Interface Sci. 9:298–304.
  • Vardhanabhuti, B. and Allen Foegeding, E. (2008). Effects of dextran sulfate, NaCl, and initial protein concentration on thermal stability of β-lactoglobulin and α-lactalbumin at neutral pH. Food Hydrocoll. 22:752–762.
  • Vasbinder, A. J., Rollema, H. S. and de Kruif, C. G. (2003). Impaired rennetability of heated milk; Study of enzymatic hydrolysis and gelation kinetics. J. Dairy Sci. 86:1548–1555.
  • Verheul, M., Pedersen, J. S., Roefs, S. P. F. M. and de Kruif, K. G. (1999). Association behavior of native β-lactoglobulin. Biopolymers 49:11–20.
  • Vestling, M. M., Murphy, C. M. and Fenselau, C. (1990). Recognition of trypsin autolysis products by high-performance liquid chromatography and mass spectrometry. Anal. Chem. 62:2391–2394.
  • Wagner, J. R., Sorgentini, D. A. and Anon, M. C. (2000). Relation between solubility and surface hydrophobicity as an indicator of modifications during preparation processes of commercial and laboratory-prepared soy protein isolates. J. Agric. Food Chem. 48:3159–3165.
  • Walsh, K. A. (1970). Trypsinogens and trypsins of various species. In: Methods Enzymol: Proteolytic Enzymes. Vol. 19, pp. 41–63. N. P. Colowick, G. E. Perlmann, and L. Lorand, ed. Academic Press, California, USA.
  • Walstra, P., Wouters, J. T. M. and Geurts, T. J. (2006). Dairy science and technology. CRC/Taylor & Francis, Boca Raton.
  • Wang, S.-S. and Carpenter, F. H. (1967). Kinetics of the tryptic hydrolysis of the oxidized B Chain of Bovine Insulin. Biochem. 6:215–224.
  • Wasswa, J., Tang, J., Gu, X.-h. and Yuan, X.-q. (2007). Influence of the extent of enzymatic hydrolysis on the functional properties of protein hydrolysate from grass carp (Ctenopharyngodon idella) skin. Food Chem. 104:1698–1704.
  • Wehbi, Z., Pérez, M.-D., Sánchez, L., Pocoví, C., Barbana, C. and Calvo, M. (2005). Effect of heat treatment on denaturation of bovine α-Lactalbumin:  determination of kinetic and thermodynamic parameters. J. Agric. Food. Chem. 53:9730–9736.
  • Whitaker, J. R. (1977). Enzymatic modification of proteins applicable to foods. In: Food proteins: improvement through chemical and enzymatic modifications. Vol. 160. Feeney, R. E. and Whitaker, J. R., ed. American Chemical Society, Washington, D. C.
  • Wijesinha-Bettoni, R., Gao, C., Jenkins, J. A., Mackie, A. R., Wilde, P. J., Mills, E. N. C. and Smith, L. J. (2007). Heat treatment of bovine α-Lactalbumin results in partially folded, disulfide bond shuffled states with enhanced surface activity. Biochem. 46:9774–9784.
  • Yamauchi, R., Usui, H., Yunden, J., Takenaka, Y., Tani, F. and Yoshikawa, M. (2003). Characterization of b-lactotensin, a bioactive peptide derived from bovine b-lactoglobulin, as a neurotensin agonist. Biosci. Biotechnol. Biochem. 67:940–943.
  • Ye, A. (2008). Interfacial composition and stability of emulsions made with mixtures of commercial sodium caseinate and whey protein concentrate. Food Chem. 110:946–952.
  • Yilmaz, Y. and Toledo, R. (2005). Antioxidant activity of water-soluble Maillard reaction products. Food Chem. 93:273–278.
  • Yoshikawa, M., Tani, F., Yoshimura, T. and Chiba, H. (1986). Opioid peptides from milk proteins. Agric. Biol. Chem. 50:2419–2421.
  • Zhong, F., Liu, J., Ma, J. and Shoemaker, C. F. (2007). Preparation of hypocholesterol peptides from soy protein and their hypocholesterolemic effect in mice. Food Res. Int. 40:661–667.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.