2,994
Views
146
CrossRef citations to date
0
Altmetric
Original Articles

A comprehensive overview on the micro- and nano-technological encapsulation advances for enhancing the chemical stability and bioavailability of carotenoids

&

References

  • Aditya, N. P., Shim, M., Lee, I., Lee, Y., Im, M. H. and Ko, S. (2013). Curcumin and genistein coloaded nanostructured lipid carriers: In vitro digestion and antiprostate cancer activity. J. Agric. Food Chem. 61:1878–1883.
  • Agüeros Bazo, M., Catalán, I. E., González-Ferrero, C., González-Navarro, C. J., Garreta, I. and Hualde, A. R. (2013). Nanoparticles for the encapsulation of compounds, preparation thereof and use of the same. Patent US 2013/0209530 A1.
  • Alves, G. P. and Santana, M. H. A. (2004). Phospholipid dry powders produced by spray drying processing: structural, thermodynamic and physical properties. Powder Technol. 145:139–148.
  • Anarjan, N., Nehdi, I. A. and Tan, C. P. (2013). Protection of astaxanthin in astaxanthin nanodispersions using additional antioxidants. Molecules 18:7699–7710.
  • Anarjan, N., Tan, C. P., Ling, T. C., Lye, K. L., Malmiri, H. J., Nehdi, I. A., Cheah, Y. K., Mirhosseini, H. and Baharin, B. S. (2011a). Effect of organic-phase solvents on physicochemical properties and cellular uptake of astaxanthin nanodispersions. J. Agric. Food Chem. 59:8733–8741.
  • Anarjan, N., Mirhosseini, H., Baharin, B. S. and Tan, C. P. (2011b). Effect of processing conditions on physicochemical properties of sodium caseinate-stabilized astaxanthin nanodispersions. LWT - Food Sci. Technol. 44:1658–1665.
  • Anarjan, N. and Tan, C. P. (2013a). Chemical stability of astaxanthin nanodispersions in orange juice and skimmed milk as model food systems. Food Chem. 139:527–531.
  • Anarjan, N. and Tan, C. P. (2013b). Developing a three component stabilizer system for producing astaxanthin nanodispersions. Food Hydrocolloid 30:437–447.
  • Anarjan, N. and Tan, C. (2013c). Effects of storage temperature, atmosphere and light on chemical stability of astaxanthin nanodispersions. J. Am. Oil Chem. Soc. 90:1223–1227.
  • Arunkumar, R., Harish Prashanth, K. V. and Baskaran, V. (2013). Promising interaction between nanoencapsulated lutein with low molecular weight chitosan: Characterization and bioavailability of lutein in vitro and in vivo. Food Chem. 141:327–337.
  • Augustin, M.A. and Sanguansri, L. (2008). Encapsulation of Bioactives. In Food Materials Science. (ed. Aguilera, J.M. and Lillford, P.), pp. 577–601. Springer, New York.
  • Barbosa, M. I. M. J., Borsarelli, C. D. and Mercadante, A. Z. (2005). Light stability of spray-dried bixin encapsulated with different edible polysaccharide preparations. Food Res Int 38:989–994.
  • Basu, H. N. and Vecchio, A. (2001). Encapsulated carotenoid preparations from high-carotenoid canola oil and cyclodextrins and their stability. J. Am. Oil Chem. Soc. 78:375–380.
  • Biehler, E. and Bohn, T. (2010). Methods for assessing aspects of carotenoid bioavailability. Curr. Nutr. Food Sci. 6:44–69.
  • Blanch, G. P., Ruiz del Castillo, M. L., del Mar Caja, M., Pérez-Méndez, M. and Sánchez-Cortés, S. (2007). Stabilization of all-trans-lycopene from tomato by encapsulation using cyclodextrins. Food Chem. 105:1335–1341.
  • Bohn, T. (2008). Bioavailabilty of non-provitamin A carotenoids. Curr. Nutr. Food Sci. 4:240–258.
  • Boon, C. S., McClements, D. J., Weiss, J. and Decker, E. A. (2009). Role of iron and hydroperoxides in the degradation of lycopene in oil-in-water emulsions. J. Agric. Food Chem. 57:2993–2998.
  • Boon, C. S., McClements, D. J., Weiss, J. and Decker, E. A. (2010). Factors influencing the chemical stability of carotenoids in foods. Crit. Rev. Food Sci. Nutr. 50:515–532.
  • Borel, P., Grolier, P., Armand, M., Partier, A., Lafont, H., Lairon, D. and zais-Braesco, V. (1996). Carotenoids in biological emulsions: solubility, surface-to-core distribution, and release from lipid droplets. J. Lipid Res 37:250–261.
  • Borel, P. (2012). Genetic variations involved in interindividual variability in carotenoid status. Mol. Nutr. Food Res. 56:228–240.
  • Bou, R., Boon, C., Kwetu, A., Hidalgo, D. and Decker, E.A. Effect of different antioxidants on lycopene degradation in oil-in-water emulsions. Eur. J. Lip. Sci. Technol. 113:724–729.
  • Britton, G. (1996). Carotenoids. In Natural Food Colorants. (ed. Hendry, G. A. F. and Houghton, J. D.), pp. 197–243. Springer, US.
  • Britton, G. and Khachik, F. (2009). Carotenoids in food. In Carotenoids. (ed. Britton, G., Pfander, H. and Liaaen-Jensen, S.), pp. 45–66. Birkhäuser, Basel Switzerland.
  • Buera, P., Schebor, C. and Elizalde, B. (2005). Effects of carbohydrate crystallization on stability of dehydrated foods and ingredient formulations. J. Food Eng. 67:157–165.
  • Burgain, J., Gaiani, C., Linder, M. and Scher, J. (2011). Encapsulation of probiotic living cells: From laboratory scale to industrial applications. J. Food Eng. 104:467–483.
  • Cha, K. H., Lee, J. Y., Song, D. G., Kim, S. M., Lee, D. U., Jeon, J. Y. and Pan, C. H. (2011). Effect of microfluidization on in vitro micellization and intestinal cell uptake of lutein from chlorella vulgaris. J. Agric. Food Chem. 59:8670–8674.
  • Cheong, J. N. and Tan, C. P. (2010). Palm-based functional lipid nanodispersions: Preparation, characterization and stability evaluation. Eur. J. Lipid Sci. Technol. 112:557–564.
  • Chu, B. S., Ichikawa, S., Kanafusa, S. and Nakajima, M. (2007a). Preparation and characterization of b-carotene nanodispersions prepared by solvent displacement technique. J. Agric. Food Chem. 55:6754–6760.
  • Chu, B. S., Ichikawa, S., Kanafusa, S. and Nakajima, M. (2007b). Preparation of protein-stabilized b-carotene nanodispersions by emulsification-evaporation method. J. Am. Oil Chem. Soc. 84:1053–1062.
  • Cocero, M. J., Martín, Á., Mattea, F. and Varona, S. (2009). Encapsulation and co-precipitation processes with supercritical fluids: Fundamentals and applications. J. Supercrit. Fluid 47:546–555.
  • Cooper, D. A., Webb, D. R. and Peters, J. C. (1997). Evaluation of the potential for olestra to affect the availability of dietary phytochemicals. J. Nutr. 127:1699S–1709S.
  • Cornacchia, L. and Roos, Y. H. (2011). State of dispersed lipid carrier and interface composition as determinants of beta-carotene stability in oil-in-water emulsions. J. Food Sci. 76:C1211–C1218.
  • Dai, Q., You, X., Che, L., Yu, F., Selomulya, C. and Chen, X. D. (2013). An investigation in microencapsulating astaxanthin using a monodisperse droplet spray dryer. Drying Technol. 31:1562–1569.
  • Danino, D., Livney, Y. D., Ramon, O., Portnoy, I. and Cogan, U. (2011). Beta-casein assemblies for enrichment of food and beverages and methods of preparation thereof. Patent US 2011/0038987 A1.
  • Davarnejad, R., Kassim, K. M., Zainal, A. and Sata, S. A. (2008). Supercritical fluid extraction of b-carotene from crude palm oil using XO2. J. Food Eng. 89:472–478.
  • de Kruif, C. G., Weinbreck, F. and de Vries, R. (2004). Complex coacervation of proteins and anionic polysaccharides. Curr. Opin. Colloid In Sci. 9:340–349.
  • de la Fuente, J. C., Oyarzún, B., Quezada, N. and del Valle, J. M. (2006). Solubility of carotenoid pigments (lycopene and astaxanthin) in supercritical carbon dioxide. Fluid Phase Equilibr 247:90–95.
  • De Lara Gomes, G. V., Borrin, T. R., Cardoso, L. P., Souto, E. and De Pinho, S. C. (2013). Characterization and shelf life of b-carotene loaded solid lipid microparticles produced with stearic acid and sunflower oil. Br Arch. Biol. Technol. 56:663–671.
  • de Paz, E., Martìín, Á. and Cocero, M. J. (2012a). Formulation of b-carotene with soybean lecithin by PGSS (Particles from Gas Saturated Solutions)-drying. J. Supercrit. Fluid 72:125–133.
  • de Paz, E., Martín, Á., Duarte, C. M. M. and Cocero, M. J. (2012b). Formulation of b-carotene with poly-(e-caprolactones) by PGSS process. Powder Technol. 217:77–83.
  • de Paz, E., Rodríguez, S., Kluge, J., Martín, Á., Mazzotti, M. and Cocero, M. J. (2013). Solubility of b-carotene in poly-(-caprolactone) particles produced in colloidal state by Supercritical Fluid Extraction of Emulsions (SFEE). J Supercrit Fluid 84:105–112.
  • Decker, E. A. (1998). Strategies for manipulating the pro-oxidative/antioxidative balance of foods to maximize oxidative stability. Trends Food Sc. Tech 9:241–248.
  • Desobry, S. A., Netto, F. M. and Labuza, T. P. (1997). Comparison of spray-drying, drum-drying and freeze-drying for b-carotene encapsulation and preservation. J. Food Sci. 62:1158–1162.
  • Díaz, M., Dunn, C. M., McClements, D. J. and Decker, E. A. (2003). Use of caseinophosphopeptides as natural antioxidants in oil-in-water emulsions. J. Agric. Food Chem. 51:2365–2370.
  • Dimakou, C. and Oreopoulou, V. (2012). Antioxidant activity of carotenoids against the oxidative destabilization of sunflower oil-in-water emulsions. LWT - Food Sci. Technol. 46:393–400.
  • Donhowe, E. G., Flores, F. P., Kerr, W. L., Wicker, L. and Kong, F. (2014). Characterization and in-vitro bioavailability of b-carotene: Effects of microencapsulation method and food matrix. LWT—Food Sci. Technol. 57:42–48.
  • Ducel, V., Richard, J., Saulnier, P., Popineau, Y. and Boury, F. (2004). Evidence and characterization of complex coacervates containing plant proteins: Application to the microencapsulation of oil droplets. Colloid Surface A. 232:239–247.
  • Elizalde, B. E., Herrera, M. L. and Buera, M. P. (2002). Retention of b-carotene encapsulated in a trehalose-based matrix as affected by water content and sugar crystallization. J. Food Eng. 67:3039–3045.
  • Eltayeb, M., Bakhshi, P. K., Stride, E. and Edirisinghe, M. (2013). Preparation of solid lipid nanoparticles containing active compound by electrohydrodynamic spraying. Food Res. Int. 53:88–95.
  • Esmaili, M., Ghaffari, S. M., Moosavi-Movahedi, Z., Atri, M. S., Sharifizadeh, A., Farhadi, M., Yousefi, R., Chobert, J. M., Haertlé, T. and Moosavi-Movahedi, A. A. (2011). Beta casein-micelle as a nano vehicle for solubility enhancement of curcumin; food industry application. LWT—Food Sci. Technol. 44:2166–2172.
  • Ezhilarasi, P. N., Karthik, P., Chhanwal, N. and Anandharamakrishnan, C. (2013). Nanoencapsu-lation techniques for food bioactive components: A review. Food Bioprocess Technol. 6:628–647.
  • Failla, M. L., Huo, T. and Thakkar, S. K. (2008). In vitro screening of relative bioaccessibility of carotenoids from foods. Asia Pac. J. Clin. Nutr. 17:200–203.
  • Faisal, W., Ruane-O'Hora, T., O'Driscoll, C. M. and Griffin, B. T. (2013). A novel lipid-based solid dispersion for enhancing oral bioavailability of Lycopene: In vivo evaluation using a pig model. Int. J. Pharma. 453:307–314.
  • Fernández-García, E., Carvajal-Lérida, I., Rincón, F., Riós, J. J. and Pérez-Gálvez, A. (2010). In vitro intestinal absorption of carotenoids delivered as molecular inclusion complexes with b-cyclodextrin is not inhibited by high-density lipoproteins. J. Agric. Food Chem. 58:3213–3221.
  • Franceschi, E., De Cesaro, A. M., Ferreira, S. R. S. and Vladimir Oliveira, J. (2009). Precipitation of b-carotene microparticles from SEDS technique using supercritical CO2. J. Food Eng. 95:656–663.
  • Franceschi, E., de Cezaro, A., Ferreira, S. R. S., Kunita, M. H., Muniz, E. C., Rubira, A. F. and Vladimir Oliveira, J. (2010). Co-precipitation of beta-carotene and bio-polymer using supercritical carbon dioxide as antisolvent. Open Chem. Eng. J. 4:11–20.
  • Franceschi, E., De Cesaro, A. M., Feiten, M., Ferreira, S. R. S., Dariva, C., Kunita, M. H., Rubira, A. F., Muniz, E. C., Corazza, M. L. and Oliveira, J. V. (2008). Precipitation of b-carotene and PHBV and co-precipitation from SEDS technique using supercritical CO2. J. Supercrit. Fluid 47:259–269.
  • Gan, C. Y., Cheng, L. H. and Easa, A. M. (2008). Evaluation of microbial transglutaminase and ribose cross-linked soy protein isolate-based microcapsules containing fish oil. Innov. Food Sci. Emerg. 9:563–569.
  • Gharsallaoui, A., Roudaut, G., Chambin, O., Voilley, A. and Saurel, R. (2007). Applications of spray-drying in microencapsulation of food ingredients: An overview. Food Res. Int. 40:1107–1121.
  • Gonnet, M., Lethuaut, L. and Boury, F. (2010). New trends in encapsulation of liposoluble vitamins. J. Contr. Rel. 146:276–290.
  • Gouin, S. (2004). Microencapsulation: industrial appraisal of existing technologies and trends. Trend Food Sci. Technol. 15:330–347.
  • Goula, A. M. and Adamopoulos, K. G. (2012). A new technique for spray-dried encapsulation of lycopene. Drying Technol. 30:641–652.
  • Grattard, N., Salaün, F., Champion, D., Roudaut, G. and LeMeste, M. (2002). Influence of physical state and molecular mobility of freeze-dried maltodextrin matrices on the oxidation rate of encapsulated lipids. J. Food Sci. 67:3002–3010.
  • Gutiérrez, F. J., Albillos, S. M., Casas-Sanz, E., Cruz, Z., García-Estrada, C., García-Guerra, A., García-Reverter, J., García-Suárez, M., Gatón, P., González-Ferrero, C. et al. (2013). Methods for the nanoencapsulation of b-carotene in the food sector. Trend Food Sci. Technol. 32:73–83.
  • Harnkarnsujarit, N., Charoenrein, S. and Roos, Y. H. (2012a). Porosity and water activity effects on stability of crystalline b-carotene in freeze-dried solids. J. Food Sci. 77:E313–E320.
  • Harnkarnsujarit, N., Charoenrein, S. and Roos, Y. (2012b). Reversed phase HPLC analysis of stability and microstructural effects on degradation kinetics of b-carotene encapsulated in freeze-dried maltodextrin-emulsion systems. J. Agric Food Chem. 60:9711–9718.
  • Harrison, E. H. (2012). Mechanisms involved in the intestinal absorption of dietary vitamin A and provitamin A carotenoids. BBA-Mol Cell Biol. L. 1821:70–77.
  • Hejri, A., Khosravi, A., Gharanjig, K. and Hejazi, M. (2013). Optimisation of the formulation of b-carotene loaded nanostructured lipid carriers prepared by solvent diffusion method. Food Chem. 141:117–123.
  • Helgason, T., Awad, T. S., Kristbergsson, K., Decker, E. A., McClements, D. J. and Weiss, J. (2009). Impact of surfactant properties on oxidative stability of b-carotene encapsulated within solid lipid nanoparticles. J. Agric Food Chem. 57:8033–8040.
  • Hentschel, A., Gramdorf, S., Müller, R. H. and Kurz, T. (2008). b-Carotene-loaded nanostructured lipid carriers. J. Food Sci. 73:N1–N6.
  • Hojjati, M., Razavi, S., Rezaei, K. and Gilani, K. (2011). Spray drying microencapsulation of natural canthaxantin using soluble soybean polysaccharide as a carrier. Food Sci. Biotechnol. 20:63–69.
  • Hu, D., Lin, C., Liu, L., Li, S. and Zhao, Y. (2012). Preparation, characterization and in vitro release investigation of lutein/zein nanoparticles via solution enhanced dispersion by supercritical fluids. J. Food Eng. 109:545–552.
  • Huang, D., Ou, B., Hampsch-Woodill, M., Flanagan, J. A. and Deemer, E. K. (2002). Development and validation of oxygen radical absorbance capacity assay for lipophilic antioxidants using randomly methylated b-cyclodextrin as the solubility enhancer. J. Agric. Food Chem. 50:1815–1821.
  • Hung, L. C., Basri, M., Tejo, B. A., Ismail, R., Nang, H. L. L., Hassan, H. A. and May, C. Y. (2011). An improved method for the preparations of nanostructured lipid carriers containing heat-sensitive bioactives. Colloid Surface B 87:180–186.
  • Huo, T., Ferruzzi, M. G., Schwartz, S. J. and Failla, M. L. (2007). Impact of fatty acyl composition and quantity of triglycerides on bioaccessibility of dietary carotenoids. J. Agric. Food Chem. 55:8950–8957.
  • Jarunglumlert, T. and Nakagawa, K. (2013). Spray drying of casein aggregates loaded with β-carotene: Influences of acidic conditions and storage time on surface structure and encapsulation efficiencies. Drying Technol. 31:1459–1465.
  • Jones, O. G., Decker, E. A. and McClements, D. J. (2009). Formation of biopolymer particles by thermal treatment of β-lactoglobulin-pectin complexes. Food Hydrocolloid 23:1312–1321.
  • Joye, I. J. and McClements, D. J. (2013). Production of nanoparticles by anti-solvent precipitation for use in food systems. Trend Food Sci. Technol. 34:109–123.
  • Jung, J. and Perrut, M. (2001). Particle design using supercritical fluids: Literature and patent survey. J. Supercrit. Fluid 20:179–219.
  • Kakran, M., Sahoo, N., Tan, I. L. and Li, L. (2012). Preparation of nanoparticles of poorly water-soluble antioxidant curcumin by antisolvent precipitation methods. J. Nanopart Res. 14:1–11.
  • Kaulmann, A. and Bohn, T. (2014). Carotenoids, inflammation and oxidative stress—implications of cellular signaling. Nutr. Res. 34:907–929.
  • Kentish, S., Wooster, T. J., Ashokkumar, M., Balachandran, S., Mawson, R. and Simons, L. (2008). The use of ultrasonics for nanoemulsion preparation. Innov. Food Sci. Emerg. 9:170–175.
  • Kim, S., Cho, E., Yoo, J., Cho, E., Ju Choi, S., Son, S. M., Lee, J. M., In, M. J., Kim, D. C., Kim, J. H. et al. (2010). β−CD-mediated encapsulation enhanced stability and solubility of astaxanthin. J. Appl. Biol. Chem. 53:559–565.
  • Kittikaiwan, P., Powthongsook, S., Pavasant, P. and Shotipruk, A. (2007). Encapsulation of Haematococcus pluvialis using chitosan for astaxanthin stability enhancement. Carbohyd. Polym. 70:378–385.
  • Kosaraju, S. L., Weerakkody, R. and Augustin, M. A. (2009). In-vitro evaluation of hydrocolloid−based encapsulated fish oil. Food Hydrocolloid. 23:1413–1419.
  • KOTAKE-NARA, E. and Nagao, A. (2012). Effects of mixed micellar lipids on carotenoid uptake by human intestinal Caco-2 cells. Biosci. Biotech. Biochem. 76:875–882.
  • Krinsky, N. I. and Johnson, E. J. (2005). Carotenoid actions and their relation to health and disease. Mol. Aspects Med. 26:459–516.
  • Krinsky, N. I. and Yeum, K. J. (2003). Carotenoid−radical interactions. Biochem. Biophys. Res. Commun. 305:754–760.
  • Krokida, M. K. and Maroulis, Z. B. (1997). Effect of drying method on shrinkage and porosity. Drying Technol. 15:2441–2458.
  • Lacatusu, I., Mitrea, E., Badea, N., Stan, R., Oprea, O. and Meghea, A. (2013). Lipid nanoparticles based on omega-3 fatty acids as effective carriers for lutein delivery. Preparation and in vitro characterization studies. J. Funct. Food 5:1260–1269.
  • Lancrajan, I., Diehl, H. A., Socaciu, C., Engelke, M. and Zorn-Kruppa, M. (2001). Carotenoid incorporation into natural membranes from artificial carriers: liposomes and  β-cyclodextrins. Chem Phys Lipid 112:1–10.
  • Laos, K., Lõugas, T., Mändmets, A. and Vokk, R. (2007). Encapsulation of β-carotene from sea buckthorn (Hippophaë rhamnoides L.) juice in furcellaran beads juice in furcellaran beads. Innov. Food Sci. Emerg. 8:395–398.
  • Leach, G., Oliveira, G. and Morais, R. (1998). Production of a carotenoid-rich product by alginate entrapment and fluid-bed drying of Dunaliella salina. J. Agric. Food Chem. 76:298–302.
  • Leclercq, S., Harlander, K. R. and Reineccius, G. A. (2009). Formation and characterization of microcapsules by complex coacervation with liquid or solid aroma cores. Flavour Frag. J. 24:17–24.
  • Lee, Y. and Choe, E. (2013). Effects of fatty acid composition and b-carotene on the chlorophyll photosensitized oxidation of w/o emulsion affected by phosphatidylcholine. J. Food Sci. 78:C31–C36.
  • Lesoin, L., Crampon, C., Boutin, O. and Badens, E. (2011). Preparation of liposomes using the supercritical anti-solvent (SAS) process and comparison with a conventional method. J. Supercrit. Fluid 57:162–174.
  • Liang, R., Shoemaker, C. F., Yang, X., Zhong, F. and Huang, Q. (2013a). Stability and bioaccessibility of β-carotene in nanoemulsions stabilized by modified starches. J. Agric. Food Chem. 61:1249–1257.
  • Liang, R., Huang, Q., Ma, J., Shoemaker, C. F. and Zhong, F. (2013b). Effect of relative humidity on the store stability of spray-dried beta-carotene nanoemulsions. Food Hydrocolloid 33:225–233.
  • Liu, C. H. and Wu, C. T. (2010). Optimization of nanostructured lipid carriers for lutein delivery. Colloid Surface A. 353:149–156.
  • Liu, L. P., Mao, W., Jia, Y. M. and Gao, Y. L. (2007a). Technology optimization of ginger oleoresin alginate-chitosan microcapsules prepared by emulsification external coacervation. J. China Pharm. Univ. 38:229–232.
  • Liu, Y., Hou, Z., Lei, F., Chang, Y. and Gao, Y. (2012). Investigation into the bioaccessibility and microstructure changes of b-carotene emulsions during in vitro digestion. Innov. Food Sci Emerg 15:86–95.
  • Liu, Y., Kathan, K., Saad, W. and Prud'homme, R. K. (2007b). Ostwald ripening of beta-carotene nanoparticles. Phys. Rev. Lett. 98:036102.
  • Livney, Y. D. (2010). Milk proteins as vehicles for bioactives. Curr. Opin. Colloid Sci 15:73–83.
  • Lobato, K. B. D. S., Paese, K., Forgearini, J. C., Guterres, S. S., Jablonski, A. and Rios, A. D. O. (2013). Characterisation and stability evaluation of bixin nanocapsules. Food Chem. 141:3906–3912.
  • Loksuwan, J. (2007). Characteristics of microencapsulated b-carotene formed by spray drying with modified tapioca starch, native tapioca starch and maltodextrin. Food Hydrocolloid 21:928–935.
  • Lupo, B., Maestro, A., Porras, M., Gutiérrez, J. M. and González, C. (2014). Preparation of alginate microspheres by emulsification/internal gelation to encapsulate cocoa polyphenols. Food Hydrocolloid 38:56–65.
  • Lv, Y., Yang, F., Li, X., Zhang, X. and Abbas, S. (2014). Formation of heat-resistant nanocapsules of jasmine essential oil via gelatin/gum arabic-based complex coacervation. Food Hydrocolloid 35:305–314.
  • Machado Jr, F. R. S., Reis, D. F., Boschetto, D. L., Burkert, J. F. M., Ferreira, S. R. S., Oliveira, J. V. and Burkert, C. A. (2014). Encapsulation of astaxanthin from Haematococcus pluvialis in PHBV by means of SEDS technique using supercritical CO2. Ind. Crop Product. 54:17–21.
  • Madhavi, D. L. and Kagan, D. I. (2008). Bioavailable carotenoid-cyclodextrin formulations for soft-gels and other encapsulation systems. Patent US 7,446,101B1.
  • Malaki Nik, A., Wright, A. J. and Corredig, M. (2011). Micellization of beta-carotene from soy-protein stabilized oil-in-water emulsions under in vitro conditions of lipolysis. J Am Oil Chem. Soc. 88:1397–1407.
  • Mantzouridou, F., Spanou, A. and Kiosseoglou, V. (2012). An inulin-based dressing emulsion as a potential probiotic food carrier. Food Res. Int. 46:260–269.
  • Marcolino, V. A., Zanin, G. M., Durrant, L. R., Benassi, M. D. T. and Matioli, G. (2011). Interaction of curcumin and bixin with b-cyclodextrin: Complexation methods, stability, and applications in food. J. Agric Food Chem. 59:3348–3357.
  • Martín, A., Mattea, F., Gutiérrez, L., Miguel, F. and Cocero, M. J. (2007). Co-precipitation of caro-tenoids and bio-polymers with the supercritical anti-solvent process. J. Supercrit Fluid 41:138–147.
  • Martín, Á. and Weidner, E. (2010). PGSS-drying: Mechanisms and modeling. J. Supercrit Fluid 55:271–281.
  • Matalanis, A., Jones, O. G. and McClements, D. J. (2011). Structured biopolymer-based delivery systems for encapsulation, protection, and release of lipophilic compounds. Food Hydrocolloid 25:1865–1880.
  • Mattea, F., Martín, A. and Cocero, J. (2008). Co-precipitation of β-carotene and polyethylene glycol with compressed CO2 as an antisolvent: effect of temperature and concentration. Ind Eng Chem Res 47:3900–3906.
  • Mattea, F., Martín, Á. and Cocero, M. J. (2009a). Carotenoid processing with supercritical fluids. J. Agric. Food Chem. 93:255–265.
  • Mattea, F., Martín, Á., Matías-Gago, A. and Cocero, M. J. (2009b). Supercritical antisolvent precipitation from an emulsion: b-Carotene nanoparticle formation. J. Agric. Food Chem. 51:238–247.
  • McClements, D. J. (2010). Design of nano-laminated coatings to control bioavailability of lipophilic food components. J. Food Sci. 75:R30–R42.
  • McClements, D. J., Decker, E. A. and Park, Y. (2008). Controlling lipid bioavailability through physicochemical and structural approaches. Crit. Rev. Food Sci. Nutr. 49:48–67.
  • McClements, D. J. and Li, Y. (2010). Structured emulsion-based delivery systems: Controlling the digestion and release of lipophilic food components. Adv. Colloid Interface Sci. 159:213–228.
  • Mele, A., Mendichi, R. and Selva, A. (1998). Non-covalent associations of cyclomaltooligosaccharides (cyclodextrins) with trans-b-carotene in water: evidence for the formation of large aggregates by light scattering and NMR spectroscopy. Carbohyd Res 310:261–267.
  • Mellema, M. (2003). Complex coacervate encapsulate comprising lipophilic core. Patent EP1585592 A1.
  • Meng, X. C., Stanton, C., Fitzgerald, G. F., Daly, C. and Ross, R. P. (2008). Anhydrobiotics: The challenges of drying probiotic cultures. Food Chem. 106:1406–1416.
  • Mensi, A., Choiset, Y., Rabesona, H., Haertlé, T., Borel, P. and Chobert, J. M. (2013a). Interactions of β-lactoglobulin variants A and B with vitamin A. Competitive binding of retinoids and carotenoids. J. Agric. Food Chem. 61:4114–4119.
  • Mensi, A., Choiset, Y., Haertlé, T., Reboul, E., Borel, P., Guyon, C., de Lamballerie, M. and Chobert, J. M. (2013b). Interlocking of b-carotene in beta-lactoglobulin aggregates produced under high pressure. Food Chem. 139:253–260.
  • Mestry, A. P., Mujumdar, A. S. and Thorat, B. N. (2011). Optimization of spray drying of an innovative functional food: fermented mixed juice of carrot and watermelon. Drying Technol. 29:1121–1131.
  • Mezzomo, N., Paz, E. D., Maraschin, M., Martin, +., Cocero, M. J. and Ferreira, S. R. S. (2012). Supercritical anti-solvent precipitation of carotenoid fraction from pink shrimp residue: Effect of operational conditions on encapsulation efficiency. J Supercrit Fluid 66:342–349.
  • Miguel, F., Mart+¡n, A., Gamse, T. and Cocero, M. J. (2006). Supercritical anti solvent precipitation of lycopene: Effect of the operating parameters. J. Supercrit. Fluid. 36:225–235.
  • Mitri, K., Shegokar, R., Gohla, S., Anselmi, C. and Müller, R. H. (2011). Lutein nanocrystals as antioxidant formulation for oral and dermal delivery. Int. J. Pharm. 420:141–146.
  • Moraes, M., Carvalho, J. M., Silva, C. n. R., Cho, S., Sola, M. R. and Pinho, S. C. (2013). Liposomes encapsulating beta-carotene produced by the proliposomes method: characterisation and shelf life of powders and phospholipid vesicles. Int. J. Food Sci. Technol. 48:274–282.
  • Mourtzinos, I., Kalogeropoulos, N., Papadakis, S. E., Konstantinou, K. and Karathanos, V. T. (2008). Encapsulation of nutraceutical monoterpenes in β−cyclodextrin and modified starch. J. Food Sci. 73:S89–S94.
  • Müller, R. H., Radtke, M. and Wissing, S. A. (2002). Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) in cosmetic and dermatological preparations. Adv. Drug Deliv. Rev. 54:S131–S155.
  • Nakagawa, K. and Nagao, H. (2012). Microencapsulation of oil droplets using freezing-induced gelatin-acacia complex coacervation. Colloid Surface A 411:129–139.
  • Nalawade, S. P., Picchioni, F. and Janssen, L. P. B. M. (2006). Supercritical carbon dioxide as a green solvent for processing polymer melts: Processing aspects and applications. Progr. Polym. Sci. 31:19–43.
  • Nerome, H., Machmudah, S., Wahyudiono Fukuzato, R., Higashiura, T., Youn, Y. S., Lee, Y. W. and Goto, M. (2013). Nanoparticle formation of lycopene/β-cyclodextrin inclusion complex using supercritical antisolvent precipitation. J. Supercrit. Fluid. 83:97–103.
  • Nicolai, T., Britten, M. and Schmitt, C. (2011). b-Lactoglobulin and WPI aggregates: Formation, structure and applications. Food Hydrocolloid 25:1945–1962.
  • Nik, A. M., Corredig, M. and Wright, A. J. (2010). Changes in WPI-stabilized emulsion interfacial properties in relation to lipolysis and b-carotene transfer during exposure to simulated gastric-duodenal fluids of variable composition. Food Digestion 1:14–27.
  • Nik, A. M., Corredig, M. and Wright, A. J. (2011). Release of lipophilic molecules during in vitro digestion of soy protein-stabilized emulsions. Mol. Nutr. Food Res. 55:S278–S289.
  • Nik, A. M., Langmaid, S. and Wright, A. J. (2012). Nonionic surfactant and interfacial structure impact crystallinity and stability of b-carotene loaded lipid nanodispersions. J. Agric. Food Chem. 60:4126–4135.
  • Nunes, I. L. and Mercadante, A. Z. (2007). Encapsulation of lycopene using spray-drying and molecular inclusion processes. Br Arch. Biol. Technol. 50:893–900.
  • Pan, K., Zhong, Q. and Baek, S. J. (2013). Enhanced dispersibility and bioactivity of curcumin by encapsulation in casein nanocapsules. J. Agric. Food Chem. 61:6036–6043.
  • Pan, X., Yao, P. and Jiang, M. (2007). Simultaneous nanoparticle formation and encapsulation driven by hydrophobic interaction of casein-graft-dextran and β-carotene. J. Colloid. Interface Sci. 315:456–463.
  • Panagiotou, T. and Fisher, R. J. (2013). Producing micron- and nano-size formulations for functional food applications. Funct. Foods Health Dis. 3:274–289.
  • Patel, A., Hu, Y., Tiwari, J. K. and Velikov, K. P. (2010). Synthesis and characterisation of zein-curcumin colloidal particles. Soft Matter. 6:6192–6199.
  • Perez-Galvez, A., Rios, J. J. and Minguez-Mosquera, M. I. (2005). Thermal degradation products formed from carotenoids during a heat-induced degradation process of paprika oleoresins (Capsicum annuum L.). J. Agric. Food Chem. 53:4820–4826.
  • Pfitzner, I., Francz, P. I. and Biesalski, H. K. (2000). Carotenoid:methyl-β-cyclodextrin formulations: an improved method for supplementation of cultured cells. BBA-Subjects 1474:163–168.
  • Pinho, E., Grootveld, M., Soares, G. and Henriques, M. (2014). Cyclodextrins as encapsulation agents for plant bioactive compounds. Carbohyd Polym. 101:121–135.
  • Polyakov, N. E., Leshina, T. V., Konovalova, T. A., Hand, E. O. and Kispert, L. D. (2004). Inclusion complexes of carotenoids with cyclodextrins: 1H NMR, EPR, and optical studies. Free Rad. Biol. Med. 36:872–880.
  • Prado, S. M., Buera, M. P. and Elizalde, B. E. (2005). Structural collapse prevents β-carotene loss in a supercooled polymeric matrix. J. Agric. Food Chem. 54:79–85.
  • Prata, A. S., Zanin, M. H. A., Ré, M. I. and Grosso, C. R. F. (2008). Release properties of chemical and enzymatic crosslinked gelatin-gum Arabic microparticles containing a fluorescent probe plus vetiver essential oil. Colloid Surface B. 67:171–178.
  • Priamo, W. L., de Cezaro, A. M., Benetti, S. C., Oliveira, J. V. and Ferreira, S. R. S. (2011). In vitro release profiles of β-carotene encapsulated in PHBV by means of supercritical carbon dioxide micronization technique. J. Supercrit Fluid 56:137–143.
  • Priamo, W. L., de Cezaro, A., Ferreira, S. and Oliveira, J. (2010). Precipitation and encapsulation of β-carotene in PHBV using carbon dioxide as anti-solvent. J. Supercrit Fluid 54:103–109.
  • Pu, J., Bankston, J. D. and Sathivel, S. (2011). Production of microencapsulated crawfish (Procambarus clarkii) astaxanthin in oil by spray drying technology. Drying Technol. 29:1150–1160.
  • Qian, C., Decker, E. A., Xiao, H. and McClements, D. J. (2012a). Nanoemulsion delivery systems: Influence of carrier oil on β-carotene bioaccessibility. Food Chem. 135:1440–1447.
  • Qian, C., Decker, E. A., Xiao, H. and McClements, D. J. (2012b). Physical and chemical stability of β-carotene-enriched nanoemulsions: Influence of pH, ionic strength, temperature, and emulsifier type. Food Chem. 132:1221–1229.
  • Qian, C., Decker, E. A., Xiao, H. and McClements, D. J. (2012c). Nanoemulsion delivery systems: Influence of carrier oil on β-carotene bioaccessibility. Food Chem. 135:1440–1447.
  • Qian, C., Decker, E. A., Xiao, H. and McClements, D. J. (2013). Impact of lipid nanoparticle physical state on particle aggregation and β-carotene degradation: Potential limitations of solid lipid nanoparticles. Food Res. Int. 52:342–349.
  • QUAN, C., Johan, C. and Charlotta, T. (2009). Carotenoid particle formation by supercritical fluid technologies. Chin. J. Chem. Eng. 17:344–349.
  • Quan, J., Kim, S. M., Pan, C. H. and Chung, D. (2013). Characterization of fucoxanthin-loaded microspheres composed of cetyl palmitate-based solid lipid core and fish gelatin−gum arabic coacervate shell. Food Res. Int. 50:31–37.
  • Qv, X. Y., Zeng, Z. P. and Jiang, J. G. (2011). Preparation of lutein microencapsulation by complex coacervation method and its physicochemical properties and stability. Food Hydrocolloid. 25:1596–1603.
  • Ramoneda, X. A., Ponce-Cevallos, P. A., Buera, M. d. P. and Elizalde, B. E. (2011). Degradation of β-carotene in amorphous polymer matrices. Effect of water sorption properties and physical state. J. Sci. Food Agric. 91:2587–2593.
  • Rao, J., Decker, E. A., Xiao, H. and McClements, D. J. (2013). Nutraceutical nanoemulsions: influence of carrier oil composition (digestible versus indigestible oil) on β-carotene bioavailability. J. Sci. Food Agric. 93:3175–3183.
  • Rascón, M. P., Beristain, C. I., García, H. S. and Salgado, M. A. (2011). Carotenoid retention and storage stability of spray-dried encapsulated paprika oleoresin using gum Arabic and Soy protein isolate as wall materials. LWT—Food Sci. Technol. 44:549–557.
  • Ribeiro, H. S., Guerrero, J. M. M., Briviba, K., Rechkemmer, G., Schuchmann, H. P. and Schubert, H. (2006). Cellular uptake of carotenoid-loaded oil-in-water emulsions in colon carcinoma cells in vitro. J. Agric. Food Chem. 54:9366–9369.
  • Ribeiro, H.S., Schuchmann, H.P., Engel, R., Walz, E. and Briviba, K. (2010). Encapsulation of carotenoids. In Encapsulation technologies for active food ingredients and food processing. (ed. Zuidam, N. J. and Nedovic, V. A.), pp. 211–252. Heidelberg, Germany: Springer.
  • Ribeiro, H. S., Chu, B. S., Ichikawa, S. and Nakajima, M. (2008). Preparation of nanodispersions containing  β-carotene by solvent displacement method. Food Hydrocolloid 22:12–17.
  • Rocha, G. A., F+ívaro-Trindade, C. S. L. and Grosso, C. R. F. (2012). Microencapsulation of lycopene by spray drying: Characterization, stability and application of microcapsules. Food Bioprod. Process 90:37–42.
  • Rocha-Selmi, G. A., Bozza, F. T., Thomazini, M., Bolini, H. M. A. and Favaro-Trindade, C. S. (2013a). Microencapsulation of aspartame by double emulsion followed by complex coacervation to provide protection and prolong sweetness. Food Chem. 139:72–78.
  • Rocha-Selmi, G. A., Favaro-Trindade, C. S. and Grosso, C. R. F. (2013b). Morphology, stability, and application of lycopene microcapsules produced by complex coacervation. J. Chem. Article ID 982603.
  • Rocha-Selmi, G. A., Theodoro, A. C., Thomazini, M., Bolini, H. M. A. and Favaro-Trindade, C. S. (2013c). Double emulsion stage prior to complex coacervation process for microencapsulation of sweetener sucralose. J. Food Eng. 119:28–32.
  • Rodríguez-Huezo, M. E., Pedroza-Islas, R., Prado-Barragán, L. A., Beristain, C. I. and Vernon-Carter, E. J. (2004). Microencapsulation by spray drying of multiple emulsions containing carotenoids. J. Food Sci. 69:351–359.
  • Roman, M. J., Burri, B. J. and Singh, R. P. (2012). Release and bioaccessibility of  β-carotene from fortified almond butter during in vitro digestion. J. Agric. Food Chem. 60:9659–9666.
  • Ryckebosch, E., Muylaert, K., Eeckhout, M., Ruyssen, T. and Foubert, I. (2011). Influence of drying and storage on lipid and carotenoid stability of the Microalga Phaeodactylum tricornutum. J. Agric. Food Chem. 59:11063–11069.
  • Sáiz-Abajo, M. J., González-Ferrero, C., Moreno-Ruiz, A., Romo-Hualde, A. and González-Navarro, C. J. (2013). Thermal protection of b-carotene in re-assembled casein micelles during different processing technologies applied in food industry. Food Chem. 138:1581–1587.
  • Salar-Behzadi, S., Wu, S., Toegel, S., Hofrichter, M., Altenburger, I., Unger, F. M., Wirth, M. and Viernstein, H. (2013). Impact of heat treatment and spray drying on cellular properties and culturability of Bifidobacterium bifidum BB-12. Food Res. Int. 54:93–101.
  • Salvia-Trujillo, L., Qian, C., Martin-Belloso, O. and McClements, D. J. (2013a). Modulating β−carotene bioaccessibility by controlling oil composition and concentration in edible nanoemulsions. Food Chem. 139:878–884.
  • Salvia-Trujillo, L., Qian, C., Martín-Belloso, O. and McClements, D. J. (2013b). Influence of particle size on lipid digestion and β-carotene bioaccessibility in emulsions and nanoemulsions. Food Chem. 141:1472–1480.
  • Santana, A. A., Kurozawa, L. E., de Oliveira, R. A. and Park, K. J. (2013). Influence of process conditions on the physicochemical properties of pequi powder produced by spray drying. Drying Technol. 31:825–836.
  • Santos, D. T. and Meireles, M. A. A. (2010). Carotenoid pigments encapsulation: Fundamentals, techniques and recent trends. Open Chem. Eng. J. 4:42–50.
  • Santos, D. T., Martín, Á., Meireles, M. A. and Cocero, M. J. (2012). Production of stabilized sub-micrometric particles of carotenoids using supercritical fluid extraction of emulsions. J. Supercrit. Fluid. 61:167–174.
  • Santos, D. T. and Meireles, M. A. (2013). Micronization and encapsulation of functional pigments using supercritical carbon dioxide. J. Food Process Eng. 36:36–49.
  • Schutyser, M. A. I., Perdana, J. and Boom, R. M. (2012). Single droplet drying for optimal spray drying of enzymes and probiotics. Trend Food Sci. Technol. 27:73–82.
  • Selim, K., Tsimidou, M. and Biliaderis, C. G. (2000). Kinetic studies of degradation of saffron carotenoids encapsulated in amorphous polymer matrices. Food Chem. 71:199–206.
  • Semo, E., Kesselman, E., Danino, D. and Livney, Y. D. (2007). Casein micelle as a natural nano-capsular vehicle for nutraceuticals. Food Hydrocolloid 21:936–942.
  • Serris, G. S. and Biliaderis, C. G. (2001). Degradation kinetics of beetroot pigment encapsulated in polymeric matrices. J. Sci. Food Agric. 81:691–700.
  • Shanmugam, S., Park, J. H., Kim, K. S., Piao, Z. Z., Yong, C. S., Choi, H. G. and Woo, J. S. (2011). Enhanced bioavailability and retinal accumulation of lutein from self-emulsifying phospholipid suspension (SEPS). Int. J. Pharm. 412:99–105.
  • Shen, Q. and Quek, S. Y. (2014). Microencapsulation of astaxanthin with blends of milk protein and fiber by spray drying. J. Food Eng. 123:165–171.
  • Shpigelman, A., Cohen, Y. and Livney, Y. D. (2012). Thermally-induced β-lactoglobulin−EGCG nanovehicles: Loading, stability, sensory and digestive-release study. Food Hydrocolloid 29:57–67
  • Shu, B., Yu, W., Zhao, Y. and Liu, X. (2006). Study on microencapsulation of lycopene by spray-drying. J Food Eng. 76:664–669.
  • Silva, D. F., Favaro-Trindade, C. S., Rocha, G. A. and Thomazini, M. (2012). Microencapsulation of lycopene by gelatin-pectin complex coacervation. J. Food Process Preserv. 36:185–190.
  • Silva, H., Cerqueira, M. Â. and Vicente, A. A. (2012). Nanoemulsions for food applications: Development and characterization. Food Bioprocess Tech. 5:854–867.
  • Somchue, W., Sermsri, W., Shiowatana, J. and Siripinyanond, A. (2009). Encapsulation of α-tocopherol in protein-based delivery particles. Food Res. Int. 42:909–914.
  • Sousdaleff, M., Baesso, M. L., Neto, A. M., Nogueira, A. C., Marcolino, V. A. and Matioli, G. (2012). Microencapsulation by freeze-drying of potassium norbixinate and curcumin with maltodextrin: stability, solubility, and food application. J. Agric. Food Chem. 61:955–965.
  • Spada, J. C., Marczak, L. D. F., Tessaro, I. C. and Noréa, C. P. Z. (2012a). Microencapsulation of β-carotene using native pinhão starch, modified pinhão starch and gelatin by freeze-drying. Int. J. Food Sci. Technol. 47:186–194.
  • Spada, J. C., Noréa, C. P. Z., Marczak, L. D. F. and Tessaro, I. C. (2012b). Study on the stability of β-carotene microencapsulated with pinhão (Araucaria angustifolia seeds) starch. Carbohyd. Polym. 89:1166–1173.
  • Stahl, W. and Sies, H. (2005). Bioactivity and protective effects of natural carotenoids. BBA-Mol Basis. Dis. 1740:101–107.
  • Strauss, G. and Gibson, S. M. (2004). Plant phenolics as cross-linkers of gelatin gels and gelatin-based coacervates for use as food ingredients. Food Hydrocolloid 18:81–89.
  • Sun, Z. M., Poncelet, D., Conway, J. and Neufeld, R. J. (1995). Microencapsulation of lobster carotenoids within poly(vinyl alcohol) and poly(d,l-lactic acid) membranes. J. Microencapsul. 12:495–504.
  • Sutaphanit, P. and Chitprasert, P. (2014). Optimisation of microencapsulation of holy basil essential oil in gelatin by response surface methodology. Food Chem. 150:313–320.
  • Sutter, S. C., Buera, M. a. P. and Elizalde, B. E. (2007). b-Carotene encapsulation in a mannitol matrix as affected by divalent cations and phosphate anion. Int. J. Pharm. 332:45–54.
  • Sy, C., Gleize, B., Dangles, O., Landrier, J. F., Veyrat, C. C. and Borel, P. (2012). Effects of physicochemical properties of carotenoids on their bioaccessibility, intestinal cell uptake, and blood and tissue concentrations. Mol. Nutr. Food Res. 56:1385–1397.
  • Szente, L. and Szejtli, J. (2004). Cyclodextrins as food ingredients. Trend Food Sci. Technol. 15:137–142.
  • Szterk, A., Roszko, M. and Górnicka, E. (2013). Chemical stability of the lipid phase in concentrated beverage emulsions colored with natural β-carotene. J. Am. Oil Chem. Soc. 90:483–491.
  • Tachaprutinun, A., Udomsup, T., Luadthong, C. and Wanichwecharungruang, S. (2009). Preventing the thermal degradation of astaxanthin through nanoencapsulation. Int. J. Pharm. 374:119–124.
  • Takaishi, N., Satsu, H., Takayanagi, K., Mukai, K. and Shimizu, M. (2012). In vivo and in vitro studies on the absorption characteristics of beta-cryptoxanthin in the intestine. Biosci. Biotechnol. Biochem. 76:2124–2128.
  • Taleb, A. (2008). Nanomaterials and Nanochemistry. In: Nanomaterials and Nanochemistry. C. Brechignac, P. Houdy, M. Lahmani, (Editors). pp. 473–485. Springer, Heidelberg.
  • Tamjidi, F., Shahedi, M., Varshosaz, J. and Nasirpour, A. (2013). Nanostructured lipid carriers (NLC): A potential delivery system for bioactive food molecules. Innov. Food Sci. Emerg. 19:29–43.
  • Tan, C. P. and Nakajima, M. (2005). β-Carotene nanodispersions: Preparation, characterization and stability evaluation. Food Chem. 92:661–671.
  • Tang, Y. C. and Chen, B. H. (2000). Pigment change of freeze-dried carotenoid powder during storage. Food Chem. 69:11–17.
  • Thorat, A. A. and Dalvi, S. V. (2012). Liquid antisolvent precipitation and stabilization of nanoparticles of poorly water soluble drugs in aqueous suspensions: Recent developments and future perspective. Chem. Eng. J. 181−182:1–34.
  • Trejo, R. and Harte, F. (2010). The effect of ethanol and heat on the functional hydrophobicity of casein micelles. J Dairy Sci. 93:2338–2343.
  • Troncoso, E., Aguilera, J. M. and McClements, D. J. (2012). Fabrication, characterization and lipase digestibility of food-grade nanoemulsions. Food Hydrocolloid 27:355–363.
  • Tyssandier, V., Lyan, B. and Borel, P. (2001). Main factors governing the transfer of carotenoids from emulsion lipid droplets to micelles. BBA-Mol Cell Biol L 1533:285–292.
  • Verrijssen, T. A. J., Balduyck, L. G., Christiaens, S., Van Loey, A. M., Van Buggenhout, S. and Hendrickx, M. E. (2014). The effect of pectin concentration and degree of methyl-esterification on the in vitro bioaccessibility of β-carotene-enriched emulsions. Food Res. Int. 57:71–78.
  • Wagner, L. (1995). Stability of spray-dried encapsulated carrot carotenes. J. Food Sci. 60:1048–1053.
  • Wang, G. Y., Chen, J. and Shi, Y. P. (2013). Preparation of microencapsulated xanthophyll for improving solubility and stability by nanoencapsulation. J. Food Eng. 117:82–88.
  • Wang, L. and Bohn, T. (2012). Health-promoting food ingredients and functional food processing. In Nutrition, Well-Being and Health. (ed. Buayed, J. and Bohn, T.), InTech, Croatia.
  • Wang, P., Liu, H. J., Mei, X. Y., Nakajima, M. and Yin, L. J. (2012a). Preliminary study into the factors modulating β-carotene micelle formation in dispersions using an in vitro digestion model. Food Hydrocolloid 26:427–433.
  • Wang, Y., Ye, H., Zhou, C., Lv, F., Bie, X. and Lu, Z. (2012b). Study on the spray-drying encapsulation of lutein in the porous starch and gelatin mixture. Eur. Food Res. Technol. 234:157–163.
  • Waterhouse, G. I. N., Wang, W. and Sun-Waterhouse, D. (2014). Stability of canola oil encapsulated by co-extrusion technology: Effect of quercetin addition to alginate shell or oil core. Food Chem. 142:27–38.
  • Wenzel, M., Seuss-Baum, I. and Schlich, E. (2010). Influence of pasteurization, spray- and freeze-drying, and storage on the carotenoid content in egg yolk. J. Agric. Food Chem. 58:1726–1731.
  • Wichchukit, S., Oztop, M. H., McCarthy, M. J. and McCarthy, K. L. (2013). Whey protein/alginate beads as carriers of a bioactive component. Food Hydrocolloid 33:66–73.
  • Xia, F., Hu, D., Jin, H., Zhao, Y. and Liang, J. (2012). Preparation of lutein proliposomes by supercritical anti-solvent technique. Food Hydrocolloid 26:456–463.
  • Xiao, J. X., Huang, G. Q., Wang, S. Q. and Sun, Y. T. (2014). Microencapsulation of capsanthin by soybean protein isolate-chitosan coacervation and microcapsule stability evaluation. J. Appl. Polym. Sci. 131:39671.
  • Xu, D., Yuan, F., Gao, Y., McClements, D. J. and Decker, E. A. (2013a). Influence of pH, metal chelator, free radical scavenger and interfacial characteristics on the oxidative stability of β-carotene in conjugated whey protein-pectin stabilised emulsion. Food Chem. 139:1098–1104.
  • Xu, D., Wang, X., Jiang, J., Yuan, F., Decker, E. A. and Gao, Y. (2013b). α-tocopherol, and WPI oxidation on the degradation of β-carotene in WPI-stabilized oil-in-water emulsions. LWT - Food Sci. Technol. 54:236–241.
  • Yang, Y., Corona III, A., Schubert, B., Reeder, R. and Henson, M. A. (2014a). The effect of oil type on the aggregation stability of nanostructured lipid carriers. J. Colloid Interface Sci. 418:261–272.
  • Yang, Z., Peng, Z., Li, J., Li, S., Kong, L., Li, P. and Wang, Q. (2014b). Development and evaluation of novel flavour microcapsules containing vanilla oil using complex coacervation approach. Food Chem. 145:272–277.
  • Yanishlieva, N. V., Raneva, V. G. and Marinova, E. M. (2001). b-carotene in sunflower oil oxidation. Grasas y Aceites 52:10–16.
  • Yi, C., Shi, J., Xue, S. J., Jiang, Y. and Li, D. (2009). Effects of supercritical fluid extraction parameters on lycopene yield and antioxidant activity. Food Chem. 113:1088–1094.
  • Yi, J., Li, Y., Zhong, F. and Yokoyama, W. (2014). The physicochemical stability and in vitro bioaccessibility of beta-carotene in oil-in-water sodium caseinate emulsions. Food Hydrocolloid 35:19–27.
  • Yin, L. J., Chu, B. S., Kobayashi, I. and Nakajima, M. (2009). Performance of selected emulsifiers and their combinations in the preparation of β-carotene nanodispersions. Food Hydrocolloid 23:1617–1622.
  • Yonekura, L. and Nagao, A. (2007). Intestinal absorption of dietary carotenoids. Mol. Nutr. Food Res. 51:107–115.
  • Yonekura, L. and Nagao, A. (2009). Soluble fibers inhibit carotenoid micellization in vitro and uptake by Caco-2 cells. Biosci. Biotech. Biochem. 73:196–199.
  • Yuan, C., Du, L., Jin, Z. and Xu, X. (2013). Storage stability and antioxidant activity of complex of astaxanthin with hydroxypropyl-b-cyclodextrin. Carbohyd Polym. 91:385–389.
  • Yuan, Y., Gao, Y., Zhao, J. and Mao, L. (2008). Characterization and stability evaluation of ß-carotene nanoemulsions prepared by high pressure homogenization under various emulsifying conditions. Food Res Int 41:61–68.
  • Zhang, L., Hayes, D. G., Chen, G. and Zhong, Q. (2013a). Transparent dispersions of milk-fat-based nanostructured lipid carriers for delivery of β-carotene. J. Agric. Food Chem. 61:9435–9443.
  • Zhang, Y., Wright, E. and Zhong, Q. (2013b). Effects of pH on the molecular binding between β-lactoglobulin and bixin. J. Agric. Food Chem. 61:947–954.
  • Zhang, Y. and Zhong, Q. (2013). Encapsulation of bixin in sodium caseinate to deliver the colorant in transparent dispersions. Food Hydrocolloid 33:1–9.
  • Zheng, K., Zou, A., Yang, X., Liu, F., Xia, Q., Ye, R. and Mu, B. (2013). The effect of polymer–surfactant emulsifying agent on the formation and stability of a-lipoic acid loaded nanostructured lipid carriers (NLC). Food Hydrocoll 32:72–78.
  • Zimet, P. and Livney, Y. D. (2009). Beta-lactoglobulin and its nanocomplexes with pectin as vehicles for ω-3 polyunsaturated fatty acids. Food Hydrocolloid 23:1120–1126.
  • Zimet, P., Rosenberg, D. and Livney, Y. D. (2011). Re-assembled casein micelles and casein nanoparticles as nano-vehicles for w-3 polyunsaturated fatty acids. Food Hydrocolloid 25:1270–1276.
  • Zuanon, L. A. C., Malacrida, C. R. and Telis, V. R. N. (2013). Production of turmeric oleoresin microcapsules by complex coacervation with gelatin-gum arabic. J. Food Process. Eng. 36:364–373.
  • Zuidam, N. J. and Shimoni, E. (2010). Overview of microencapsulates for use in food products or processes and methods to make them. In Encapsulation technologies for active food ingredients and food processing. (ed. Zuidam, N. J. and Nedovic, V. A.), pp. 3–29. Heidelberg, Germany: Springer.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.