10,512
Views
363
CrossRef citations to date
0
Altmetric
Articles

Alginate gel particles–A review of production techniques and physical properties

, &

References

  • Abraham, S. M., Vieth, R. F. and Burgess, D. J. (1996). Novel technology for the preparation of sterile alginate-poly-l-lysine microcapsules in a bioreactor. Pharm. Dev. Technol. 1:63–68.
  • Abubakr, N., Jayemanne, A., Audrey, N., Lin, S. X. and Chen, X. D. (2010). Effects of encapsulation process parameters of calcium alginate beads on vitamin b12 drug release kinetics. Asia-Pacific J. Chem. Eng. 5:804–810.
  • Adams, S., Frith, W. J. and Stokes, J. R. (2004). Influence of particle modulus on the rheological properties of agar microgel suspensions. J. Rheol. 48:1195–1213.
  • Al-Musa, S., Abu Fara, D. and Badwan, A. A. (1999). Evaluation of parameters involved in preparation and release of drug loaded in crosslinked matrices of alginate. J. Control. Rel. 57:223–232.
  • Andersen, T., Strand, B. L., Formo, K., Alsberg, E. and Christensen, B. E. (2012). Alginates as biomaterials in tissue engineering. In: Carbohydrate chemistry, Rauter, A. P. and Lindhorst, T., The Royal Society of Chemistry, London.
  • Andresen, I. L., Skipnes, O., Smidsrod, O., Ostgaard, K. and Hemmer, P. C. (1977). Some biological functions of matrix components in benthic algae in relation to their chemistry and the composition of seawater. In: Cellulose chemistry and technology, Jett, C. A. J., American Chenical Society, U.S.
  • Arica, B., Calis, S., Atilla, P., Durlu, N. T., Cakar, N., Kas, H. S. and Hincal, A. A. (2005). In vitro and in vivo studies of ibuprofen-loaded biodegradable alginate beads. J. Microencapsulation. 22:153–165.
  • Aslani, P. and Kennedy, R. A. (1996). Studies on diffusion in alginate gels. I. Effect of cross-linking with calcium or zinc ions on diffusion of acetaminophen. J. Control. Rel. 42:75–82.
  • Aydelotte, M. B., Thonar, E. J., Mollenhauer, J. and Flechtenmacher, J. (1998). Culture of chondrocytes in alginate gel: Variations in conditions of gelation influence the structure of the alginate gel, and the arrangement and morphology of proliferating chondrocytes. In Vitro Cell. Dev. Biol. Anim. 34:123–130.
  • Bajpai, S. K. and Sharma, S. (2004). Investigation of swelling/degradation behaviour of alginate beads crosslinked with ca2+ and ba2+ ions. Reactive and Functional Polymers. 59:129–140.
  • Belščak-Cvitanović, A., Stojanović, R., Manojlović, V., Komes, D., Cindrić, I. J., Nedović, V. and Bugarski, B. (2011). Encapsulation of polyphenolic antioxidants from medicinal plant extracts in alginate–chitosan system enhanced with ascorbic acid by electrostatic extrusion. Food Res. Int. 44:1094–1101.
  • Bhandari, B. (2009). Device and method for preparing microparticles. Aus patent WO/2009/062254. Canberra, ACT.
  • Blandino, A., Macias, M. and Cantero, D. (1999). Formation of calcium alginate gel capsules: Influence of sodium alginate and cacl2 concentration on gelation kinetics. J. Biosci. Bioeng. 88:686–689.
  • Boissiere, M., Meadows, P. J., Brayner, R., Helary, C., Livage, J. and Coradin, T. (2006). Turning biopolymer particles into hybrid capsules: The example of silica/alginate nanocomposites. J. Mater. Chem. 16:1178–1182.
  • Bugarski, B., Li, Q., Goosen, M. F. A., Poncelet, D., Neufeld, R. J. and Vunjak, G. (1994). Electrostatic droplet generation: Mechanism of polymer droplet formation. AIChE J. 40:1026–1031.
  • Burey, P., Bhandari, B. R., Howes, T. and Gidley, M. J. (2008). Hydrocolloid gel particles: Formation, characterization, and application. Crit. Rev. Food Sci. Nutr. 48:361–377.
  • Catarina, M. S., Ribeiro, A. J., Veiga, F. and Sousa, A. (2006). Insulin release from alginate microspheres reinforced with dextran sulfate. Chem. Ind. Chem. Eng. Quart. 12:47–52.
  • Champagne, C. P., Blahuta, N., Brion, F. and Gagnon, C. (2000). A vortex-bowl disk atomizer system for the production of alginate beads in a 1500-liter fermentor. Biotechnol. Bioeng. 68:681–688.
  • Chan, E.-S., Lee, B.-B., Ravindra, P. and Poncelet, D. (2009). Prediction models for shape and size of ca-alginate macrobeads produced through extrusion—dripping method. J. Coll. Inter. Sci. 338:63–72.
  • Chan, E. S. (2011). Preparation of ca-alginate beads containing high oil content: Influence of process variables on encapsulation efficiency and bead properties. Carbohydrate Polym. 84:1267–1275.
  • Chan, E. S., Lim, T. K., Voo, W. P., Pogaku, R., Tey, B. T. and Zhang, Z. (2011). Effect of formulation of alginate beads on their mechanical behavior and stiffness. Particuology. 9:228–234.
  • Chan, L. W., Lim, L. T. and Heng, P. W. (2000). Microencapsulation of oils using sodium alginate. J. Microencapsul. 17:757–766.
  • Chan, L. W., Lee, H. Y. and Heng, P. W. S. (2006). Mechanisms of external and internal gelation and their impact on the functions of alginate as a coat and delivery system. Carbohydr. Polym. 63:176–187.
  • Chapman, V. J. (1980). Seaweeds and their uses. Chapman and Hall, London.
  • Chen, J. and Dickinson, E. (1999). Effect of surface character of filler particles on rheology of heat-set whey protein emulsion gels. Colloids Surf. B: Biointerfaces. 12:373–381.
  • Ching, S. H., Bhandari, B., Webb, R. and Bansal, N. (2015). Visualizing the interaction between sodium caseinate and calcium alginate microgel particles. Food Hydrocolloids. 43:165–171.
  • Christian, D. A., Cai, S., Garbuzenko, O. B., Harada, T., Zajac, A. L., Minko, T. and Discher, D. E. (2009). Flexible filaments for in vivo imaging and delivery: Persistent circulation of filomicelles opens the dosage window for sustained tumor shrinkage. Mol. Pharm. 6:1343–1352.
  • Clare, K. (1993). Algin. In: Industrial gums: Polysaccharides and their derivatives, Whister, R. L. and BeMiller, J. N., Academic Press, Toronto.
  • Cui, J. H., Goh, J. S., Park, S. Y., Kim, P. H. and Lee, B. J. (2001). Preparation and physical characterization of alginate microparticles using air atomization method. Drug Devel. Ind. Pharm. 27:309–319.
  • Danielsson, I. and Lindman, B. (1981). The definition of microemulsion. Colloids Surf 3:391–392.
  • Darrabie, M. D., Kendall, W. F. and Opara, E. C. (2006). Effect of alginate composition and gelling cation on microbead swelling. J. Microencapsul. 23:613–621.
  • Davidovich-Pinhas, M. and Bianco-Peled, H. (2010). A quantitative analysis of alginate swelling. Carbohydr. Polym. 79:1020–1027.
  • De, S. and Robinson, D. (2003). Polymer relationships during preparation of chitosan–alginate and poly-l-lysine–alginate nanospheres. J. Control. Rel. 89:101–112.
  • De Santis, S., Diociaiuti, M., Cametti, C. and Masci, G. (2014). Hyaluronic acid and alginate covalent nanogels by template cross-linking in polyion complex micelle nanoreactors. Carbohydr. Polym. 101:96–103.
  • Del Gaudio, P., Auriemma, G., Mencherini, T., Porta, G. D., Reverchon, E. and Aquino, R. P. (2013). Design of alginate-based aerogel for nonsteroidal anti-inflammatory drugs controlled delivery systems using prilling and supercritical-assisted drying. J. Pharm. Sci. 102:185–194.
  • Dickinson, E. (2003). Hydrocolloids at interfaces and the influence on the properties of dispersed systems. Food Hydrocolloids. 17:25–39.
  • Dickinson, E. (2012). Emulsion gels: The structuring of soft solids with protein-stabilized oil droplets. Food Hydrocolloids. 28:224–241.
  • Donati, I. and Paoletti, S. (2009). Material properties of alginates. In: Alginates: Biology and applications, Rehm, B. H. A., Springer-Verlag, Berlin.
  • Donati, I., Holtan, S., Mørch, Y. A., Borgogna, M. and Dentini, M. (2005). New hypothesis on the role of alternating sequences in calcium−alginate gels. Biomacromolecules. 6:1031–1040.
  • Draget, K. I. (2009). Alginates. In: Handbook of hydrocolloids, Phillips, G. O. and Williams, P. A., Woodhead Publishing, Cambridge.
  • Draget, K. I., Skjåk Bræk, G. and Smidsrød, O. (1994). Alginic acid gels: The effect of alginate chemical composition and molecular weight. Carbohydr. Polym. 25:31–38.
  • Draget, K. I., Skjak-Braek, G. and Stokke, B. T. (2006). Similarities and differences between alginic acid gels and ionically crosslinked alginate gels. Food Hydrocolloids. 20:170–175.
  • Draget, K. I., Simensen, M. K., Onsøyen, E. and Smidsrød, O. (1993). Gel strength of ca-limited alginate gels made in situ. Hydrobiologia. 260–261:563–565.
  • Draget, K. I., Skjåk-Bræk, G., Christensen, B. E., Gåserød, O. and Smidsrød, O. (1996). Swelling and partial solubilization of alginic acid gel beads in acidic buffer. Carbohydr. Polym. 29:209–215.
  • Draget, K. I., Gåserød, O., Aune, I., Andersen, P. O., Storbakken, B., Stokke, B. T. and Smidsrød, O. (2001). Effects of molecular weight and elastic segment flexibility on syneresis in ca-alginate gels. Food Hydrocolloids. 15:485–490.
  • Fang, Z. and Bhandari, B. (2012). Encapsulation techniques for food ingredient systems. In: Food materials science and engineering, Bhandari, B. and Roos, Y. H., Wiley-Blackwell, Oxford.
  • Fiddes, L. K., Young, E. W., Kumacheva, E. and Wheeler, A. R. (2007). Flow of microgel capsules through topographically patterned microchannels. Lab on a Chip. 7:863–867.
  • Fundueanu, G., Nastruzzi, C., Carpov, A., Desbrieres, J. and Rinaudo, M. (1999). Physico-chemical characterization of ca-alginate microparticles produced with different methods. Biomaterials. 20:1427–1435.
  • Gacesa, P. (1988). Alginates. Carbohydr. Polym. 8:161–182.
  • Ghaffari, S., Varshosaz, J., Haririan, I., Khoshayand, M. R., Azarmi, S. and Gazori, T. (2011). Ciprofloxacin loaded alginate/chitosan and solid lipid nanoparticles, preparation, and characterization. J. Disp. Sci. Technol. 33:685–689.
  • Gombotz, W. R. and Wee, S. F. (1998). Protein release from alginate matrices. Adv. Drug Deliv. Rev. 31:267–285.
  • Gotoh, T., Honda, H., Shiragami, N. and Unno, H. (1991). Forced breakup of a power-law fluid jet discharged from an orifice. Multilingue. 24:799–801.
  • Gudipati, V., Sandra, S., McClements, D. J. and Decker, E. A. (2010). Oxidative stability and in vitro digestibility of fish oil-in-water emulsions containing multilayered membranes. J. Agric. Food Chem. 58:8093–8099.
  • Haeberle, S., Naegele, L., Burger, R., von Stetten, F., Zengerle, R. and Ducree, J. (2008). Alginate bead fabrication and encapsulation of living cells under centrifugally induced artificial gravity conditions. J. Microencapsulation. 25:267–274.
  • Halle, J. P., Leblond, F. A., Pariseau, J. F., Jutras, P., Brabant, M. J. and Lepage, Y. (1994). Studies on small (<300 microns) microcapsules: Ii–parameters governing the production of alginate beads by high voltage electrostatic pulses. Cell Transplant. 3:365–372.
  • Hariyadi, D. M. (2011). Investigations of nano and microparticles for drug and protein delivery produced by atomisation of biopolymer solutions. PhD Thesis, School of Pharmacy, The University of Queensland, Brisbane, Australia.
  • Hariyadi, D. M., Wang, Y. W., Lin, S. C. Y., Bostrom, T., Bhandari, B. and Coombes, A. G. A. (2012). Novel alginate gel microspheres produced by impinging aerosols for oral delivery of proteins. J. Microencapsul. 29:250–261.
  • Hariyadi, D. M., Lin, S. C. Y., Wang, Y. W., Bostrom, T., Turner, M. S., Bhandari, B. and Coombes, A. G. A. (2010). Diffusion loading and drug delivery characteristics of alginate gel microparticles produced by a novel impinging aerosols method. J. Drug Target. 18:831–841.
  • Haug, A. (1961). Affinity of some divalent metals to different types of alginates. Acta Chemica Scandinavica. 15:1794–1795.
  • Haug, A. and Smidsrod, O. (1962). Determination of intrinsic viscosity of alginates. Acta Chemica Scandinavica. 16:1569–1578.
  • Haug, A. and Smidsrod, O. (1965). Effect of divalent metals on properties of alginate solutions. 2. Comparison of different metal ions. Acta Chemica Scandinavica. 19:341–351.
  • Haug, A., Bjorn, L. and Smidsrod, O. (1963). The degradation of alginates at different ph values. Acta Chemica Scandinavia. 17:1466–1468.
  • Heidebach, T., Forst, P. and Kulozik, U. (2012). Microencapsulation of probiotic cells for food applications. Crit. Rev. Food Sci. Nutr. 52:291–311.
  • Helgerud, T., Gåserød, O., Fjæreide, T., Andersen, P. O. and Larsen, C. K. (2009). Alginates. In: Food stabilisers, thickeners and gelling agents, Imeson, A., Wiley-Blackwell, Oxford.
  • Hoar, T. P. and Schulman, J. H. (1943). Transparent water-in-oil dispersions: The oleopathic hydro-micelle. Nature. 152:102–103.
  • Holmes, D. and Gawad, S. (2010). The application of microfluidics in biology. Methods Mol. Biol. 583:55–80.
  • Hong, J. S., Vreeland, W. N., Lacerda, S. H., Locascio, L. E., Gaitan, M. and Raghavan, S. R. (2008). Liposome-templated supramolecular assembly of responsive alginate nanogels. Langmuir. 24:4092–4096.
  • Hsu, B. R., Chen, H. C., Fu, S. H., Huang, Y. Y. and Huang, H. S. (1994). The use of field effects to generate calcium alginate microspheres and its application in cell transplantation. J. Formos Med. Assoc = Taiwan yi zhi. 93:240–245.
  • Hu, Y., Wang, Q., Wang, J., Zhu, J., Wang, H. and Yang, Y. (2012). Shape controllable microgel particles prepared by microfluidic combining external ionic crosslinking. Biomicrofluidics. 6:1–9.
  • Hurteaux, R., Edwards-Lévy, F., Laurent-Maquin, D. and Lévy, M.-C. (2005). Coating alginate microspheres with a serum albumin-alginate membrane: Application to the encapsulation of a peptide. European J. Pharm. Sci.. 24:187–197.
  • Jang, L. K., Lopez, S. L., Eastman, S. L. and Pryfogle, P. (1991). Recovery of copper and cobalt by biopolymer gels. Biotechnol. Bioeng. 37:266–273.
  • Ketz, R. J., Jr., Prud'homme, R. K. and Graessley, W. W. (1988). Rheology of concentrated microgel solutions. Rheol. Acta. 27:531–539.
  • Kikuchi, A., Kawabuchi, M., Watanabe, A., Sugihara, M., Sakurai, Y. and Okano, T. (1999). Effect of ca2+-alginate gel dissolution on release of dextran with different molecular weights. J. Control. Rel. 58:21–28.
  • Kim, K.-H., Gohtani, S. and Yamano, Y. (1996). Effects of oil droplets on physical and sensory properties of o/w emulsion agar gel. J. Text. Stud. 27:655–670.
  • Klokk, T. I. and Melvik, J. E. (2002). Controlling the size of alginate gel beads by use of a high electrostatic potential. J. Microencapsulation. 19:415–424.
  • Krasaekoopt, W. (2004). Microencapsulation of probiotic bacteria for stirred yoghurt from UHT milk. Phd Thesis, School of Land and Food Sciences, The University of Queensland, Brisbane, Australia.
  • Krasaekoopt, W., Bhandari, B. and Deeth, H. (2004). The influence of coating materials on some properties of alginate beads and survivability of microencapsulated probiotic bacteria. Int. Dairy J. 14:737–743.
  • Krasaekoopt, W., Bhandari, B. and Deeth, H. C. (2006). Survival of probiotics encapsulated in chitosan-coated alginate beads in yoghurt from UHT—and conventionally treated milk during storage. LWT—Food Scie. Technol. 39:177–183.
  • Kuo, H. H., Chan, C., Burrows, L. L. and Deber, C. M. (2007). Hydrophobic interactions in complexes of antimicrobial peptides with bacterial polysaccharides. Chem. Biol. Drug Des. 69:405–412.
  • Kwok, K. K., Groves, M. J. and Burgess, D. J. (1991). Production of 5–15 microns diameter alginate-polylysine microcapsules by an air-atomization technique. Pharm. Res. 8:341–344.
  • Lanza, R. P., Ecker, D. M., Kuhtreiber, W. M., Marsh, J. P. and Chick, W. L. (1995). A simple and inexpensive method for transplanting xenogeneic cells and tissues into rats using alginate gel spheres. Transplant. Proc. 27:3322.
  • Lee, B. B., Ravindra, P. and Chan, E. S. (2013). Size and shape of calcium alginate beads produced by extrusion dripping. Chem. Eng. Technol. 36:1627–1642.
  • Lee, B. J., Cui, J. H., Kim, T. W., Heo, M. Y. and Kim, C. K. (1998). Biphasic release characteristics of dual drug-loaded alginate beads. Arch. Pharm. Res. 21:645–650.
  • Lemoine, D., Wauters, F., Bouchend'homme, S. and Préat, V. (1998). Preparation and characterization of alginate microspheres containing a model antigen. Int. J. Pharm. 176:9–19.
  • Leo, W. J., McLoughlin, A. J. and Malone, D. M. (1990). Effects of sterilization treatments on some properties of alginate solutions and gels. Biotechnol. Prog. 6:51–53.
  • Li, P., Dai, Y. N., Zhang, J. P., Wang, A. Q. and Wei, Q. (2008). Chitosan-alginate nanoparticles as a novel drug delivery system for nifedipine. Int. J Biomed. Sci. 4:221–228.
  • Lian, M., Collier, C. P., Doktycz, M. J. and Retterer, S. T. (2012). Monodisperse alginate microgel formation in a three-dimensional microfluidic droplet generator. Biomicrofluidics. 6:044108.
  • Liétor-Santos, J. J., Sierra-Martín, B. and Fernández-Nieves, A. (2011). Bulk and shear moduli of compressed microgel suspensions. Phys. Rev. E. 84:060402.
  • Lin, Y.-S., Yang, C.-H., Hsu, Y.-Y. and Hsieh, C.-L. (2013). Microfluidic synthesis of tail-shaped alginate microparticles using slow sedimentation. Electrophoresis. 34:425–431.
  • Liu, K., Ding, H. J., Liu, J., Chen, Y. and Zhao, X. Z. (2006). Shape-controlled production of biodegradable calcium alginate gel microparticles using a novel microfluidic device. Langmuir. 22:9453–9457.
  • Liu, X. D., Yu, W. Y., Zhang, Y., Xue, W. M., Yu, W. T., Xiong, Y., Ma, X. J., Chen, Y. and Yuan, Q. (2002). Characterization of structure and diffusion behaviour of ca-alginate beads prepared with external or internal calcium sources. J. Microencapsul. 19:775–782.
  • Lorenzo, G., Zaritzky, N. and Califano, A. (2013). Rheological analysis of emulsion-filled gels based on high acyl gellan gum. Food Hydrocolloids. 30:672–680.
  • Manojlovic, V., Djonlagic, J., Obradovic, B., Nedovic, V. and Bugarski, B. (2006). Immobilization of cells by electrostatic droplet generation: A model system for potential application in medicine. Int. J Nanomed. 1:163–171.
  • Mao, R., Tang, J. and Swanson, B. G. (2001). Water holding capacity and microstructure of gellan gels. Carbohydr. Polym. 46:365–371.
  • Martinsen, A., Skjåk-Bræk, G., Smidsrød, O., Zanetti, F. and Paoletti, S. (1991). Comparison of different methods for determination of molecular weight and molecular weight distribution of alginates. Carbohydr. Polym. 15:171–193.
  • Mikkelsen, A. and Elgsaeter, A. (1995). Density distribution of calcium-induced alginate gels. A numerical study. Biopolymers. 36:17–41.
  • Moe, S. T., Skjåk-Bræk, G., Elgsaeter, A. and Smidsrød, O. (1993). Swelling of covalently crosslinked alginate gels : Influence of ionic solutes and nonpolar solvents. Macromolecules. 26:3589–3597.
  • Mørch, ⇑. A., Donati, I. and Strand, B. L. (2006). Effect of ca2+, ba2+, and sr2+ on alginate microbeads. Biomacromolecules. 7:1471–1480.
  • Mumper, R. J., Huffman, A. S., Puolakkainen, P. A., Bouchard, L. S. and Gombotz, W. R. (1994). Calcium-alginate beads for the oral delivery of transforming growth factor-β1 (tgf-β1): Stabilization of tgf-β1 by the addition of polyacrylic acid within acid-treated beads. J. Control. Rel. 30:241–251.
  • Murata, Y., Maeda, T., Miyamoto, E. and Kawashima, S. (1993). Preparation of chitosan-reinforced alginate gel beads—effects of chitosan on gel matrix erosion. Int. J. Pharm.. 96:139–145.
  • Nedovic, V. and Wallaert, R. (2004). Fundamentals of cell immoblilisation biotechnology. Kluwer Academic, Dordrecht.
  • Nesamony, J., Singh, P. R., Nada, S. E., Shah, Z. A. and Kolling, W. M. (2012). Calcium alginate nanoparticles synthesized through a novel interfacial cross-linking method as a potential protein drug delivery system. J. Pharm. Sci.. 101:2177–2184.
  • Niedz, R. and Evens, T. (2009). Calcium-alginate hydrogel swelling models are not ph-dependent. Chem. Eng. Sci. 64:1907.
  • Nussinovitch, A. (1997). Hydrocolloid applications: Gum technology in the food and other industries. Blackie Academic & Professional, New York.
  • Oates, C. G. and Ledward, D. A. (1990). Studies on the effect of heat on alginates. Food Hydrocolloids. 4:215–220.
  • Ogbonna, J. C., Matsumura, M. and Kataoka, H. (1991). Production of glutamine by micro-gel bead-immobilized corynebacterium glutamicum 9703-t cells in a stirred tank reactor. Bioprocess Eng. 7:11–18.
  • Ogbonna, J. C., Matsumura, M., Yamagata, T., Sakuma, H. and Kataoka, H. (1989). Production of micro-gel beads by a rotating disk atomizer. J. Ferment. Bioeng. 68:40–48.
  • Oh, J. K., Drumright, R., Siegwart, D. J. and Matyjaszewski, K. (2008). The development of microgels/nanogels for drug delivery applications. Prog. Polym. Sci. 33:448–477.
  • Orive, G., Carcaboso, A. M., Hernández, R. M., Gascón, A. R. and Pedraz, J. L. (2005). Biocompatibility evaluation of different alginates and alginate-based microcapsules. Biomacromolecules. 6:927–931.
  • Ouwerx, C., Velings, N., Mestdagh, M. M. and Axelos, M. A. V. (1998). Physico-chemical properties and rheology of alginate gel beads formed with various divalent cations. Polym. Gels Networks. 6:393–408.
  • Oyaas, J., Storro, I., Lysberg, M., Svendsen, H. and Levine, D. W. (1995). Determination of effective diffusion coefficients and distribution constants in polysaccharide gels with non-steady-state measurements. Biotechnol. Bioeng. 47:501–507.
  • Pfister, G., Bahadir, M. and Korte, F. (1986). Release characteristics of herbicides from ca alginate gel formulations. J. Control. Rel. 3:229–233.
  • Pillay, V. and Fassihi, R. (1999). In vitro release modulation from crosslinked pellets for site-specific drug delivery to the gastrointestinal tract: I. Comparison of ph-responsive drug release and associated kinetics. J. Control. Rel. 59:229–242.
  • Poncelet, D. (2001). Production of alginate beads by emulsification/internal gelation. Ann. N Y Acad. Sci. 944:74–82.
  • Poncelet, D., Babak, V. G., Neufeld, R. J., Goosen, M. F. A. and Burgarski, B. (1999). Theory of electrostatic dispersion of polymer solutions in the production of microgel beads containing biocatalyst. Adv. Colloid Interface Sci. 79:213–228.
  • Poncelet, D., Lencki, R., Beaulieu, C., Halle, J. P., Neufeld, R. J. and Fournier, A. (1992). Production of alginate beads by emulsification/internal gelation. I. Methodology. Appl. Microbiol. Biotechnol. 38:39–45.
  • Prüße, U., Dalluhn, J., Breford, J. and Vorlop, K. D. (2000). Production of spherical beads by jetcutting. Chem. Eng. Technol. 23:1105–1110.
  • Prüße, U., Fox, B., Kirchhoff, M., Bruske, F., Breford, J. and Vorlop, K.-D. (1998). New process (jet cutting method) for the production of spherical beads from highly viscous polymer solutions. Chem. Eng. Technol. 21:29–33.
  • Prüße, U., Fox, B., Kirchhoff, M., Bruske, F., Breford, J. and Vorlop, K. D. (2002). Bead production with jetcutting and rotating disc/nozzle technologies. Landbauforschung Volkenrode Sonderheft. 241:1–10.
  • Prüße, U., Bilancetti, L., Bucko, M., Bugarski, B., Bukowski, J., Gemeiner, P., Lewinska, D., Manojlovic, V., Massart, B., Nastruzzi, C., Nedovic, V., Poncelet, D., Siebenhaar, S., Tobler, L., Tosi, A., Vikartovska, A. and Vorlop, K. D. (2008). Comparison of different technologies for alginate beads production. Chem. Pap. 62:364–374.
  • Qin, Y. (2008). The gel swelling properties of alginate fibers and their applications in wound management. Polym. Adv. Technol. 19:6–14.
  • Quong, D. and Neufeld, R. (1999). Electrophoretic extraction and analysis of DNA from chitosan or poly-l-lysine alginate beads. Appl. Biochem. Biotechnol. 81:67–77.
  • Quong, D., Neufeld, R. J., Skjåk-Bræk, G. and Poncelet, D. (1998). External versus internal source of calcium during the gelation of alginate beads for DNA encapsulation. Biotechnol. Bioeng. 57:438–446.
  • Rajaonarivony, M., Vauthier, C., Couarraze, G., Puisieux, F. and Couvreur, P. (1993). Development of a new drug carrier made from alginate. J. Pharm. Sci.. 82:912–917.
  • Rao, M. A. and Lopes da Silva, J. A. (2007). Role of rheological behavior in sensory assessment of foods and swallowing. In: Rheology of fluid and semisolid foods: Principles and applications, Rao, M. A., Springer, New York.
  • Reis, C. P., Ribeiro, A. J., Neufeld, R. J. and Veiga, F. (2007). Alginate microparticles as novel carrier for oral insulin delivery. Biotechnol. Bioeng. 96:977–989.
  • Reis, C. P., Neufeld, R. J., Vilela, S., Ribeiro, A. J. and Veiga, F. (2006). Review and current status of emulsion/dispersion technology using an internal gelation process for the design of alginate particles. J. Microencapsul. 23:245–257.
  • Ribeiro, A. J., Silva, C., Ferreira, D. and Veiga, F. (2005). Chitosan-reinforced alginate microspheres obtained through the emulsification/internal gelation technique. Eur. J. Pharm. Sci. 25:31–40.
  • Roopa, B. S. and Bhattacharya, S. (2010). Alginate gels: 2. Stability at different processing conditions. J. Food Proc. Eng.. 33:466–480.
  • Ryoichi, N., Keita, K., Shin'ichiro, G., Yoshimitsu, U. and Yasuo, H. (2001). Preparation of calcium alginate micro-gel beads using a rotating nozzle. Kagaku Koagaku Ronbunchu. 27:648–651.
  • Said, A. A. and Hassan, R. M. (1993). Thermal decomposition of some divalent metal alginate gel compounds. Polym. Degrad. Stab. 39:393–397.
  • Saitoh, S., Araki, Y., Kon, R., Katsura, H. and Taira, M. (2000). Swelling/deswelling mechanism of calcium alginate gel in aqueous solutions. Dent Mater J. 19:396–404.
  • Sajc, L., Vunjak-Novakovic, G., Grubisic, D., Kovačević, N., Vuković, D. and Bugarski, B. (1995). Production of anthraquinones by immobilized frangula alnus mill. Plant cells in a four-phase air-lift bioreactor. Appl. Microbiol. Biotechnol. 43:416–423.
  • Sarmento, B., Ferreira, D., Veiga, F. and Ribeiro, A. (2006). Characterization of insulin-loaded alginate nanoparticles produced by ionotropic pre-gelation through DSC and FTIR studies. Carbohydr. Polym. 66:1–7.
  • Sarmento, B., Ribeiro, A. J., Veiga, F., Ferreira, D. C. and Neufeld, R. J. (2007). Insulin-loaded nanoparticles are prepared by alginate ionotropic pre-gelation followed by chitosan polyelectrolyte complexation. J. Nanosci. Nanotechnol. 7:2833–2841.
  • Schlemmer, U. (1989). Studies of the binding of copper, zinc and calcium to pectin, alginate, carrageenan and gum guar in hco-3 co2 buffer. Food Chem. 32:223–234.
  • Segeren, A. J. M., Boskamp, J. V. and van den Tempel, M. (1974). Rheological and swelling properties of alginate gels. Faraday Discussions Chem. Soc. 57:255–262.
  • Segi, N., Yotsuyanagi, T. and Ikeda, K. (1989). Interaction of calcium-induced alginate gel beads with propranolol. Chem. Pharm. Bull. 37:3092–3095.
  • Seiffert, S. (2013). Microgel capsules tailored by droplet-based microfluidics. Chem Phys Chem. 14:295–304.
  • Senuma, Y., Lowe, C., Zweifel, Y., Hilborn, J. G. and Marison, I. (2000). Alginate hydrogel microspheres and microcapsules prepared by spinning disk atomization. Biotechnol. Bioeng. 67:616–622.
  • Shewan, H. M. and Stokes, J. R. (2012). Biopolymer microgel suspension rheology as a function of particle modulus and effective phase volume. In: Gums and stabilisers for the food industry 16, Williams, P. A. and Phillips, G. O., The Royal Society of Chemistry, Cambridge.
  • Silva, C. M., Ribeiro, A., Figueiredo, M., Ferreira, D. and Veiga, F. (2005). Microencapsulation of hemoglobin in chitosan-coated alginate microspheres prepared by emulsification/internal gelation. AAPS J. 7:903–913.
  • Silva, M. d. S., Cocenza, D. S., Grillo, R., Melo, N. F. S. d., Tonello, P. S., Oliveira, L. C. d., Cassimiro, D. L., Rosa, A. H. and Fraceto, L. F. (2011). Paraquat-loaded alginate/chitosan nanoparticles: Preparation, characterization and soil sorption studies. J. Hazardous Mat. 190:366–374.
  • Smidsrød, O. (1974). Molecular basis for some physical properties of alginates in the gel state. Faraday Discuss. Chem. Soc. 57:263–274.
  • Smidsrød, O. and Skjåk-Bræk, G. (1990). Alginate as immobilization matrix for cells. Trends Biotechnol. 8:71–78.
  • Smith, A. M. and Miri, T. (2011). Alginates in foods. In: Practical food rheology, Norton, I. T., Spyropoulos, F. and Cox, P., Wiley-Blackwell, Oxford.
  • Sohail, A., Turner, M. S., Coombes, A., Bostrom, T. and Bhandari, B. (2011). Survivability of probiotics encapsulated in alginate gel microbeads using a novel impinging aerosols method. Int. J. Food Microbiol. 145:162–168.
  • Soliman, E. A., El-Moghazy, A. Y., Mohy El-Din, M. S. and Massoud, M. A. (2013). Microencapsulation of essential oils within alginate: Formulation and in vitro evaluation of antifungal activity. J. Encapsul. Adsorption Sci. 3:48–55.
  • Stockwell, A. F., Davis, S. S. and Walker, S. E. (1986). In vitro evaluation of alginate gel systems as sustained release drug delivery systems. J. Control. Rel. 3:167–175.
  • Stokes, J. R. (2011). Rheology of industrially relevant microgels. In: Microgel suspensions, Fernandez-Nieves, A., Wyss, H. M., Mattsson, J. and Weitz, D. A., Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
  • Strand, B. L., Gåserød, O., Kulseng, B., Espevik, T. and Skjåk-Bræk, G. (2002). Alginate-polylysine-alginate microcapsules: Effect of size reduction on capsule properties. J. Microencapsul. 19:615–630.
  • Strasdat, B. and Bunjes, H. (2013). Incorporation of lipid nanoparticles into calcium alginate beads and characterization of the encapsulated particles by differential scanning calorimetry. Food Hydrocolloids. 30:567–575.
  • Suksamran, T., Opanasopit, P., Rojanarata, T., Ngawhirunpat, T., Ruktanonchai, U. and Supaphol, P. (2009). Biodegradable alginate microparticles developed by electrohydrodynamic spraying techniques for oral delivery of protein. J. Microencapsul. 26:563–570.
  • Sultana, K., Godward, G., Reynolds, N., Arumugaswamy, R., Peiris, P. and Kailasapathy, K. (2000). Encapsulation of probiotic bacteria with alginate–starch and evaluation of survival in simulated gastrointestinal conditions and in yoghurt. Int. J. Food Microbiol. 62:47–55.
  • Tan, W. H. and Takeuchi, S. (2007). Monodisperse alginate hydrogel microbeads for cell encapsulation. Adv. Mat. 19:2696–2701.
  • Tanaka, H., Matsumura, M. and Veliky, I. A. (1984). Diffusion characteristics of substrates in ca-alginate gel beads. Biotechnol. Bioeng. 26:53–58.
  • Tang, S. K. Y. and Whitesides, G. M. (2010). Basic microfluidic and soft lithographic techniques. Optofluidics: Fundamentals, Devices, and Applications, Yeshaiahu, F., Demetri, P. and Changhuei, Y., Eds., McGraw Hill, Cambridge, Massachusetts, USA.
  • Thu, B., Smidsrød, O. and Skjåk-Bræk, G. (1996a). Alginate gels— some structure-function correlations relevant to their use as immobilization matrix for cells. Progr. Biotechnol. 11:19–30.
  • Thu, B., Bruheim, P., Espevik, T., Smidsrød, O., Soon-Shiong, P. and Skjåk-Bræk, G. (1996b). Alginate polycation microcapsules: Ii. Some functional properties. Biomaterials. 17:1069–1079.
  • Torchilin, V. P. (2006). Multifunctional nanocarriers. Adv. Drug Deliv. Rev. 58:1532–1555.
  • Tran, V.-T., Benoît, J.-P. and Venier-Julienne, M.-C. (2011). Why and how to prepare biodegradable, monodispersed, polymeric microparticles in the field of pharmacy? Int. J. Pharm. 407:1–11.
  • Tumarkin, E. and Kumacheva, E. (2009). Microfluidic generation of microgels from synthetic and natural polymers. Chem. Soc. Rev. 38:2161–2168.
  • Velings, N. M. and Mestdagh, M. M. (1994). Protein adsorption in calcium alginate gel beads. J. Bioactive Compatible Polym. 9:133–141.
  • Venkataraman, S., Hedrick, J. L., Ong, Z. Y., Yang, C., Ee, P. L. R., Hammond, P. T. and Yang, Y. Y. (2011). The effects of polymeric nanostructure shape on drug delivery. Adv. Drug Deliv. Rev. 63:1228–1246.
  • Vliet, T. (1988). Rheological properties of filled gels—influence of filler matrix interaction. Coll. Poly. Sci. 266:518–524.
  • Wan, L. S. C., Heng, P. W. S. and Chan, L. W. (1992). Drug encapsulation in alginate microspheres by emulsification. J. Microencapsul. 9:309–316.
  • Watanabe, H., Matsuyama, T. and Yamamoto, H. (2003). Experimental study on electrostatic atomization of highly viscous liquids. J. Electrost. 57:183–197.
  • Wildemuth, C. R. and Williams, M. C. (1984). Viscosity of suspensions modeled with a shear-dependent maximum packing fraction. Rheol. Acta. 23:627–635.
  • Wolf, B., Frith, W. J. and Norton, I. T. (2001). Influence of gelation on particle shape in sheared biopolymer blends. J. Rheol. 45:1141–1157.
  • Wu, C., Zhu, Y., Chang, J., Zhang, Y. and Xiao, Y. (2010). Bioactive inorganic-materials/alginate composite microspheres with controllable drug-delivery ability. J. Biomed. Mat. Res. Part B: Appl. Biomat. 94B:32–43.
  • Yan, Z., Shin'ichiro, K., Hiroshi, M., Yoichiro, H., Takahiro, K. and Kiichi, F. (2009). A new size and shape controlling method for producing calcium alginate beads with immobilized proteins. J. Biomed. Sci. Eng. 2:287–293.
  • Yang, C. H., Wang, M. X., Haider, H., Yang, J. H., Sun, J.-Y., Chen, Y. M., Zhou, J. and Suo, Z. (2013). Strengthening alginate/polyacrylamide hydrogels using various multivalent cations. ACS Appl. Mat. Interf. 5:10418–10422.
  • Yang, S., Guo, F., Kiraly, B., Mao, X., Lu, M., Leong, K. W. and Huang, T. J. (2012). Microfluidic synthesis of multifunctional janus particles for biomedical applications. Lab on a Chip. 12:2097–2102.
  • Yeo, Y., Baek, N. and Park, K. (2001). Microencapsulation methods for delivery of protein drugs. Biotechnol. Bioprocess Eng. 6:213–230.
  • Yih, T. C. and Al-Fandi, M. (2006). Engineered nanoparticles as precise drug delivery systems. J. Cell. Biochem. 97:1184–1190.
  • You, J. O., Park, S. B., Park, H. Y., Haam, S., Chung, C. H. and Kim, W. S. (2001). Preparation of regular sized ca-alginate microspheres using membrane emulsification method. J Microencapsul. 18:521–532.
  • Zhang, F. J., Cheng, G. X., Gao, Z. and Li, C. P. (2006a). Preparation of porous calcium alginate membranes/microspheres via an emulsion templating method. Macromol. Mat. Eng. 291:485–492.
  • Zhang, H., Tumarkin, E., Peerani, R., Nie, Z., Sullan, R. M. A., Walker, G. C. and Kumacheva, E. (2006b). Microfluidic production of biopolymer microcapsules with controlled morphology. J. Am. Chem. Soc. 128:12205–12210.
  • Zhang, Z.-H., Sun, Y.-S., Pang, H., Munyendo, W. L. L., Lv, H.-X. and Zhu, S.-L. (2011). Preparation and evaluation of berberine alginate beads for stomach-specific delivery. Molecules. 16:10347–10356.
  • Zhao, L. B., Pan, L., Zhang, K., Guo, S. S., Liu, W., Wang, Y., Chen, Y., Zhao, X. Z. and Chan, H. L. W. (2009). Generation of janus alginate hydrogel particles with magnetic anisotropy for cell encapsulation. Lab on a Chip. 9:2981–2986.
  • Zhao, Y., Carvajal, M. T., Won, Y.-Y. and Harris, M. T. (2007). Preparation of calcium alginate microgel beads in an electrodispersion reactor using an internal source of calcium carbonate nanoparticles. Langmuir. 23:12489–12496.
  • Zhou, Y., Martins, E., Groboillot, A., Champagne, C. P. and Neufeld, R. J. (1998). Spectrophotometric quantification of lactic bacteria in alginate and control of cell release with chitosan coating. J. Appl. Microbiol. 84:342–348.
  • Zohar-Perez, C., Chet, I. and Nussinovitch, A. (2004). Irregular textural features of dried alginate-filler beads. Food Hydrocoll. 18:249–258.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.