2,009
Views
35
CrossRef citations to date
0
Altmetric
Articles

The relationship of red meat with cancer: Effects of thermal processing and related physiological mechanisms

&

References

  • Aaslyng, M. D., Duedahl-Olesen, L., Jensen, K. and Meinert, L. (2013). Content of heterocyclic amines and polycyclic aromatic hydrocarbons in pork, beef and chicken barbecued at home by Danish consumers. Meat Sci. 93:85–91.
  • Adamson, A. J. and Baranowski, T. (2014). Developing technological solutions for dietary assessment in children and young people. J. Hum. Nutr. Diet. 27(Suppl):1–4.
  • Ahn, J. and Grun, I. U. (2006). Heterocyclic amines. Part 2. Inhibitory effects of natural extracts on the formation of polar and nonpolar heterocyclic amines in cooked beef. J. Food Sci. 70:C263–C268.
  • Alfaia, C. M. M., Alves, S. P., Lopes, A. F., Fernandes, M. J. E., Costa, A. S. H., Fontes, C. M. G. A., Castro, M. L. F., Bessa, R. J. B. and Prates, J. A. M. (2010). Effect of cooking methods on fatty acids, conjugated isomers of linoleic acid and nutritional quality of beef intramuscular fat. Meat Sci. 84:769–777.
  • Alomirah, H., Al-Zenki, S., Al-Hooti, S., Zaghloul, S., Sawaya, W., Ahmed, N. and Kannan, K. (2011). Concentrations and dietary exposure to polycyclic aromatic hydrocarbons (PAHs) from grilled and smoked foods. Food Control. 22:2028–2035.
  • Amareshwara, M., Gayatri, M. R. and Rakesh, M. R. (2011). Study of protein oxidation products and antioxidants status in primary brain tumour patients. Int. J. Pharmacol Bio Sci. 2:B256–B261.
  • Ambade, A. and Mandrekar, P. (2012). Oxidative stress and inflammation: Essential partners in alcoholic liver disease. Int. J. Hepatol. 2012.
  • Arya, F., Egger, S., Colquhoun, D., Sullivan, D., Pal, S. and Egger, G. (2010). Differences in postprandial inflammatory responses to a ‘modern’ versus traditional meat meal: a preliminary study. Br. J. Nutr. 104:724–728.
  • Azadbakht, L. and Esmaillzadeh, A. (2009). Red meat intake is associated with metabolic syndrome and the plasma C-reactive protein concentration in women. J. Nutr. 139:335–339.
  • Baird, W. M., Hooven, L. A. and Mahadevan, B. (2005). Carcinogenic polycyclic aromatic hydrocarbon-DNA adducts and mechanism of action. Environ. Mol. Mutagen. 45:106–114.
  • Berjia, F. L., Poulsen, M. and Nauta, M. (2014). Burden of diseases estimates associated to different red meat cooking practices. Food Chem. Toxicol. 66:237–244.
  • Biasi, F., Chiarpotto, E., Sottero, B., Maina, M., Mascia, C., Guina, T., Gamba, P., Gargiulo, S., Testa, G., Leonarduzzi, G. and Poli, G. (2013). Evidence of cell damage induced by major components of a diet-compatible mixture of oxysterols in human colon cancer CaCo-2 cell line. Biochimie 95:632–640.
  • Bingham, S. A., Pignatelli, B., Pollock, J. R., Ellul, A., Malaveille, C., Gross, G., Runswick, S., Cummings, J. H. and O'Neill, I. K. (1996). Does increased endogenous formation of N-nitroso compounds in the human colon explain the association between red meat and colon cancer? Carcinogenesis 17:515–523.
  • Buchowski, M. S., Mahoney, A. W., Carpenter, C. E. and Cornforth, D. P. (2006). Heating and distribution of total and heme iron between meat and broth. J. Food Sci. 53:43–45.
  • Busquets, R., Frandsen, H., Jonsson, J. A., Puignou, L., Galceran, M. T. and Skog, K. (2013). Biomonitoring of dietary heterocyclic amines and metabolites in urine by liquid phase microextraction: 2Amino-1-methyl-6- phenylimidazo[4,5b]pyridine (PhIP), a Possible Biomarker of Exposure to Dietary PhIP. Chem. Res. Toxicol. 26:233–240.
  • Cammack, R., Joannou, C. L., Cui, X. Y., Martinez, C. T., Maraj, S. R. and Hughes, M. N. (1999). Nitrite and nitrosyl compounds in food preservation. Biochim. Biophys. Acta 1411:475–488.
  • Carpenter, C. E. and Clark, E. (1995). Evaluation of methods used in meat iron analysis and iron content of raw and cooked meats. J. Agric. Food Chem. 43:1824–1827.
  • Catsburg, C. E., Gago-Dominguez, M., Yuan, J. M., Castelao, J. E., Cortessis, V. K., Pike, M. C. and Stern, M. C. (2014). Dietary sources of N-nitroso compounds and bladder cancer risk: Findings from the Los Angeles bladder cancer study. Int. J. Cancer 134:125–135.
  • Chan, D. S. M., Lau, R., Aune, D., Vieira, R., Greenwood, D. C., Kampman, E. and Norat, T. (2011). Red and processed meat and colorectal cancer incidence: meta-analysis of prospective studies. PLoS ONE 6:e20456.
  • Chandran, U., Zirpoli, G., Ciupak, G., McCann, S. E., Gong, Z. H., Pawlish, K., Lin, Y., Demissie, K., Ambrosone, C. B. and Bandera, E. V. (2013). Racial disparities in red meat and poultry intake and breast cancer risk. Cancer Causes Control. 24:2217–2229.
  • Cheng, K. W., Chen, F. and Wang, M. F. (2006). Heterocyclic amines: Chemistry and health. Mol. Nutr. Food Res. 50:1150–1170.
  • Chikan, N. A., Shabir, N., Shaff, S., Mir, M. R. and Patel, T. N. (2012). N-nitrosodimethylamine in the Kashmiri diet and possible roles in the high incidence of gastrointestinal cancers. Asian Pac. J. Cancer Prev. 13:1077–1079.
  • Chiu, B. C. H., Ji, B. T., Dai, Q., Gridley, G., McLaughlin, J. K., Gao, Y. T., Fraumeni, J. F. and Chow, W. H. (2003). Dietary factors and risk of colon cancer in Shanghai, China. Cancer Epidemiol. Biomarkers Prev. 12:201–208.
  • Chung, S. Y., Yettella, R. R., Kim, J. S., Kwon, K., Kim, M. C. and Min, D. B. (2011). Effects of grilling and roasting on the levels of polycyclic aromatic hydrocarbons in beef and pork. Food Chem. 129:1420–1426.
  • Corpet, D. E. (2011). Red meat and colon cancer: Should we become vegetarians, or can we make meat safer? Meat Sci. 89(3):310–316.
  • Cross, A. J. and Sinha, R. (2008). Meat consumption and cancer. Int. Encyclopedia Public Health. 97:272–281.
  • Curfs, D. M., Knaapen, A. M., Pachen, D. M., Gijbels, M. J., Lutgens, E., Smook, M. L., Kockx, M. M., Daemen, M. J. and Van Schooten, F. J. (2005). Polycyclic aromatic hydrocarbons induce an inflammatory atherosclerotic plaque phenotype irrespective of their DNA binding properties. FASEB J. 19:1290–1292.
  • Dalle-Donne, I., Rossi, R., Giustarini, D., Milzani, A. and Colombo, R. (2003). Protein carbonyl groups as biomarkers of oxidative stress. Clin. Chim. Acta 329:23–38.
  • Daniel, C. R., Cross, A. J., Koebnick, C. and Sinha, R. (2011). Trends in meat consumption in the United States. Public Health Nutr. 14:575–583.
  • de Stefani, E., Boffetta, P., Deneo-Pellegrini, H., Ronco, A. L., Acosta, G., Brennan, P., Mendilaharsu, M. and Ferro, G. (2009). Meat intake, meat mutagens and risk of lung cancer in Uruguayan men. Cancer Causes Control. 20:1635–1643.
  • Dennis, M. J., Massey, R. C., McWeeny, D. J., Knowles, M. E. and Watson, D. (1983). Analysis of polycyclic aromatic hydrocarbons in UK total diets. Food Chem. Toxicol. 21:569–574.
  • di Maso, M., Talamini, R., Bosetti, C., Montella, M., Zucchetto, A., Libra, M., Negri, E., Levi, F., la Vecchia, C., Franceschi, S., Serraino, D. and Polesel, J. (2013). Red meat and cancer risk in a network of case–control studies focusing on cooking practices. Ann. Oncol. 24:3107–3112.
  • Dingley, K. H., Curtis, K. D., Nowell, S., Felton, J. S., Lang, N. P. and Turteltaub, K. W. (1999). DNA and protein adduct formation in the colon and blood of humans after exposure to a dietary-relevant dose of 2-Amino-1-methyl-6-phenylimidazo[4,5-b]pyridine. Cancer Epidemiol. Biomarkers Prev. 507–512.
  • Djinovic, J., Popovic, A. and Jira, W. (2008). Polycyclic aromatic hydrocarbons (PAHs) in different types of smoked meat products from Serbia. Meat Sci. 80:449–456.
  • Dubrow, R., Darefsky, A. S., Park, Y., Mayne, S. T., Moore, S. C., Kilfoy, B., Cross, A. J., Sinha, R., Hollenbech, A. R., Schatzkin, A. and Ward, M. H. (2010). Dietary components related to N-nitroso compound formation: A prospective study of adult glioma. Cancer Epidemiol. Biomarkers Prev. 19:1709–1722.
  • Egeberg, R., Olsen, A., Christensen, J., Halkjaer, J., Jakobsen, U., Overvad, K. and Tjonneland, A. (2013). Associations between red meat and risks for colon and rectal cancer depend on the type of red meat consumed. J. Nutr. 143:464–472.
  • Eisenbrand, G. and Tang, W. (1993). Food-borne heterocyclic amines. Chemistry, formation, occurrence and biological activities. A literature review. Toxicology 84:1–82.
  • Esterbauer, H. (1993). Cytotoxicity and genotoxicity of lipid oxidation products. Am. J. Clin. Nutr. 57:779–785.
  • Estevez, M. (2011). Protein carbonyls in meat systems: A review. Meat Sci. 89:259–279.
  • FAO. (2012). Current worldwide annual meat consumption per capita. 2013.
  • Farhadian, A., Jinap, S., Faridah, A. and Sakar, Z. I. (2010). Determination of polycyclic aromatic hydrocarbons in grilled meat. Food Control. 21:606–610.
  • Farhadian, A., Jinap, S., Hanifah, H. N. and Zaidul, I. S. (2011). Effects of meat preheating and wrapping on the levels of polycyclic aromatic hydrocarbons in charcoal-grilled meat. Food Chem. 124:141–146.
  • Farhadian, A., Jinap, S. N., Faridah, A. and Zaidul, I. S. M. (2012). Effects of marinating on the formation of polycyclic aromatic hydrocarbons (benzo[a]pyrene, benzo[b]fluoranthene and fluoranthene) in grilled beef meat. Food Control. 28:420–425.
  • Ferguson, L. R. (2010). Meat and Cancer. Meat Sci. 84:308–313.
  • Fetzer, J. C. (2000). The chemistry and analysis of the large polycyclic aromatic hydrocarbons. New York Wiley. 27:143–162.
  • Fiaschi, T. and Chiarugi, P. (2012). Oxidative stress, tumor microenvironment, and metabolic reprogramming: A diabolic liaison. Int. J. Cell Biol. 2012:762825.
  • Freese, J., Feller, S., Harttig, U., Kleiser, C., Linseisen, J., Fischer, B., Leitzmann, M. F., Six-Merker, J., Michels, K. B. and Nimptsch, N. (2014). Development and evaluation of a short 24-h food list as part of a blended dietary assessment strategy in large-scale cohort studies. Eur. J. Clin. Nutr. 68:324–329.
  • Fretheim, K. (1983). Polycyclic aromatic hydrocarbons in grilled meat products a review. Food Chem. 10:129–139.
  • Fretts, A. M., Howard, B. V., McKnight, B., Duncan, G. E., Beresford, S. A. A., Mete, M., Eilat-Adar, S., Zhang, Y. and Siscovick, D. S. (2012). Associations of processed meat and unprocessed red meat intake with incident diabetes: The Strong Heart Family Study. Am. J. Clin. Nutr. 95:752–758.
  • Garcia, M. N., Martinez-Torres, C., Leets, I., Tropper, E., Ramirez, J. and Layrisse, M. (1996). Heat treatment on heme iron and iron-containing proteins in meat: Iron absorption in humans from diets containing cooked meat fractions. J. Nutr. Biochem. 7:49–54.
  • Gatellier, P., Kondjoyan, A., Portanguen, S. and Santé-Lhoutellier, V. (2010). Effect of cooking on protein oxidation in n-3 polyunsaturated fatty acids enriched beef. Implication on nutritional quality. Meat Sci. 85:645–650.
  • Gilsing, A. M. J., Fransen, F., de Kok, T. M., Goldbohnm, A. R., Schouten, L. J., de Bruine, A. P., van Engeland, M., van den Brandt, P. A., de Goeij, A. F. P. M. and Weijenberg, M. P. W. (2013). Dietary heme iron and the risk of colorectal cancer with specific mutations in KRAS and APC. Carcinogenesis 34:2757–2766.
  • Gorelik, S., Ligumsky, M., Kohen, R. and Kanner, J. (2008). A novel function of red wine polyphenols in humans: prevention of absorption of cytotoxic lipid peroxidation products. FASEB J. 22:41–46.
  • Goulaouic, S., Foucaud, L., Bennasroune, A., Laval-Gilly, P. and Falla, J. (2008). Effect of polycyclic aromatic hydrocarbons and carbon black particles on pro-inflammatory cytokine secretion: Impact of PAH coating onto particles. J. Immunotoxicol. 5:337–345.
  • Grivennikov, S. I., Greten, F. R. and Karin, M. (2010). Immunity, inflammation, and cancer. Cell 140:883–899.
  • Grootveld, M., Atherton, M. D., Sheerin, A. N., Hawkes, J., Blake, D. R., Richens, T. E., Silwood, C. J., Lynch, E. and Claxson, A. W. (1998). In vivo absorption, metabolism, and urinary excretion of alpha,beta-unsaturated aldehydes in experimental animals. Relevance to the development of cardiovascular diseases by the dietary ingestion of thermally stressed polyunsaturate-rich culinary oils. J. Clin. Invest. 101:1210–1218.
  • Gurjar, B. R., Molina, L. T. and Ojha, C. S. P. (2010). Polycyclic aromatic hydrocarbons sources, distribution, and health implications. Air Pollut. Health Environ. Impacts. 60:229–248.
  • Hakami, R., Etemadi, A., Kamangar, F., Pourshams, A., Mohtadinia, J., Firoozi, M. S., Birkett, N., Boffetta, P., Dawsey, S. M. and Malezadeh, R. (2013). Cooking methods and esophageal squamous cell carcinoma in high-risk areas of Iran. Nutr. Cancer.
  • Han, D., McMillin, K. W., Godber, J. S., Bidner, T. D., Younathan, M. T., Marshall, D. L. and Hart, L. T. (1993). Iron distribution in heated beef and chicken muscles. J. Food Sci. 58:697–700.
  • Hedlund, M., Padler-Karvani, V., Varki, N. M. and Varkia, A. (2008). Evidence for a human-specific mechanism for diet and antibody-mediated inflammation in carcinoma progression. Proc. Natl. Acad. Sci. USA 105:18936–18941.
  • Helmus, D. S., Thompson, C. L., Zelenskiy, S., Tucker, T. C. and Li, L. (2013). Red meat-derived heterocyclic amines increase risk of colon cancer: A population-based case-control study. Nutr. Cancer. 65:1141–1150.
  • Hemnani, T. and Parihar, M. S. (1998). Reactive oxygen species and oxidative DNA damage. Ind. J. Physiol. Pharmacol. 42:440–452.
  • Hitzel, A., Pohlmann, M., Schwagele, F., Speer, K. and Jira, W. (2013). Polycyclic aromatic hydrocarbons (PAH) and phenolic substances in meat products smoked with different types of wood and smoking spices. Food Chem. 139:955–962.
  • Hodgson, J. M., Ward, N. C., Burke, V., Beilin, L. J. and Puddey, I. B. (2007). Increased lean red meat intake does not elevate markers of oxidative stress and inflammation in humans. J. Nutr. 137:363–367.
  • Howard, J. W. and Fazio, T. (1969). A review of polycyclic aromatic hydrocarbons in foods. J. Agric. Food Chem. 17:527–531.
  • Hui, Y. H. (2012). Meat and Functional Foods. In: Handbook of Meat and Meat Processing, pp. 225–248.
  • Iwasaki, M., Kataoka, H., Ishihara, J., Takachi, R., Hamada, G. S., Sharma, S., le Marchand, L. and Tsugane, S. (2010). Heterocyclic amines content of meat and fish cooked by Brazilian methods. J. Food Composit. Anal. 23:61–69.
  • Izotti, A. and Pulliero, A. (2014). The effects of environmental chemical carcinogens on themicroRNA machinery. Int. J. Hyg. Environ. Health. 217(6):601–627.
  • Jadhav, A., Tiwari, S., Lee, P. and Ndisang, J. F. (2013). The heme oxygenase system selectively enhances the anti-inflammatory macrophage-M2 phenotype, reduces pericardial adiposity, and ameliorated cardiac injury in diabetic cardiomyopathy in Zucker diabetic fatty ratss. J. Pharmacol. Exp. Ther. 345:239–249.
  • Jeng, H. A., Pan, C. H., Diawara, N., Chang-Chien, G. P., Lin, W. Y., Huang, C. T., Ho, C. K. and Wu, M. T. (2011). Polycyclic aromatic hydrocarbon-induced oxidative stress and lipid peroxidation in relation to immunological alteration. Occup. Environ. Med. 68:653–658.
  • Jialal, I., Devaraj, S., Adams-Huet, B., Chen, X. P. and Kaur, H. (2012). Increased cellular and circulating biomarkers of oxidative stress in nascent metabolic syndrome. J. Clin. Endocrinol. Metab. 97:1844–1850.
  • Jinap, S., Mohd-Mokhtar, M. S., Farhadian, A., Hasnol, N. D. S., Jaafar, S. N. and Hajeb, P. (2013). Effects of varying degrees of doneness on the formation of heterocyclic aromatic amines in chicken and beef satay. Meat Sci. 94:202–207.
  • John, E. M., Stern, M. C., Sinha, R. and Koo, J. (2011). Meat consumption, cooking practices, meat mutagens, and risk of prostate cancer. Nutr. Cancer 63:525–537.
  • Johnston, J. E., Sepe, H. A., Miano, C. L., Brannan, R. G. and Alderton, A. L. (2005). Honey inhibits lipid oxidation in ready-to-eat ground beef patties. Meat Sci. 70:627–631.
  • Joshi, A. D., Corral, R., Catsburg, C., Lewinger, J. P., Koo, J., John, E. M., Ingles, S. A. and Stern, M. A. (2012). Red meat and poultry, cooking practices, genetic susceptibility and risk of prostate cancer: Results from a multiethnic case-control study. Carcinogenesis 33:2108–2118.
  • Kalpalathika, P. V. M., Clark, E. M. and Mahoney, A. W. (1991). Heme iron content in selected ready-to-serve beef products. J. Agric. Food Chem. 39:1091–1093.
  • Kendirci, P., Icier, F., Kor, G. and Onogur, T. A. (2014). Influence of infrared final cooking on polycyclic aromatic hydrocarbon formation in ohmically pre-cooked beef meatballs. Meat Sci. 97:124–129.
  • Khalil, A., Villard, P. H., Dao, M. A., Burcelin, R., Champion, S., Fouchier, F., Savouret, J. F., Barra, Y. and Seree, E. (2010). Polycyclic aromatic hydrocarbons potentiate high-fat diet effects on intestinal inflammation. Toxicol. Lett. 196:161–167.
  • Kim, Y. H. B., Bodker, S. and Rosenvold, K. (2012). Influence of lamb age and high-oxygen modified atmosphere packaging on protein polymerization of long-term aged lamb loins. Food Chem. 135:122–126.
  • Kirkpatrick, S. I., Reedy, J., Butler, E. N., Dodd, K. W., Subar, A. F., Thompson, F. E. and McKinnon, R. A. (2014). Dietary assessment in food environment research: a systematic review. Am. J. Prev. Med. 46:94–102.
  • Kislov, V. V., Sadovnikov, A. I. and Mebel, A. M. (2013). Formation mechanism of polycyclic aromatic hydrocarbons beyond the second aromatic ring. J. Phys. Chem. 117:4794–4816.
  • Kongkachuichai, R., Napatthalung, P. and Charoensiri, R. (2002). Heme and nonheme iron content of animal products commonly consumed in thailand. J. Food Composit. Anal. 15:389–398.
  • Kubow, S. (1990). Toxicity of dietary lipid peroxidation products. Trends Food Sci. Technol. 1:67–71.
  • Kuffa, M., Priescbe, T. J., Krueger, C. G., Reed, J. D. and Richards, M. P. (2009). Ability of dietary antioxidants to affect lipid oxidation of cooked turkey meat in a simulated stomach and blood lipids after a meal. J. Funct. Foods 1(2):208–216.
  • Kuhnle, G. G. C., Story, G. W., Reda, T., Mani, A. R., Moore, K. P., Lunn, J. C. and Bingham, S. A. (2007). Diet-induced endogenous formation of nitroso compounds in the GI tract. Free Radical Biol. Med. 43:1040–1047.
  • Ladikos, D. and Lougovois, V. (1990). Lipid oxidation in muscle foods: A review. Food Chem. 35:295–314.
  • Lakshmi, V. M., Clapper, M. L., Chang, W. C. and Zenser, T. V. (2005a). Hemin potentiates nitric oxide-mediated nitrosation of 2-Amino-3-methylimidazo[4,5-f]quinoline (IQ) to 2-Nitrosoamino-3-methylimidazo[4,5-f]quinoline. Chem. Res. Toxicol. 18:528–535.
  • Lakshmi, V. M., Schut, H. A. J. and Zenser, T. V. (2005b). 2-Nitrosoamino-3-methylimidazo[4,5-f]quinoline activated by the inflammatory response forms nucleotide adducts. Food Chem. Toxicol. 43:1607–1617.
  • Lam, T. K., Rotunno, M., Ryan, B. M., Pesatori, A. C., Bertazzi, P. A., Spitz, M., Caporaso, N. E. and Landi, M. T. (2013). Heme-related gene expression signatures of meat intakes in lung cancer tissues. Mol. Carcinog. 53(7):548–556.
  • Larsson, S. C., Rafter, J., Holmberg, L., Bergkvist, L. and Wolk, A. (2005). Red meat consumption and risk of cancers of the proximal colon, distal colon and rectum: The Swedish mammography cohort. Int. J. Cancer. 113:829–834.
  • Lee, H. J., Wu, K., Cox, D. G., Hunter, D., Hankinson, S. E., Willett, W. C., Sinha, R. and Cho, E. (2013). Polymorphisms in xenobiotic metabolizing genes, intakes of heterocyclic amines and red meat, and postmenopausal breast cancer. Nutr. Cancer 65:1122–1131.
  • Lee, S. A., Shu, X. O., Yang, G., Li, H. L., Gao, Y. T. and Zheng, W. (2009). Animal origin foods and colorectal cancer risk: A report from the Shanghai Women's Health Study. Nutr Cancer 61:194–205.
  • Lee, T. S. and Chau, L. Y. (2002). Heme oxygenase-1 mediates the anti-inflammatory effect of interleukin-10 in mice. Nat. Med. 8(3):240–246.
  • Ley, S. H., Sun, Q., Willett, W. C., Eliassen, A. H., Wu, K., Pan, A., Grodstein, F. and Hu, F. B. (2014). Associations between red meat intake and biomarkers of inflammation and glucose metabolism in women. Am. J. Clin. Nutr. 99(2):352–360.
  • Li, Z. P., Henning, S. M., Zhang, Y., Zerlin, A., Li, L. Y., Gao, K., Lee, R. P., Karp, H., Thames, G., Bowerman, S. and Heber, D. (2010). Antioxidant-rich spice added to hamburger meat during cooking results in reduced meat, plasma, and urine malondialdehyde concentrations1. Am. J. Clin. Nutr. 91.
  • Lin, Y. and Sun, Z. J. (2010). Current views on type 2 diabetes. J. Endocrinol. 204:1–11.
  • Lombardi-Boccia, G., Martinez-Dominguez, B. and Aguzzi, A. (2002). Total heme and non-heme iron in raw and cooked meats. J. Food Sci. 67:1738.
  • Love, J. D. and Pearson, A. M. (1971). Lipid oxidation in meat and meat products-a review. J. Am. Oil Chem. Soc. 48:547–549.
  • Lu, H., Ouyang, W. and Huang, C. S. (2006). Inflammation, a key event in cancer development. Mol Cancer Res. 4:221–233.
  • Lund, M. N., Heinonen, M., Baron, C. P. and Estevez, M. (2011). Protein oxidation in muscle foods: A review. Mol. Nutri. Food Res. 55:83–95.
  • Lunn, J. C., Kuhnle, G., Mai, V., Frankenfeld, C., Shuker, D. E. G., Glen, R. C., Goodman, J. M., Pollock, J. R. A. and Bingham, S. A. (2007). The effect of haem in red and processed meat on the endogenous formation of N-nitroso compounds in the upper gastrointestinal tract. Carcinogenesis 28:686–690.
  • Lunn, J. C., Kuhnle, G., Mai, V., Frankenfeld, C., Shuker, D. E. G., Glen, R. C., Goodman, J. M., Pollock, J. R. A. and Bingham, S. A. (2006). The effect of haem in red and processed meat on the endogenous formation of N-nitroso compounds in the upper gastrointestinal tract. Carcinogenesis 28:685–690.
  • Ma, H. J., Ledward, D. A., Zamri, A. I., Frazier, R. A. and Zhou, G. H. (2007). Effects of high pressure/thermal treatment on lipid oxidation in beef and chicken muscle. Food Chem. 104:1575–1579.
  • Maeda, H., Sawa, T., Yubisui, T. and Akaike, T. (1999). Free radical generation from heterocyclic amines by cytochrome b5 reductase in the presence of NADH. Cancer Lett. 143:117–121.
  • Mahalingaiah, P. K. S. and Singh, K. P. (2014). Chronic oxidative stress increases growth and tumorigenic potential of MCF-7 breast cancer cells. PLoS ONE 9(1):e87371.
  • Malejka-Giganti, D., Bartoszek, A. and Baer-Dubowska, W. (2005). Impact of food preservation, processing, and cooking on cancer risk. Carcinog. Anticarcinog. Food Components, Chapter 5.
  • Mannello, F., Tonti, G. A. and Medda, V. (2009). Protein oxidation in breast microenvironment: Nipple aspirate fluid collected from breast cancer women contains increased protein carbonyl concentration. Cell. Oncol. 31:383–392.
  • McAfee, A. J., McSorley, E. M., Cuskelly, G. J., Moss, B. W., Wallace, J. M. W., Bonham, M. P. and Fearon, A. M. (2010). Red meat consumption: An overview of the risks and benefits. Meat Sci. 84:1–13.
  • Melo, A., Viegas, O., Petisca, C., Pinho, O. and Ferreira, I. M. P. L. V. O. (2008). Effect of beer/red wine marinades on the formation of heterocyclic aromatic amines in pan-fried beef. J. Agric. Food Chem. 56:10625–10632.
  • Mellor, D. D., Hamer, H., Smyth, S., Atkin, S. L. and Courts, F. L. (2010). Antioxidant-rich spice added to hamburger meat during cooking results in reduced meat, plasma, and urine malondialdehyde concentrations. Am J Clin Nutr. 92(4):996–997.
  • Menazza, S., Canton, M., Sorato, E., Boengler, K., Schulz, R. and di Lisa, F. (2014). Old and new biomarkers of oxidative stress in heart failure. Drug Discov. Today: Ther. Strategies. 9(4):e189–e198.
  • Min, B. and Ahn, D. U. (2005). Mechanism of lipid peroxidation in meat and meat products -A review. Food Sci. Biotechnol. 14:152–163.
  • Mirvish, S. S., Davis, M. E., Lisowyj, M. P. and Gaikwad, N. W. (2008). Effect of feeding nitrite, ascorbate, hemin, and omeprazole on excretion of fecal total apparent N-Nitroso compounds in mice. Chem. Res. Toxicol. 21:2344–2351.
  • Montonen, J., Boeing, H., Fritsche, A., Schleicher, E., Joost, H. G., Schulze, M. B., Steffen, A. and Pischon, T. (2013). Consumption of red meat and whole-grain bread in relation to biomarkers of obesity, inflammation, glucose metabolism and oxidative stress. Eur. J. Nutr. 52:337–345.
  • Nair, J., Godschalk, R. W., Nair, U., Owen, R. W., Hull, W. E. and Bartsch, H. (2012). Identification of 3,N(4)-etheno-5-methyl-2′-deoxycytidine in human DNA: A new modified nucleoside which may perturb genome methylation. Chem. Res. Toxicol. 25:162–169.
  • Nakai, Y. and Nonomura, N. (2012). Inflammation and prostate carcinogenesis. Int. J. Urol. 20(2):150–160.
  • Ndisang, J. F., Jadhav, A. and Mishra, M. (2014). The heme oxygenase system suppresses perirenal visceral adiposity, abates renal inflammation and ameliorates diabetic nephropathy in zucker diabetic fatty rats. PLoS ONE. 9(1):e87936.
  • Negre-Salvayre, A., Auge, N., Ayala, V., Basaga, H., Boada, J., Brenke, R., Chapple, S., Cohen, G., Feher, J., Grune, T., Lengyel, G., Mann, G. E., Pamplona, R., Poli, G., Portero-Otin, M., Riahi, Y., Salvayre, R., Sasson, S., Serrano, J., Shamni, O., Siems, W., Siow, R. C. M., Wiswedel, I., Zarkovic, K. and Zarkovic, N. (2010). Pathological aspects of lipid peroxidation. Free Rad. Res. 44:1125–1171.
  • Nothlings, U., Yamamoto, J. F., Wilkens, L. R., Murphy, S. P., Park, S. Y., Henderson, B. E., Kolonel, L. N. and Marchand, L. L. (2009). Meat and heterocyclic amine intake, smoking, NAT1 and NAT2 polymorphisms and colorectal cancer risk in the Multiethnic Cohort Study. Cancer Epidemiol. Biomarkers Prev. 18:2098–2106.
  • Nuora, A., Chiang, V. S., Milan, A. M., Tarvainen, M., Pundir, S., Quek, S. Y., Smith, G. C., Markworth, J. F., Ahotupa, M., Cameron-Smith, D. and Linderborg, K. M. (2015). The impact of beef steak thermal processing on lipid oxidation and postprandial inflammation related responses. Food Chem. 184:57–64.
  • Olatunji, O. S., Fatoki, O. S., Opeolu, B. O. and Ximba, B. J. (2014). Determination of polycyclic aromatic hydrocarbons [PAHs] in processed meat products using gas chromatography – Flame ionization detector. Food Chem. 156:296–300.
  • Osgood, R. S., Upham, B. L., Ill, T. H., Helms, K. L., Velmurugan, K., Babica, P. and Bauer, A. K. (2013). Polycyclic Aromatic Hydrocarbon-induced signaling events relevant to inflammation and tumorigenesis in lung cells are dependent on molecular structure. PLoS ONE. 8(6):e65150.
  • Ovrevik, J., Refsnes, M., Holmes, J. A., Schwarze, P. E. and Lag, M. (2013). Mechanisms of chemokine responses by polycyclic aromatic hydrocarbons in bronchial epithelial cells: Sensitization through toll-like receptor-3 priming. Toxicol. Lett. 219:125–132.
  • Parasramka, M. A., Dashwood, W. M., Wang, R., Abdelli, A., Bailey, G. S., Williams, D. E., Ho, E. and Dashwood, R. H. (2012). MicroRNA profiling of carcinogen-induced rat colon tumors and the influence of dietary spinach. Mol. Nutr. Food Res. 56:1259–1269.
  • Park, E. J., Lee, J. H., Yu, G. Y., Ali, S. R., Holzer, R. G., Osterreicher, C. H., Takahashi, H. and Karin, M. (2010). Dietary and genetic obesity promote liver inflammation and tumorigenesis by enhancing IL-6 and TNF expression. Cell. 140:197–208.
  • Parr, C. L., Hjartaker, A., Lund, E. and Veierod, M. B. (2013). Meat intake, cooking methods and risk of proximal colon, distal colon and rectal cancer: The Norwegian Women and Cancer (NOWAC) cohort study. Int. J. Cancer. 133:1153–1164.
  • Pereira, R. N. and Vicente, A. A. (2010). Environmental impact of novel thermal and non-thermal technologies in food processing. Food Res. Int. 43:1936–1943.
  • Persson, E., Sjoholm, I., Nyman, M. and Skog, K. (2004). Addition of various carbohydrates to beef burgers affects the formation of heterocyclic amines during frying. J. Agric. Food Chem. 52:7561–7566.
  • Pezdirc, M., Zegura, B. and Filipic, M. (2013). Genotoxicity and induction of DNA damage responsive genes by food-borne heterocyclic aromatic amines in human hepatoma HepG2 cells. Food Chem. Toxicol. 59:386–4194.
  • Phillips, D. H. (1999). Polycyclic aromatic hydrocarbons in the diet. Mutat. Res. 443:139–147.
  • Pikul, J., Leszczynski, D. E., Niewiarowicz, A. and Kummerow, F. A. (1984). Lipid oxidation in chicken breast and leg meat after sequential treatments of frozen storage, cooking, refrigerated storage and reheating. J. Food Technol. 19:575–584.
  • Pourkhalili, A., Mirlohi, M. and Rahimi, E. (2013). Heme iron content in lamb meat is differentially altered upon boiling, grilling, or frying as assessed by four distinct analytical methods. Sci. World J. 2013.
  • Quelhas, I., Petisca, C., Viegas, O., Melo, A., Pinho, O. and Ferreira, I. M. P. L. V. O. (2010). Effect of green tea marinades on the formation of heterocyclic aromatic amines and sensory quality of pan-fried beef. Food Chem. 122:98–104.
  • Rahman, I. and Adcock, I. M. (2006). Oxidative stress and redox regulation of lung inflammation in COPD. Eur. Respir. J. 28:219–242.
  • Rakoff-Nahoum, S. (2007). Why cancer and inflammation? J. Biol. Med. 79:123–130.
  • Raza, A., Shabbir, M. A., Khan, M. I., Suleria, H. A. R. and Sultan, S. (2014). Effect of thermal treatments on the formation of heterocyclic aromatic amines in various meats. J. Food Process. Preservat. 39:376–383.
  • Rey-Salgueiro, L., Martinez-Carballo, E., Garcia-Falcon, M. S. and Simal-Gandara, J. (2008). Effects of a chemical company fire on the occurrence of polycyclic aromatic hydrocarbons in plant foods. Food Chem. 108:347–353.
  • Roldan, M., Antequera, T., Armenteros, M. and Ruiz, J. (2014). Effect of different temperature–time combinations on lipid and protein oxidation of sous-vide cooked lamb loins. Food Chem. 149:129–136.
  • Ruan, E. D., Juarez, M., Thacker, R., Yang, X., Dugan, M. E. R. and Aalhus, J. L. (2014). Dietary vitamin E effects on the formation of heterocyclic amines in grilled lean beef. Meat Sci. 96:849–853.
  • Saghir, S., Wagner, K. H. and Elmadfa, I. (2005). Lipid oxidation of beef Wallets during braising with different cooking oils. Meat Sci. 71:440–445.
  • Saito, E., Tanaka, N., Miyazaki, A. and Tsuzaki, M. (2014). Concentration and particle size distribution of polycyclic aromatic hydrocarbons formed by thermal cooking. Food Chem. 153:285–291.
  • Sante-L'Houtellier, V., Aubry, L. and Gatellier, P. (2007). Effect of oxidation on in vitro digestibility of skeletal muscle myofibrillar proteins. J. Agric. Food Chem. 55:5343–5348.
  • Scandalios, J. G. (2002). Oxidative stress responses - what have genome scale studies taught us. Genome Biol. 3:1019.1–1019.6.
  • Seet, R. C. S., Lee, C. Y. J., Loke, W. M., Huang, S. H., Huang, H. W., Looi, W. F., Chew, E. S., Quek, A. M. L., Lim, E. C. H. and Halliwell, B. (2011). Biomarkers of oxidative damage in cigarette smokers: Which biomarkers might reflect acute versus chronic oxidative stress? Free Rad. Biol. Med. 50:1787–1793.
  • Serrano, A., Librelotto, J., Cofrades, S., Sanchez-Muniz, F. J. and Jimenez-Colmenero, F. (2007). Composition and physicochemical characteristics of restructured beef steaks containing walnuts as affected by cooking method. Meat Sci. 77(3):304–313.
  • Shabbir, M. A., Raza, A., Anjum, F. M., Khan, M. R. and Rasul, H. A. (2013). Effect of thermal treatment on meat proteins with special reference to heterocyclic aromatic amines (HAAs). Crit. Rev. Food Sci. Nutr. 55:82–93.
  • Singh, V. K., Patel, D. K., Ram, S., Mathur, N. and Siddiqui, M. K. J. (2008). Blood levels of polycyclic aromatic hydrocarbons in children and their association with oxidative stress indices: An Indian perspective. Clin. Biochem. 41:152–161.
  • Sinha, R., Peters, U., Cross, A. J., Kulldorff, M., Weissfeld, J. L., Pinsky, P. F., Rothman, N. and Hayes, R. B. (2005). Meat, meat cooking methods and preservation, and risk for colorectal adenoma. Cancer Res. 65:8034–8041.
  • Skog, K. I., Johansson, M. A. E. and Jagerstad, M. I. (1998). Carcinogenic heterocyclic amines in model systems and cooked foods: A review on formation, occurrence and intake. Food Chem. Toxicol. 36:879–896.
  • Song, M. K., Park, Y. K. and Ryu, J. C. (2013a). Polycyclic aromatic hydrocarbon (PAH)-mediated upregulation of hepatic microRNA-181 family promotes cancer cell migration by targeting MAPK phosphatase-5, regulating the activation of p38 MAPK. Toxicol. Appl. Pharmacol. 273:130–139.
  • Song, X. F., Chen, Z. Y., Zang, Z. J., Zhang, Y. N., Zeng, F., Peng, Y. P. and Yang, C. (2013b). Investigation of polycyclic aromatic hydrocarbon level in blood and semen quality for residents in Pearl River Delta Region in China. Environ. Int. 60:97–105.
  • Song, Y. Q., Manson, J. E., Buring, J. E. and Liu, S. (2004). A prospective study of red meat consumption and type 2 diabetes in middle-aged and elderly women. Diab. Care 27:2108–2115.
  • Sorensen, M., Autrup, H., Olsen, A., Tjonneland, A. and Overvad, K. (2008). Prospective study of NAT1 and NAT2 polymorphisms, tobacco smoking and meat consumption and risk of colorectal cancer. Cancer Lett. 266:186–193.
  • Sosa, V., Moline, T., Somoza, R., Paciucci, R., Kondoh, H. and Lleonart, M. E. (2013). Oxidative stress and cancer: An overview. Ageing Res. Rev. 12:376–390.
  • Stodolak, B., Starzynska, A., Czyszczon, M. and Zyla, K. (2007). The effect of phytic acid on oxidative stability of raw and cooked meat. Food Chem. 101:1041–1045.
  • Sugimura, T., Wakabayashi, K., Nakagama, H. and Nagao, M. (2004). Heterocyclic amines: Mutagens/carcinogens produced during cooking of meat and fish. Cancer Sci. 95:290–299.
  • Szterk, A. and Waszkiewicz-Robak, B. (2014). Influence of selected quality factors of beef on the profile and the quantity of heterocyclic aromatic amines during processing at high temperature. Meat Sci. 96(3):1177–1184.
  • Takahashi, H., Ogata, H., Nishigaki, R., Broide, D. H. and Karin, M. (2010). Lung tumorigenesis by triggering IKKband JNK1-Dependent Inflammation. Cancer Cell. 17:89–97.
  • Tili, E., Michaille, J. J. and Croce, C. M. (2013). MicroRNAs play a central role in molecular dysfunctions linking inflammation with cancer. Immunol. Rev. 253:167–184.
  • Totsuka, Y., Watanabe, T., Coulibaly, S., Kobayashi, S., Nishizaki, M., Okazaki, M., Hasei, T., Wakabayashi, K. and Nakagama, H. (2014). In vivo genotoxicity of a novel heterocyclic amine,aminobenzoazepinoquinolinone-derivative (ABAQ), produced by theMaillard reaction between glucose and l-tryptophan. Mutat. Res. Genetic Toxicol. Environ. Mutagen. 760:48–55.
  • Traore, S., Aubry, L., Gatellier, P., Przbylski, W., Jaworska, D., Kajak-Siemaszko, K. and Santé- Lhoutellier, V. (2012). Effect of heat treatment on protein oxidation in pig meat. Meat Sci. 91:14–21.
  • Triantafillidis, J. K., Nasioulas, G. and Kosmidis, P. A. (2009). Colorectal cancer and inflammatory bowel disease: Epidemiology, risk factors, mechanisms of carcinogenesis and prevention strategies. Anticancer Res. 29:2727–2738.
  • Troy, D. J. and Kerry, J. P. (2010). Consumer perception and the role of science in the meat industry. Meat Sci. 86:214–226.
  • Tsen, S. Y., Ameri, F. and Smith, J. S. (2006). Effects of rosemary extracts on the reduction of heterocyclic amines in beef patties. J. Food Sci. 71:C469–C473.
  • Turesky, R. J. (2007). Formation and biochemistry of carcinogenic heterocyclic aromatic amines in cooked meats. Tox. Lett. 168:219–227.
  • Turesky, R. J., Liu, L., Gu, D., Yonemori, K. M., White, K. K., Wilkens, L. R. and le Marchand, L. (2013). Biomonitoring the cooked meat carcinogen 2-Amino-1- Methyl-6-Phenylimidazo[4,5-b]Pyridine in hair: Impact of exposure, hair pigmentation, and cytochrome P450 1A2 phenotype. Cancer Epidemiol. Biomark. Prev. 22:356–364.
  • Turhan, S., Ustun, N. S. and Altunkaynak, T. B. (2004). Effect of cooking methods on total and heme iron contents of anchovy (Engraulis encrasicholus). Food Chem. 88:169–172.
  • USDA. (2014). Per capita consumption of poultry and livestock. 2014.
  • Vaziri, N. D. (2008). Mechanisms of lead-induced hypertension and cardiovascular disease. Am. J. Physiol. Heart Circ. Physiol. 295:454–465.
  • Viegas, O., Novo, P., Pinto, E., Pinho, O. and Ferreira, I. M. P. L. V. O. (2012). Effect of charcoal types and grilling conditions on formation of heterocyclic aromatic amines (HAs) and polycyclic aromatic hydrocarbons (PAHs) in grilled muscle foods. Food Chem. Toxicol. 50:2128–2134.
  • Vitaglione, P. and Fogliano, V. (2004). Use of antioxidants to minimize the human health risk associated to mutagenic/carcinogenic heterocyclic amines in food. J. Chromatogr. B. 802:189–199.
  • Wagener, F., Eggert, A., Boerman, O. C., Oyen, W., Verhofstad, A., Abraham, N. G., Adema, G., van Kooyk, Y., de Witte, T. and Figdor, C. G. (2001). Heme is a potent inducer of inflammation in mice and is counteracted by heme oxygenase. Blood 6:1802–1811.
  • WCRF. (2010). Systematic literature review continuous update project report: The associations between food, nutrition and physical activity and the risk of colorectal cancer. 6(6):e20456.
  • Wie, G. A., Cho, Y. A., Kang, K. H., Ryu, K. A., Yoo, M. K., Kim, Y. A., Jung, K. W., Kim, J., Lee, J. H. and Joung, H. (2014). Red meat consumption is associated with an increased overall cancer risk: A prospective cohort study in Korea. Br. J. Nutr. 112:238–247.
  • Williams, P. (2007). Nutritional composition of red meat. Nutr. Diet. 64 (Suppl4), S113–S119.
  • Witko-Sarsat, V., Friedlander, M., Khoa, T. N., Capeilliere-Blandin, C., Nguyen, A. T., Canteloup, S., Dayer, J. M., Jungers, P., Drueke, T. and Descamps-Latscha, B. (1998). Advanced oxidation protein products as novel mediators of inflammation and monocyte activation in chronic renal failure. J. Immunol. 161:2524–2532.
  • Wong, D., Cheng, K. W. and Wang, M. F. (2012). Inhibition of heterocyclic amine formation by water-soluble vitamins in Maillard reaction model systems and beef patties. Food Chem. 133:760–766.
  • Yamakawa, K., Kuno, T., Hashimoto, N., Yokohira, M., Suzuki, S., Nakano, Y., Saoo, K. and Imaida, K. (2010). Molecular analysis of carcinogen-induced rodent lung tumors: Involvement of microRNA expression and Kras or Egfr mutations. Mol. Med. Rep. 3:141–147.
  • Yara, S., Lavoie, J. C., Beaulieu, J. F., Delvin, E., Amre, D., Marcil, V., Seidman, E. and Levy, E. (2013). Iron-Ascorbate-mediated lipid peroxidation causes epigenetic changes in the antioxidant defense in intestinal epithelial cells: Impact on inflammation. PLoS ONE. 8:e63456.
  • Yeh, C.C., Lai, C.Y., Hsieh, L. L., Tang, R., Wu, F. Y. and Sung, F. C. (2010). Protein carbonyl levels, glutathione S-transferase polymorphisms and risk of colorectal cancer. Carcinogenesis. 31:228–233.
  • Yoon, H. S., Lee, K. M., Lee, K. H., Kim, S. K., Choi, K. H. and Kang, D. H. (2012). Polycyclic aromatic hydrocarbon (1-OHPG and 2-naphthol) and oxidative stress (malondialdehyde) biomarkers in urine among Korean adults and children. Int. J. Hyg. Environ. Health 215:458–464.
  • Yuan, J. M., Butler, L. M., Gao, Y. T., Murphy, S. E., Carmella, S. G., Wang, R., Nelson, H. H. and Hect, S. S. (2014). Urinary metabolites of a polycyclic aromatic hydrocarbon and volatile organic compounds in relation to lung cancer development in lifelong never smokers in the Shanghai Cohort Study. Carcinogenesis 35:339–345.
  • Yun, C. H., Chung, D. K., Yoon, K. and Han, S. H. (2006). Involvement of reactive oxygen species in the immunosuppressive effect of 3-amino-1,4-dimethyl-5H-pyrido[4,3-b]indole (Trp-P-1), a food-born carcinogenic heterocyclic amine. Toxicol. Lett. 164:37–43.
  • Zamora, R., Alcon, E. and Hidalgo, F. J. (2013). Comparative formation of 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) in creatinine/phenylalanine and creatinine/phenylalanine/4-oxo-2-nonenal reaction mixtures. Food Chem. 138:180–185.
  • Zhu, H. C., Yang, X., Xu, L. P., Zhao, L. J., Tao, G. Z., Zhang, C., Qin, Q., Cai, J., Ma, J. X., Mao, W. D., Zhang, X. Z., Cheng, H. Y. and Sun, X. C. (2014). Meat consumption is associated with esophageal cancer risk in a meat- and cancer-histological-type dependent manner. Dig Dis Sci. 59.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.