6,455
Views
165
CrossRef citations to date
0
Altmetric
Articles

Food adulteration: Sources, health risks, and detection methods

, , , &

References

  • Adinolfi, B., Chicca, A., Martinotti E., Breschi, M. C. and Nieri P. (2007). Sequence characterized amplified region (SCAR) analysis on DNA from the three medicinal Echinacea species. Fitoterapia 78:43–45.
  • Archak, S., Reddy, L. V. and Nagaraju, J. (2007). High-throughput multiplex microsatellite marker assay for detection and quantification of adulteration in basmati rice (Oryza sativa). Electrophoresis. 28:2396–2405.
  • Babaei, S., Talebi, M. and Bahar, M. (2013). Developing an SCAR and ITS reliable multiplex PCR-based assay for safflower adulterant detection in saffron samples. Food Control. 35(1):323–328.
  • Bandana, D. and Mahipal, S. (2003). Molecular detection of cashew husk (Anacardium occidentale) adulteration in market samples of dry tea (Camellia sinensis). Planta Med. 69(9):882–884.
  • Blanch, G. P., Mar Caja, M., Ruiz del Castillo, M. L. and Herraiz, M. (1998). Comparison of different methods for the evaluation of the authenticity of olive oil and hazelnut oil. J. Agric. Food Chem. 46:3153–3157.
  • Bogusz, M. J., Hassan, H., Al-Enazi, E., Ibrahim, Z. and Al-Tufail, M. (2006). Application of LC–ESI–MS–MS for detection of synthetic adulterants in herbal remedies. J. Pharma. Biomed. Anal. 41:554–564.
  • Boom, R., Sol, C. J. A., Salimans, M. M. M., Jansen, C. L., Dillen, W. P. M. and Noordaa, V. J. (1990). Rapid and simple method for purification of nucleic acids. J. Clin. Microbiol. 28:495–503.
  • Bottero, M. T., Civera, T., Anastasio, A., Turi, R. M. and Rosati, S. (2002). Identification of cow's milk in “buffalo” cheese by duplex polymerase chain reaction. J Food Prot. 65(2):362–366.
  • Buren, M., Stadler, M. and Luthy, J. (2001). Detection of wheat adulteration of spelt flour and products by PCR. Eur. Food Res. Tech. 212:234–239.
  • Busconi, M., Foroni, C., Corradi, M., Bongiorni, C., Cattapan, F. and Fogher, C. (2003). DNA extraction from olive oil and its use in the identification of the production cultivar. Food Chem. 83:127–134.
  • Calabrese, M., Stancher, B. and Riccobon, P. (1995). High-performance liquid chromatography determination of proline isomers in Italian wines. J. Agric. Food Chem. 69:361–366.
  • Cao, H., But, P. P. and Shaw, P. C. (1996a). Authentication of the Chinese drug “Ku-di -dan” (herba Elephantopi) and its substitutes using random-primed polymerase chain reaction (PCR). Acta pharmaceutica Sinica. 31:543–553.
  • Cao, H., But, P.P. and Shaw, P.C. (1996b). A molecular approach to identification of the Chinese drug ‘Pu Gong Ying’ (herba Taraxaci) and six adulterants by DNA fingerprinting using random primed polymerase chain reaction (PCR). J Chinese Pharma. Sci. 5:186–194.
  • Carles, M., Cheung, M. K., Moganti, S., Dong, T. T., Tsim, K. W., Ip, N. Y. and Sucher, N.J. (2005). A DNA microarray for the authentication of toxic traditional Chinese medicinal plants. Planta Medica. 71:580–584.
  • Cartoni, G., Coccioli, F., Jasionowska, R. and Masci, M. (1999). Determination of cows' milk in goats' milk and cheese by capillary electrophoresis of the whey protein fractions. J. Chromatogra. A. 846(1–2):135–141.
  • Cepedes, A., García, T., Carrera, E., Gonzalez, I., Fernandez, A., Hernández, P. E. and Cespedes, R. M. (1999). Application of polymerase chain reaction– single strand conformational polymorphism (PCR–SSCP) to identification of flatfish species. J. AOAC Int. 82(4):903–907.
  • Chavan, P., Warude, D., Joshi, K. and Patwardhan, B. (2008). Development of SCAR (sequence characterized amplified region) markers as a complementary tool for identification of ginger (Zingiber officinale Roscoe) from crude drugs and multicomponent formulations. Biotech. Appl. Biochem. 50:61–69.
  • Chandrika, M., Maimunah, M., Zainon, M. N. and Son, R. (2010). Identification of the species origin of commercially available processed food products by mitochondrial DNA analysis. Int. Food Res. J. 17:867–876.
  • Chaudhary, A. A., Hemant Mohsin, M. and Ahmad, A. (2012). Application of loop mediated isothermal amplification (LAMP)-based technology for authentication of Catharanthus roseus (L.) G. Don. Protoplasma. 2:417–422.
  • Chen, L., Guo, J., Wang, Q., Kai, G., and Yang, L. (2011). Development of the visual loop mediated isothermal amplification assays for seven genetically modified maize events and their application in practical samples analysis. J Agric. Food Chem. 11:5914–5918.
  • Cheng, C. Y., Shi, Y. C. and Lin, S. R. (2012). Use of real-time PCR to detect surimi adulteration in vegetarian foods. J. Marine Sci. Tech. 20(5):570–574.
  • Choi, Y. E., Ahn, CH, Kim, BB and Yoon, ES. (2008). Development of species specific AFLP-derived SCAR marker for authentication of Panax japonicas. Biol. Pharm. Bull. 31:135–138.
  • Codex Alimentarious. (2010). Codex standard for named vegetable oils. CODEX-STAN 210 (Amended 2003, 2005) 8:1–13.
  • Cornet, V., Govaert, Y., Moens, G., Van Loco, J. and Degroodt, J. M. (2006). Development of a fast analytical method for the determination of sudan dyes in chili- and curry-containing foodstuffs by high-performance liquid chromatography-photodiode array detection. J Agric. Food Chem. 54:639–644.
  • Curl, C. L. and Fenwick, G. R. (1983). On the determination of papaya seed adulteration of black pepper. Food Chem. 12:241–247.
  • De-Souza, E. M. T., Arruda, S. F., Brandao, P. O. and Siqueira, E. M. A. (2000). Electrophoretic analysis to detect and quantify additional whey in milk and dairy beverages. Ciênc. Tecnol. Aliment. 20(3):314–317.
  • Dhanya, K and Sasikumar, S. (2010). Molecular marker based adulteration detection in traded food and agricultural commodities of plant origin with special reference to spices. Curr Trends Biotech. Pharm. 4:454–489.
  • Dhanya, K., Syamkumar, S., Jaleel, K. and Sasikumar, B. (2008). Random amplified polymorphic DNA technique for the detection of plant based adulterants in chilli powder (Capsicum annuum). J. Spices Aromatic Crops. 17:75–81.
  • Dhanya, K., Syamkumar, S. and Sasikumar, B. (2009). Development and application of SCAR marker for the detection of papaya seed adulteration in traded black pepper powder. Food Biotechnol. 23:97–106.
  • Dhanya, K., Syamkumar, S., Siju, S. and Sasikumar, B. (2011). Sequence characterized amplified region markers: A reliable tool for adulterant detection in turmeric powder. Food Res. Int. 44(9):2889–2895.
  • Dhiman, B. and Singh, M. (2003). Molecular detection of cashew husk (Anacardium occidentale) adulteration in market samples of dry tea (Camellia sinensis). Planta Medica. 69:882–884.
  • Di Pinto, A., Forte, V. T., Guastadisegni, M. C., Martino, C., Schena, F. P. and Tantillo, G. (2007). A comparison of DNA extraction methods for food analysis. Food Control. 18:76–80.
  • Downey, G., Briandet, R., Wilson, R. H. and Kemsley, E. K. (1997). Near- and Mid-Infrared Spectroscopies in food authentication: Coffee varietal identification. J Agric. Food Chem. 45:4357–4361.
  • Drummond, M. G., Brasil, B. S. A. F., Dalseccoa, L. S., Brasil, R. S. A. F., Teixeira, L. V. and Oliveiraa, D. A. A. (2013). A versatile real-time PCR method to quantify bovine contamination in buffalo products. Food Control 29:131–137.
  • FSSAI. (2008). Advisory no. 2. Advisory to the State Health Authorities on Monitoring Melamine Contamination of Foods. FSSAI, India. Available at http://www.fssai.gov.in/portals/0/Pdf/AdvisoryMelamineinFoods[1].pdf)
  • FSSAI. (2012). Manual of Methods of Analysis of Foods (Spices and Condiments).
  • Fu, J. J. (2012). Short Protocols in Medical Molecular Biology. China Medical Science Press, Beijing.
  • Gonzalez, M., Gallego, M. and Valcarcel, M. (2003). Determination of natural and synthetic colorants in prescreened dairy samples using liquid chromatography-diode array detection. Anal. Chem, 75:685–693.
  • Gonzalez-Martín, I., Hernández-Hierro, J. and González-Cabrera, J. (2007). Use of NIRS technology with a remote reflectance fibre-optic probe for predicting mineral composition (Ca, K, P, Fe, Mn, Na, Zn), protein and moisture in alfalfa. Anal. Bioanal. Chem. 387:2199–2205.
  • Haghighi, B., Feizy, J. and Kakhk, A. H. (2007). LC determination of adulterated saffron prepared by adding styles colored with some natural colorants. Chromatographia. 66(5/6):325–332.
  • Haughey, S. A., Graham, S. F., Cancouet, E. and Elliott, C. T. (2012). The application of Near-Infrared Reflectance Spectroscopy (NIRS) to detect melamine adulteration of soya bean meal. Food Chem. 136(3–4):1557–1561.
  • Hernandez, M., Esteve, T. and Pla, M. (2005). Real-time polymerase chain reaction based assays for quantitative detection of barley, rice, sunflower, and wheat. J Agric. Food Chem. 53:7003–7009.
  • Hernandez, P. E., Martín, R., García, T., Morales, P., Anguita, G., Haza, A. I., González, I. and Sanz, B. (1994). Antibody-based analytical methods for meat species determination and detecting adulteration of milk. Food Agric. Immunol. 6(1):95–104.
  • Hirao, T., Imai, S., Sawada, H., Shiomi, N., Hachimura, S. and Kato, H. (2005). PCR method for detecting trace amounts of buckwheat (Fagopyrum spp.) in food. Biosci Biotechnol Biochem. 69:724–731.
  • Hurley, I. P., Ireland, H. E., Robert, C. C. and Williams, J. H. H. (2004). Application of immunological methods for the detection of species adulteration in dairy products. Int. J Food Sci. Tech. 39(8):873–878.
  • Ivanova, N. V., Fazekas, A. J. and Hebert, P. D. N. (2008). Semi-automated, membrane-based protocol for DNA isolation from plants. Plant Mol. Biol. Rep. 26:186–198.
  • Javanmardi, N., Bagheri, A., Moshtaghi, N., Sharifi, A. and Kakhki, A. H. (2011). Identification of Safflower as a fraud in commercial Saffron using RAPD/SCAR Marker. J Cell Mol. Res. 3(1):31–37.
  • Joshi, V. C., Pullala, V. S. and Khan, I. A. (2005). Rapid and easy identification of Illicium verum Hook f. and its adulterant Illicium anisatum Linn. by fluorescent microscopy and gas chromatography. J Assoc. Offic. Anal. Chem. Int. 88:703–706.
  • Kelly, J. F., and Downey, G. (2005). Detection of sugar adulterants in apple juice using Fourier transform infrared spectroscopy and chemometrics. J. Agric. Food Chem. 53(9):3281–3286.
  • Kesmen, Z., Yetiman, A. E., Sahin, F. and Yetim, H. (2012). Detection of chicken and Turkey meat in meat mixtures by using real-time PCR assays. J Food Sci. 77(2):C167–C173.
  • Khan, S. K., Mirza, J., Anwar, F., and Abdin, M. Z. (2010). Development of RAPD markers for authentication of Piper nigrum (L). Environ. We Int. J. Sci. Tech. 5:47–56.
  • Kojoma, M., Kurihara, K., Yamada, K., Sekita, S., Satake, M. and Iida, O. (2002). Genetic identification of cinnamon (Cinnamomum spp.) based on the trnL-trnF chloroplast DNA. Planta Medica 68:94–96.
  • Koppel, E., Stadler, M., Luthy, J. and Hubner, P. (1998). Detection of wheat contamination in oats by polymerase chain reaction (PCR) and enzyme-linked immunosorbent assay (ELISA). European Food Res. Tech. 206:399–403.
  • Lakshmi, V. (2012). Review article on food adulteration. International J Sci. Inventions Toady. 1(2):106–113.
  • Li, M., Wong, Y. L., Jiang, L. L., Wong, K. L., Wong, Y. T., Lau, C. B. S. and Shaw, P. C. (2013). Application of novel loop-mediated isothermal amplification (LAMP) for rapid authentication of the herbal tea ingredient Hedyotis diffusa Willd. Food Chem. 141:2522–2525.
  • Liu, M., Luo, Y., Tao, R., He, R., Jiang, K. and Wang, B. (2009). Sensitive and rapid detection of genetic modified soybean (Roundup Ready) by loop-mediated isothermal amplification. Biosci Biotech Biochem. 73(11):2365–2369.
  • Lockley, A. K. and Bardsley, R. G. (2000). DNA-based methods for food authentication. Trends Food Sci. Tech. 11:67–77.
  • Lopez, S. J. (2008). TaqMan based real time PCR method for quantitative detection of basmati rice adulteration with non-basmati rice. Eur Food Res Tech. 227:619–622.
  • Louveaux, J., Maurizio, A. and Vorwohl, G. (1978). Methods of melissopalynology. Bee World. 59(4):139–157.
  • Lum, M. R. and Hirsch, A. M. (2006). Molecular methods for the authentication of botanicals and detection of potential contaminants and adulterants. Acta Horticulturae. 720:59–72.
  • Macpherson, J. M., Eckstein, P. E., Scoles, G. J. and Gajadhar, A. A. (1993). Variability of the random amplified polymorphic DNA assay among thermal cyclers, and effects of primer and DNA concentration. Mol. Cell. Probes. 7:293–299.
  • Mahajan, M. V., Gadekar, Y. P., Dighe, V. D., Kokane, R. D. and Bannalikar, A. S. (2011). Molecular detection of meat animal species targeting MT 12S rRNA gene. Meat Sci. 88(1):23–27.
  • Mangal, M., Bansal, S. and Sharma, M. (2014). Macro and micromorphological characterization of different Aspergillus isolates. Legume Res. 37(4):372–378.
  • Marieschi, M., Torelli, A. and Bruni, R. (2012). Quality control of saffron (Crocus sativus L.): Development of SCAR markers for the detection of plant adulterants used as bulking agents. J Agric Food Chem. 60(44):10998–11004.
  • Marieschi, M., Torelli, A., Poli, F., Sacchetti, G. and Bruni, R. (2009). RAPD-based method for the quality control of Mediterranean oregano and its contribution to pharmacognostic techniques. J Agric. Food Chem. 57(5):1835–1840.
  • Martellosi, C, Taylor, E. J., Lee, D., Graziosi, G. and Donini, P. (2005). DNA extraction and analysis from processed coffee beans. J Agric. Food Chem. 53:8432–8436.
  • Matute, A. I. R., Soria, A. C., Castro, I. M. and Sanz, M. L. (2007). A new methodology based on GC-MS to detect honey adulteration with commercial syrups. J Agric Food Chem. 55(18):7264–7269.
  • McDowell, I., Taylor, S. and Gay, C. (1995). The phenolic pigment composition of black tea liquors part I: Predicting quality. J. Agric. Food Chem. 69:467–474.
  • Meyer, R., Hofelein, C., Luthy, J. and Candrian, U. (1995). Polymerase chain reaction-restriction fragment length polymorphism analysis: a simple method for species identification in food. J. AOAC Int. 78:1542–1551.
  • Mneney, E. E. (2010). Review of the use of molecular marker technologies for genetic improvement of cashew (Anacardium occidentale L.) in Tanzania. In: Proceedings of Second International Cashew Conference. Proceedings of Second International Cashew Conference. Hotel Africana, Kampala, Uganda 26–29 April 2010.
  • Mouly, P., Gaydou, E. M. and Auffray, A. (1998). Simultaneous separation of flavone glycosides and polymethoxylated flavones in citrus juices using liquid chromatography. J. Chromatogr. A. 800:171–179.
  • Mustorp, S., Axelsson, C. E., Svensson, U. and Holck, A. (2008). Detection of celery (Apium graveolens), mustard (Sinapis alba, Brassica juncea, Brassica nigra) and sesame (Sesamum indicum) in food by real-time PCR. Eur. Food Res. Tech. 226:771–778.
  • Muzzolupo, I. and Peri, E. (2002). Recovery and characterisation of DNA from virgin olive oil. Eur Food Res Tech. 214:528–531.
  • Nicolaou, N., Xu, Y. and Goodacr, R. (2010). Fourier transform infrared spectroscopy and multivariate analysis for the detection and quantification of different milk species. J. Dairy Sci. 93:5651–5660.
  • Nieri, P., Adinolfi, B., Morelli, I., Breschi, M. C., Simoni, G. and Martinotti, E. (2003). Genetic characterization of the three medicinal Echinacea species using RAPD analysis. Planta Medica. 69:685–686.
  • Nogueira, J. M. F. and Nascimento, A. M. D. (1999). Analytical characterization of Madeira wine. J Agric. Food Chem. 47:566–575.
  • Ohe, K. V. D. (1991). Scanning electron microscopic studies of pollen from apple varieties. 6th Pollination Symposium. Acta Hortic. 405–409.
  • Oliveira, R. C. S., Oliveira, L. S., Franca, A. S. and Augusti, R. (2009). Evaluation of the potential of SPME-GC-MS and chemometrics to detect adulteration of ground roasted coffee with roasted barley. J Food Comp. Anal. 22(3):257–261.
  • Oliveri, C., Frequin, M., Malferrari, G., Saltini, G., Gramegna, M., Tagliabue, R., De Blasio, P., Biunno, I. and Biagiotti, L. (2006). A simple extraction method useful to purify DNA from difficult biologic sources. Cell Preserv. Tech. 4:51–54.
  • Ozen, B. F. and Mauer, L. J. (2002). Detection of hazelnut oil adulteration using FTIR spectroscopy. J Agric Food Chem. 50:3898–3901.
  • Pafundo, S., Agrimonti, C., Maestri, E. and Marmiroli, N. (2007). Applicability of SCAR markers to food genomics: olive oil traceability. J Agric. Food Chem. 55:6052–6059.
  • Paradkar, M. M., Singhal, R. S. and Kulkarni, P. R. (2001). A new TLC method to detect the presence of ground papaya seed in ground black pepper. J Sci. Food Agric. 81:1322–1325.
  • Patrizia, T., Furlan, M., Pallavicini, A., Giorgio Graziosi Nimis, P. L. and Vignes Lebbe, R. (2010). Coffee species and varietal identification. In: Tools for Identifying Biodiversity: Progress and Problems. Proceedings of the International Congress, Paris, September 20–22, 2010, Trieste, EUT Edizioni Universitá di Trieste, pp. 307–313.
  • Philip, J., Marriott,  , Shellie, R. and Cornwell, C. (2001). Gas chromatographic technologies for the analysis of essential oils. J Chromatography A. 936:1–22.
  • Pizarro, C., Dyez, E. I. and Saiz, G. J. M. (2007). Mixture resolution according to the percentage of robusta variety in order to detect adulteration in roasted coffee by near infrared spectroscopy. Anal. Chimica Acta. 585:266–276.
  • Popelka, P., Popelka, P., Horska, D., Golian, J. and Marcincak, S. (2002). Detection of sheep milk and cheeses adulteration using enzyme immunoanalysis (ELISA). Slov. Vet. J. 27(3):36–37.
  • Rohland, N. and Hofreiter, M. (2007). Comparison and optimization of ancient DNA extraction. Biotechniques 42:343–352.
  • Ronning, S. B., Berdal, K. G., Andersen, C. B. and Holst-Jensen, A. (2006). Novel reference gene, PKABA1, used in a duplex real-time polymerase chain reaction for detection and quantitation of wheat- and barley-derived DNA. J Agric. Food Chem. 54:682–697.
  • Rossi, S., Scaravelli, E., Germini, A., Corradini, R., Fogher, C. and Marchelli, R. (2006). A PNA-array platform for the detection of hidden allergens in foodstuffs. Eur. Food Res. Tech. 223:1–6.
  • Sandberg, M., Lundberg, L., Ferm, M. and Yman, I. M. (2003). Real time PCR for the detection and discrimination of cereal contamination in gluten free foods. Eur. Food Res. Tech. 217:344–349.
  • Sasaki, Y., Komatsu, K. and Nagumo, S. (2008). Rapid detection of Panax ginseng by loop-mediated isothermal amplification and its application to authentication of Ginseng. Biol. Pharm. Bull. 31(9):1806–1808.
  • Sasikumar, B., Syamkumar, S., Remya, R. and John Zachariah, T. (2005). PCR based detection of adulteration in the market samples of turmeric powder. Food Biotech. 18:299–306.
  • Scaravelli, E., Brohee, M., Marchelli, R. and Hengel, A. J. (2008). Development of three real-time PCR assays to detect peanut allergen residue in processed food products. Eur. Food Res. Tech. 227:857–869.
  • Sforza, S., Corradini, R., Tedeschi, T. and Marchelli, R. (2011). Food analysis and food authentication by peptide nucleic acid (PNA)-based technologies. Chem. Soc. Rev. 40(1):221–232.
  • Shah, S. M., Naveed, S. A. and Muhammad, A. (2013). Genetic diversity in basmati and non-basmati rice varieties based on microsatellite markers. Pak. J. Bot. 45(s1):423–431.
  • Shaw, P. C., Ngan, F. N., But, P. P. H. and Wang, J. (2002). Molecular markers in Chinese medicinal materials. In: Authentication of Chinese medicinal Materials by DNA Technology, pp. 1–23.
  • Shaw, P. C., Wang, J., and But, P. P. H., Eds., World Scientific Publishing Co. Pvt. Ltd., Singapore 912805.
  • Shelar, M. K., Bafna, A. R., Wahile, A. M. and Suresh, V. T. (2011). Evaluation of edible oils for Argemone mexicana seed oil adulteration. Res. J Pharm., Biol. Chem. Sci. 2(3):927–936.
  • Sheorey, R. R. and Tiwari, A. (2011). Rapid amplified polymorphic DNA (RAPD) for identification of herbal materials and medicines. J Scientific Ind. Res. 70:319–326.
  • Shim, Y. H., Choi, J. H., Park, C. D., Lim, C. J., Cho, J. H. and Kim, H. J. (2003). Molecular differentiation of Panax species by RAPD analysis. Arch. Pharm. Res. 26(8):601–605.
  • Shim, Y. H., Park, C. D., Kim, D. H., Cho, J. H., Cho, M. H. and Kim, H. J. (2005). Identification of Panax species in the herbal medicine preparations using gradient PCR method. Biol. Pharm. Bull. 28:671–676.
  • Silva, B. M., Andrade, P. B., Mendes, G. C., Valentao, P., Seabra, R. M. and Ferreira, M. A. (2000). Analysis of phenolic compounds in the evaluation of commercial Quince Jam Authenticity. J Agric. Food Chem. 48:2853–2857.
  • Soares, S., Amaral, J. S., Mafra, I., and Oliveira, M. B. (2010). Quantitative detection of poultry meat adulteration with pork by a duplex PCR assay. Meat Sci. 85(3):531–536.
  • Spencer, J. A., Kauffman, J. F., Reepmeyer, J. C., Gryniewicz, C. M., Ye, W., Toler, D. Y., Buhse, L. F. and Westenberger, B. J. (2008). Screening of heparin API by near infrared reflectance and Raman spectroscopy. J Pharm. Sci. 97:1–16.
  • Tripathi, M., Khanna, S. K. and Das, M. (2007). Surveillance on use of synthetic colours in eatables vis a vis Prevention of Food Adulteration Act of India. Food Control. 18:211–219.
  • Torelli, A., Mureischi, M. and Bruni, R. (2014). Authentication of saffron in different processed retail products by means of SCAR markers. Food Control. 36:126–131.
  • Vemireddy, L. R., Archak, S. and Nagaraju, J. (2007). Capillary electrophoresis is essential for microsatellite marker based detection and quantification of adulteration of Basmati rice (Oryza sativa). J Agric. Food Chem. 55:8112–8117.
  • Viswanathan, S., Radecka, H. and Radecki, J. (2009). Electrochemical biosensors for food analysis. Monatshefte fur Chemie. 140(8):891–899.
  • Vogels, J., Terwel, L., Tas, A., Berg, F., Dukel, F., and Greef, J. (1996). Detection of adulteration in orange juices by a new screening method using Proton NMR Spectroscopy in combination with pattern recognition techniques. J Agric. Food Chem. 44(1):175–180.
  • Wang, F., Jiang, L., and Ge, B. (2012). Loop-mediated isothermal amplification assays for detecting shiga toxin-producing Escherichia coli in ground beef and human stools. J Clin. Microbiol. 50(1):91–97.
  • Wen, Z. Q., Chen, G., Luo, Y., Li, G., Masatani, P., Bondarenko, P., Phillips, J. and Cao, X. (2012). Assessment of spectroscopic techniques for adulteration detection of raw materials used in biopharmaceutical manufacturing. Am. Pharma. Rev.
  • WHO/FAO. (2014). Procedural Manual Joint FAO/WHO Food Standards Programme, Codex Alimentarius Commission, Twenty-second edition. 1–212.
  • Wilhelmsen, E. C. (2004). Food adulteration. Food Sci. and Tech. 138:2031–2056.
  • Wilhelmsen, E. C. (2006). Adulteration determination. In: Encyclopedia of Analytical Chemistry: Applications, Theory and Instrumentation, pp. 14344. Meyers, R. A., Ed., John Wiley and Sons, Inc., United States.
  • Woolfe, M. and Primrose, S. (2004). Food forensics: using DNA technology to combat misdescription and fraud. Trends Biotech. 22(5):222–226.
  • Wright, C. (2009). Analytical methods for monitoring contaminants in food- an industrial perspective. J Chromatography A. 1216(3):316–319.
  • Xu, X. and Ying, Y. (2011). Microbial biosensors for environmental monitoring and food analysis. Food Rev. Int. 27(3):300–329.
  • Xue, H, Hu, W, Son, H., Han, Y. and Yang, Z. (2010). Indirect ELISA for detection and quantification of bovine milk in goat milk. J Food Sci. Tech. 31(24):370–373.
  • Yang, L., Fu, S., Khan, M. D., Zeng, W. and Fu, J. (2013). Molecular cloning and development of RAPD-SCAR markers for Dimocarpus longan variety authentication. SpringerPlus 2:501.
  • Yang, H. and Irudayaraj, J. (2002). Rapid determination of vitamin C by NIR, MIR and FT Raman techniques. J Pharm. Pharmacol. 54:1247–1255.
  • Yau, F. C. F. and Nagan, F. N. (2002). Methodology and equipment for general molecular techniques. In: Authentication of Chinese Medicinal Materials by DNA Technology, pp. 25–42. Shaw, P. C., Wang, J. and But, P. P., Eds., World Scientific Publishing Co..
  • Zammatteo, N., Lockman, L., Brasseur, F., De Plaen, E., Lurquin, C., Lobert, P. E., Hamels, S., Boon, T. and Remacle, J. (2002). DNA microarray to monitor the expression of MAGE-A genes. Clin. Chem. 48:25–34.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.