1,990
Views
27
CrossRef citations to date
0
Altmetric
Original Articles

Consumption of Red/Processed Meat and Colorectal Carcinoma: Possible Mechanisms Underlying the Significant Association

, , &

REFERENCES

  • Aggarwal, S., Taneja, N., Lin, L., et al. (2000). Indomethacin-induced apoptosis in esophageal adenocarcinoma cells involves upregulation of Bax and translocation of mitochondrial cytochrome C independent of COX-2 expression. Neoplasia. 2:346–356.
  • Alexander, D. D., Cushing, C. A., Lowe, K. A., et al. (2009). Meta-analysis of animal fat or animal protein intake and colorectal cancer. Am. J. Clin. Nutr. 89:1402–1409.
  • Allam, O., Bahuaud, D., Tache, S., et al. (2011). Calcium carbonate suppresses haem toxicity markers without calcium phosphate side effects on colon carcinogenesis. Br. J. Nutr. 105:384–392.
  • Allin, K. H. and Nordestgaard, B. G. (2011). Elevated C-reactive protein in the diagnosis, prognosis, and cause of cancer. Crit. Rev. Clin. Lab. Sci. 48:155–170.
  • Al-Sohaily, S., Biankin, A., Leong, R., et al. (2012). Molecular pathways in colorectal cancer. J. Gastroenterol. Hepatol. 27:1423–1431.
  • Arimura, S., Matsunaga, A., Kitamura, T., et al. (2009). Reduced level of smoothened suppresses intestinal tumorigenesis by down-regulation of Wnt signaling. Gastroenterology. 137:629–638.
  • Armaghany, T., Wilson, J. D., Chu, Q., et al. (2012). Genetic alterations in colorectal cancer. Gastrointest Cancer Res. 5:19–27.
  • Asangani, I. A., Rasheed, S. A., Nikolova, D. A., et al. (2008). MicroRNA-21 (miR-21) post-transcriptionally downregulates tumor suppressor Pdcd4 and stimulates invasion, intravasation and metastasis in colorectal cancer. Oncogene. 27:2128–2136.
  • Ashktorab, H., Schaffer, A. A., Daremipouran, M., et al. (2010). Distinct genetic alterations in colorectal cancer. PLoS ONE. 5:e8879.
  • Ashley, N. (2013). Regulation of intestinal cancer stem cells. Cancer Lett. 338:120–126.
  • Atiya Ali, M., Poortvliet, E., Stromberg, R., et al. (2011). Polyamines in foods: development of a food database. Food Nutr. Res. 55:5572.
  • Aune, D., Chan, D. S., Vieira, A. R., et al. (2013). Red and processed meat intake and risk of colorectal adenomas: a systematic review and meta-analysis of epidemiological studies. Cancer Causes Control. 24:611–627.
  • Azadbakht, L. and Esmaillzadeh, A. (2009). Red meat intake is associated with metabolic syndrome and the plasma C-reactive protein concentration in women. J. Nutr. 139:335–339.
  • Balaguer, F., Link, A., Lozano, J. J., et al. (2010). Epigenetic silencing of miR-137 is an early event in colorectal carcinogenesis. Cancer Res. 70:6609–6618.
  • Bank, A., Wang, P., Du, C., et al. (2008). SMAC mimetics sensitize nonsteroidal anti-inflammatory drug-induced apoptosis by promoting caspase-3-mediated cytochrome c release. Cancer Res. 68:276–284.
  • Barakat, M. T., Humke, E. W., and Scott, M. P. (2010). Learning from Jekyll to control Hyde: Hedgehog signaling in development and cancer. Trends Mol. Med. 16:337–348.
  • Barker, N., Ridgway, R. A., van Es, J. H., et al. (2009). Crypt stem cells as the cells-of-origin of intestinal cancer. Nature. 457:608–611.
  • Barry, E. L., Mott, L. A., Sandler, R. S., et al. (2011). Variants downstream of the ornithine decarboxylase gene influence risk of colorectal adenoma and aspirin chemoprevention. Cancer Prev. Res. (Phila). 4:2072–2082.
  • Bastide, N. M., Pierre, F. H., and Corpet, D. E. (2011). Heme iron from meat and risk of colorectal cancer: a meta-analysis and a review of the mechanisms involved. Cancer Prev. Res. (Phila). 4:177–184.
  • Belshaw, N. J., Elliott, G. O., Foxall, R. J., et al. (2008). Profiling CpG island field methylation in both morphologically normal and neoplastic human colonic mucosa. Br. J. Cancer. 99:136–142.
  • Biasi, F., Chiarpotto, E., Sottero, B., et al. (2013). Evidence of cell damage induced by major components of a diet-compatible mixture of oxysterols in human colon cancer CaCo-2 cell line. Biochimie. 95:632–640.
  • Biasi, F., Mascia, C., and Poli, G. (2008). The contribution of animal fat oxidation products to colon carcinogenesis, through modulation of TGF-beta1 signaling. Carcinogenesis. 29:890–894.
  • Binder, H. J. (2009). Organization of the gastrointesttinal system. Saunders, Philadelphia.
  • Bingham, S. A., Hughes, R., and Cross, A. J. (2002). Effect of white versus red meat on endogenous N-nitrosation in the human colon and further evidence of a dose response. J. Nutr. 132:3522S–3525S.
  • Brown, A. J. and Jessup, W. (1999). Oxysterols and atherosclerosis. Atherosclerosis. 142:1–28.
  • CAC. (2013). Codex general standard for food additives—CODEX STAN 192–1995, Codex Alimentarius Commission, pp. 1–332. www.codexalimentarius.net/gsfaonline/docs/CXS_192e.pdf
  • Calder, P. C. (2008). Polyunsaturated fatty acids, inflammatory processes and inflammatory bowel diseases. Mol. Nutr. Food Res. 52:885–897.
  • Castellone, M. D., Teramoto, H., Williams, B. O., et al. (2005). Prostaglandin E2 promotes colon cancer cell growth through a Gs-axin-beta-catenin signaling axis. Science. 310:1504–1510.
  • Center, M. M., Jemal, A., Smith, R. A., et al. (2009). Worldwide variations in colorectal cancer. CA Cancer J. Clin. 59:366–378.
  • Chan, A. T., Ogino, S., and Fuchs, C. S. (2009). Aspirin use and survival after diagnosis of colorectal cancer. JAMA. 302:649–658.
  • Chan, D. S., Lau, R., Aune, D., et al. (2011). Red and processed meat and colorectal cancer incidence: meta-analysis of prospective studies. PLoS ONE. 6:e20456.
  • Chang, T. Y., Chang, C. C., Ohgami, N., et al. (2006). Cholesterol sensing, trafficking, and esterification. Annu. Rev. Cell. Dev. Biol. 22:129–157.
  • Chao, A., Thun, M. J., Connell, C. J., et al. (2005). Meat consumption and risk of colorectal cancer. JAMA. 293:172–182.
  • Chawla, S. P. and Chander, R. (2004). Microbiological safety of shelf-stable meat products prepared by employing hurdle technology. Food Control. 15:559–563.
  • Chen, J., Guo, L., Zhang, L., et al. (2013). Vitamin C modulates TET1 function during somatic cell reprogramming. Nat. Genet. 45:1504–1509.
  • Cheng, X. and Blumenthal, R. M. (2010). Coordinated chromatin control: structural and functional linkage of DNA and histone methylation. Biochemistry. 49:2999–3008.
  • Chenni, F. Z., Tache, S., Naud, N., et al. (2013). Heme-induced biomarkers associated with red meat promotion of colon cancer are not modulated by the intake of nitrite. Nutr. Cancer. 65:227–233.
  • Cole, B. F., Logan, R. F., Halabi, S., et al. (2009). Aspirin for the chemoprevention of colorectal adenomas: meta-analysis of the randomized trials. J. Natl. Cancer Inst. 101:256–266.
  • Corcoran, R. B. and Scott, M. P. (2006). Oxysterols stimulate Sonic hedgehog signal transduction and proliferation of medulloblastoma cells. Proc. Natl. Acad. Sci. USA. 103:8408–8413.
  • Corpet, D. E. (2011). Red meat and colon cancer: should we become vegetarians, or can we make meat safer? Meat Sci. 89:310–316.
  • Corpet, D. E. (2012). Mécanismes de l'effet pro-cancer des viandes:revue bibliographique. Revue Méd Vét. 163:43–48.
  • Cross, A. J., Ferrucci, L. M., Risch, A., et al. (2010). A large prospective study of meat consumption and colorectal cancer risk: an investigation of potential mechanisms underlying this association. Cancer Res. 70:2406–2414.
  • Cross, A. J., Greetham, H. L., Pollock, J. R., et al. (2006). Variability in fecal water genotoxicity, determined using the Comet assay, is independent of endogenous N-nitroso compound formation attributed to red meat consumption. Environ. Mol. Mutagen. 47:179–184.
  • Cross, A. J., Leitzmann, M. F., Gail, M. H., et al. (2007). A prospective study of red and processed meat intake in relation to cancer risk. PLoS Med. 4:e325.
  • Cross, A. J., Pollock, J. R., and Bingham, S. A. (2003). Haem, not protein or inorganic iron, is responsible for endogenous intestinal N-nitrosation arising from red meat. Cancer Res. 63:2358–2360.
  • Daniel, C. R., Cross, A. J., Graubard, B. I., et al. (2011). Prospective investigation of poultry and fish intake in relation to cancer risk. Cancer Prev. Res. (Phila). 4:1903–1911.
  • De Roock, W., De Vriendt, V., Normanno, N., et al. (2011). KRAS, BRAF, PIK3CA, and PTEN mutations: implications for targeted therapies in metastatic colorectal cancer. Lancet Oncol. 12:594–603.
  • de Vogel, J., Jonker-Termont, D. S., van Lieshout, E. M., et al. (2005). Green vegetables, red meat and colon cancer: chlorophyll prevents the cytotoxic and hyperproliferative effects of haem in rat colon. Carcinogenesis. 26:387–393.
  • de Vogel, J., van-Eck, W. B., Sesink, A. L., et al. (2008). Dietary heme injures surface epithelium resulting in hyperproliferation, inhibition of apoptosis and crypt hyperplasia in rat colon. Carcinogenesis. 29:398–403.
  • de Weille, J., Fabre, C., and Bakalara, N. (2013). Oxysterols in cancer cell proliferation and death. Biochem Pharmacol. 86:154–160.
  • Demeyer, D., Honikel, K., and De Smet, S. (2008). The World Cancer Research Fund report 2007: A challenge for the meat processing industry. Meat. Sci. 80:953–959.
  • Deng, G., Kakar, S., and Kim, Y. S. (2011). MicroRNA-124a and microRNA-34b/c are frequently methylated in all histological types of colorectal cancer and polyps, and in the adjacent normal mucosa. Oncol. Lett. 2:175–180.
  • DFCD. (2009). The Official Danish Food Composition Database, National Food Institute/Technical University of Denmark (DTU). www.foodcomp.dk/v7/fcdb_default.asp
  • Din, F. V., Theodoratou, E., Farrington, S. M., et al. (2010). Effect of aspirin and NSAIDs on risk and survival from colorectal cancer. Gut. 59:1670–1679.
  • Drew, J. E., Rucklidge, G. J., Duncan, G., et al. (2005). A proteomics approach to identify changes in protein profiles in pre-cancerous colon. Biochem. Biophys. Res. Commun. 330:81–87.
  • Duthie, S. J. (2011). Folate and cancer: how DNA damage, repair and methylation impact on colon carcinogenesis. J. Inherit. Metab. Dis. 34:101–109.
  • Dwivedi, S., Sharma, A., Patrick, B., et al. (2007). Role of 4-hydroxynonenal and its metabolites in signaling. Redox. Rep. 12:4–10.
  • Dwyer, J. R., Sever, N., Carlson, M., et al. (2007). Oxysterols are novel activators of the hedgehog signaling pathway in pluripotent mesenchymal cells. J. Biol. Chem. 282:8959–8968.
  • Edberg, A., Soeria-Atmadja, D., Bergman Laurila, J., et al. (2012). Assessing relative bioactivity of chemical substances using quantitative molecular network topology analysis. J. Chem. Inf. Model. 52:1238–1249.
  • Edwards, P. A., Kennedy, M. A., and Mak, P. A. (2002). LXRs; oxysterol-activated nuclear receptors that regulate genes controlling lipid homeostasis. Vascul. Pharmacol. 38:249–256.
  • English, D. R., MacInnis, R. J., Hodge, A. M., et al. (2004). Red meat, chicken, and fish consumption and risk of colorectal cancer. Cancer Epidemiol. Biomarkers Prev. 13:1509–1514.
  • Esteller, M., Sparks, A., Toyota, M., et al. (2000). Analysis of adenomatous polyposis coli promoter hypermethylation in human cancer. Cancer Res. 60:4366–4371.
  • Evageliou, N. F. and Hogarty, M. D. (2009). Disrupting polyamine homeostasis as a therapeutic strategy for neuroblastoma. Clin. Cancer Res. 15:5956–5961.
  • Fearon, E. R. (2011). Molecular genetics of colorectal cancer. Annu. Rev. Pathol. 6:479–507.
  • Fearon, E. R. and Vogelstein, B. (1990). A genetic model for colorectal tumorigenesis. Cell. 61:759–767.
  • Feinberg, A. P., Gehrke, C. W., Kuo, K. C., et al. (1988). Reduced genomic 5-methylcytosine content in human colonic neoplasia. Cancer Res. 48:1159–1161.
  • Feng, Z., Hu, W., Amin, S., et al. (2003). Mutational spectrum and genotoxicity of the major lipid peroxidation product, trans-4-hydroxy-2-nonenal, induced DNA adducts in nucleotide excision repair-proficient and -deficient human cells. Biochemistry. 42:7848–7854.
  • Ferlay, J., Steliarova-Foucher, E., Lortet-Tieulent, J., et al. (2013). Cancer incidence and mortality patterns in Europe: estimates for 40 countries in 2012. Eur. J. Cancer. 49:1374–1403.
  • Fleming, M., Ravula, S., Tatishchev, S. F., et al. (2012). Colorectal carcinoma: Pathologic aspects. J. Gastrointest. Oncol. 3:153–173.
  • Fodde, R., Smits, R., and Clevers, H. (2001). APC, signal transduction and genetic instability in colorectal cancer. Nat. Rev. Cancer. 1:55–67.
  • Fre, S., Pallavi, S. K., Huyghe, M., et al. (2009). Notch and Wnt signals cooperatively control cell proliferation and tumorigenesis in the intestine. Proc. Natl. Acad. Sci. USA. 106:6309–6314.
  • Fultz, K. E. and Gerner, E. W. (2002). APC-dependent regulation of ornithine decarboxylase in human colon tumor cells. Mol. Carcinog. 34:10–18.
  • Fung, T., Hu, F. B., Fuchs, C., et al. (2003). Major dietary patterns and the risk of colorectal cancer in women. Arch. Intern. Med. 163:309–314.
  • Geelen, A., Schouten, J. M., Kamphuis, C., et al. (2007). Fish consumption, n-3 fatty acids, and colorectal cancer: a meta-analysis of prospective cohort studies. Am. J. Epidemiol. 166:1116–1125.
  • Gerner, E. W. and Meyskens, F. L., Jr. (2009). Combination chemoprevention for colon cancer targeting polyamine synthesis and inflammation. Clin. Cancer Res. 15:758–761.
  • Gottschalg, E., Scott, G. B., Burns, P. A., et al. (2007). Potassium diazoacetate-induced p53 mutations in vitro in relation to formation of O6-carboxymethyl- and O6-methyl-2′-deoxyguanosine DNA adducts: relevance for gastrointestinal cancer. Carcinogenesis. 28:356–362.
  • Gratz, S. W., Wallace, R. J., and El-Nezami, H. S. (2011). Recent perspectives on the relations between fecal mutagenicity, genotoxicity, and diet. Front Pharmacol. 2:4.
  • Grivennikov, S. I., Greten, F. R., and Karin, M. (2010). Immunity, inflammation, and cancer. Cell. 140:883–899.
  • Gueraud, F., Atalay, M., Bresgen, N., et al. (2010). Chemistry and biochemistry of lipid peroxidation products. Free Radic. Res. 44:1098–1124.
  • Guerrero-Bosagna, C. M. and Skinner, M. K. (2014). Environmental epigenetics and phytoestrogen/phytochemical exposures. J. Steroid. Biochem. Mol. Biol. 139:270–276.
  • Guma, M., Stepniak, D., Shaked, H., et al. (2011). Constitutive intestinal NF-kappaB does not trigger destructive inflammation unless accompanied by MAPK activation. J. Exp. Med. 208:1889–1900.
  • Hammerling, U., Tallsjo, A., Grafstrom, R., et al. (2009). Comparative hazard characterization in food toxicology. Crit. Rev. Food Sci. Nutr. 49:626–669.
  • Hanahan, D. and Weinberg, R. A. (2011). Hallmarks of cancer: the next generation. Cell. 144:646–674.
  • Harbige, L. S. (2003). Fatty acids, the immune response, and autoimmunity: a question of n-6 essentiality and the balance between n-6 and n-3. Lipids. 38:323–341.
  • Hardwick, J. C., Kodach, L. L., Offerhaus, G. J., et al. (2008). Bone morphogenetic protein signalling in colorectal cancer. Nat. Rev. Cancer. 8:806–812.
  • Hebels, D. G., Jennen, D. G., Kleinjans, J. C., et al. (2009). Molecular signatures of N-nitroso compounds in Caco-2 cells: implications for colon carcinogenesis. Toxicol Sci. 108:290–300.
  • Hebels, D. G., Sveje, K. M., de Kok, M. C., et al. (2011). N-nitroso compound exposure-associated transcriptomic profiles are indicative of an increased risk for colorectal cancer. Cancer Lett. 309:1–10.
  • Hebels, D. G., Sveje, K. M., de Kok, M. C., et al. (2012). Red meat intake-induced increases in fecal water genotoxicity correlate with pro-carcinogenic gene expression changes in the human colon. Food Chem. Toxicol. 50:95–103.
  • Hodgson, J. M., Ward, N. C., Burke, V., et al. (2007). Increased lean red meat intake does not elevate markers of oxidative stress and inflammation in humans. J. Nutr. 137:363–367.
  • Holland, J. D., Klaus, A., Garratt, A. N., et al. (2013). Wnt signaling in stem and cancer stem cells. Curr. Opin. Cell. Biol. 25:254–264.
  • Hubner, R. A., Muir, K. R., Liu, J. F., et al. (2008). Ornithine decarboxylase G316A genotype is prognostic for colorectal adenoma recurrence and predicts efficacy of aspirin chemoprevention. Clin. Cancer Res. 14:2303–2309.
  • Hughes, R., Cross, A. J., Pollock, J. R., et al. (2001). Dose-dependent effect of dietary meat on endogenous colonic N-nitrosation. Carcinogenesis. 22:199–202.
  • Ignatenko, N. A., Gerner, E. W., and Besselsen, D. G. (2011). Defining the role of polyamines in colon carcinogenesis using mouse models. J. Carcinog. 10:10.
  • Ignatenko, N. A., Yerushalmi, H. F., Pandey, R., et al. (2009). Gene expression analysis of HCT116 colon tumor-derived cells treated with the polyamine analog PG-11047. Cancer Genomics Proteomics. 6:161–175.
  • Ijssennagger, N., Rijnierse, A., de Wit, N. J., et al. (2013). Dietary heme induces acute oxidative stress, but delayed cytotoxicity and compensatory hyperproliferation in mouse colon. Carcinogenesis. 34:1628–1635.
  • Ijssennagger, N., Rijnierse, A., de Wit, N., et al. (2012). Dietary haem stimulates epithelial cell turnover by downregulating feedback inhibitors of proliferation in murine colon. Gut. 61:1041–1049.
  • Iliopoulos, D., Hirsch, H. A., Wang, G., et al. (2011). Inducible formation of breast cancer stem cells and their dynamic equilibrium with non-stem cancer cells via IL6 secretion. Proc. Natl. Acad. Sci. USA. 108:1397–1402.
  • Innis, S. M. and Jacobson, K. (2007). Dietary lipids in early development and intestinal inflammatory disease. Nutr. Rev. 65:S188–193.
  • Iso, T., Kedes, L., and Hamamori, Y. (2003). HES and HERP families: multiple effectors of the Notch signaling pathway. J. Cell. Physiol. 194:237–255.
  • Jemal, A., Bray, F., Center, M. M., et al. (2011). Global cancer statistics. CA Cancer J. Clin. 61:69–90.
  • Joosen, A. M., Kuhnle, G. G., Aspinall, S. M., et al. (2009). Effect of processed and red meat on endogenous nitrosation and DNA damage. Carcinogenesis. 30:1402–1407.
  • Joosen, A. M., Lecommandeur, E., Kuhnle, G. G., et al. (2010). Effect of dietary meat and fish on endogenous nitrosation, inflammation and genotoxicity of faecal water. Mutagenesis. 25:243–247.
  • Kane, M. F., Loda, M., Gaida, G. M., et al. (1997). Methylation of the hMLH1 promoter correlates with lack of expression of hMLH1 in sporadic colon tumors and mismatch repair-defective human tumor cell lines. Cancer Res. 57:808–811.
  • Kang, G. H. (2011). Four molecular subtypes of colorectal cancer and their precursor lesions. Arch. Pathol. Lab. Med. 135:698–703.
  • Kanner, J. (2007). Dietary advanced lipid oxidation endproducts are risk factors to human health. Mol. Nutr. Food Res. 51:1094–1101.
  • Kanthan, R., Senger, J. L., and Kanthan, S. C. (2012). Molecular events in primary and metastatic colorectal carcinoma: a review. Patholog. Res. Int. 2012:597497.
  • Kanwal, R. and Gupta, S. (2012). Epigenetic modifications in cancer. Clin. Genet. 81:303–311.
  • Kesse, E., Clavel-Chapelon, F., and Boutron-Ruault, M. C. (2006). Dietary patterns and risk of colorectal tumors: a cohort of French women of the National Education System (E3N). Am. J. Epidemiol. 164:1085–1093.
  • Kikuno, N., Shiina, H., Urakami, S., et al. (2008). Genistein mediated histone acetylation and demethylation activates tumor suppressor genes in prostate cancer cells. Int. J. Cancer. 123:552–560.
  • King-Batoon, A., Leszczynska, J. M., and Klein, C. B. (2008). Modulation of gene methylation by genistein or lycopene in breast cancer cells. Environ. Mol. Mutagen. 49:36–45.
  • Knekt, P., Jarvinen, R., Dich, J., et al. (1999). Risk of colorectal and other gastro-intestinal cancers after exposure to nitrate, nitrite and N-nitroso compounds: a follow-up study. Int. J. Cancer. 80:852–856.
  • Kodach, L. L., Bleuming, S. A., Peppelenbosch, M. P., et al. (2007). The effect of statins in colorectal cancer is mediated through the bone morphogenetic protein pathway. Gastroenterology. 133:1272–1281.
  • Kodach, L. L., Jacobs, R. J., Voorneveld, P. W., et al. (2011). Statins augment the chemosensitivity of colorectal cancer cells inducing epigenetic reprogramming and reducing colorectal cancer cell ‘stemness’ via the bone morphogenetic protein pathway. Gut. 60:1544–1553.
  • Kohli, M., Yu, J., Seaman, C., et al. (2004). SMAC/Diablo-dependent apoptosis induced by nonsteroidal antiinflammatory drugs (NSAIDs) in colon cancer cells. Proc. Natl. Acad. Sci. USA. 101:16897–16902.
  • Kuhnle, G. G., Story, G. W., Reda, T., et al. (2007). Diet-induced endogenous formation of nitroso compounds in the GI tract. Free Radic. Biol. Med. 43:1040–1047.
  • Larque, E., Sabater-Molina, M., and Zamora, S. (2007). Biological significance of dietary polyamines. Nutrition. 23:87–95.
  • Larsson, S. C. and Wolk, A. (2006). Meat consumption and risk of colorectal cancer: a meta-analysis of prospective studies. Int. J. Cancer. 119:2657–2664.
  • Larsson, S. C., Rafter, J., Holmberg, L., et al. (2005). Red meat consumption and risk of cancers of the proximal colon, distal colon and rectum: the Swedish Mammography Cohort. Int. J. Cancer. 113:829–834.
  • Leslie, A., Carey, F. A., Pratt, N. R., et al. (2002). The colorectal adenoma-carcinoma sequence. Br. J. Surg. 89:845–860.
  • Lewin, M. H., Bailey, N., Bandaletova, T., et al. (2006). Red meat enhances the colonic formation of the DNA adduct O6-carboxymethyl guanine: implications for colorectal cancer risk. Cancer Res. 66:1859–1865.
  • Ley, S. H., Sun, Q., Willett, W. C., et al. (2013). Associations between red meat intake and biomarkers of inflammation and glucose metabolism in women. Am. J. Clin. Nutr. 2013:27.
  • Li, N., Xi, Y., Tinsley, H. N., et al. (2013). Sulindac selectively inhibits colon tumor cell growth by activating the cGMP/PKG pathway to suppress Wnt/beta-catenin signaling. Mol. Cancer Ther. 12:1848–1859.
  • Liao, X., Lochhead, P., Nishihara, R., et al. (2012). Aspirin use, tumor PIK3CA mutation, and colorectal-cancer survival. N. Engl. J. Med. 367:1596–1606.
  • Liu, Q., Li, J., Cheng, R., et al. (2013). Nitrosative stress plays an important role in Wnt pathway activation in diabetic retinopathy. Antioxid. Redox. Signal. 18:1141–1153.
  • Mao, C., Zhou, J., Yang, Z., et al. (2012). KRAS, BRAF and PIK3CA mutations and the loss of PTEN expression in Chinese patients with colorectal cancer. PLoS ONE. 7:e36653.
  • Marini, K. D., Payne, B. J., Watkins, D. N., et al. (2011). Mechanisms of Hedgehog signalling in cancer. Growth Factors. 29:221–234.
  • Markowitz, S. D. and Bertagnolli, M. M. (2009). Molecular origins of cancer: Molecular basis of colorectal cancer. N. Engl. J. Med. 361:2449–2460.
  • Martinez, M. E., O'Brien, T. G., Fultz, K. E., et al. (2003). Pronounced reduction in adenoma recurrence associated with aspirin use and a polymorphism in the ornithine decarboxylase gene. Proc. Natl. Acad. Sci. USA. 100:7859–7864.
  • McCullough, M. L., Gapstur, S. M., Shah, R., et al. (2013). Association between red and processed meat intake and mortality among colorectal cancer survivors. J. Clin. Oncol. 31:2773–2782.
  • Medema, J. P. and Vermeulen, L. (2011). Microenvironmental regulation of stem cells in intestinal homeostasis and cancer. Nature. 474:318–326.
  • Meyerhardt, J. A., Niedzwiecki, D., Hollis, D., et al. (2007). Association of dietary patterns with cancer recurrence and survival in patients with stage III colon cancer. JAMA. 298:754–764.
  • Meyskens, F. L., Jr., McLaren, C. E., Pelot, D., et al. (2008). Difluoromethylornithine plus sulindac for the prevention of sporadic colorectal adenomas: a randomized placebo-controlled, double-blind trial. Cancer Prev. Res. (Phila). 1:32–38.
  • Miller, P. E., Lazarus, P., Lesko, S. M., et al. (2013). Meat-related compounds and colorectal cancer risk by anatomical subsite. Nutr. Cancer. 65:202–226.
  • Mirvish, S. S., Haorah, J., Zhou, L., et al. (2003). N-nitroso compounds in the gastrointestinal tract of rats and in the feces of mice with induced colitis or fed hot dogs or beef. Carcinogenesis. 24:595–603.
  • Miyamoto, S. and Rosenberg, D. W. (2011). Role of Notch signaling in colon homeostasis and carcinogenesis. Cancer Sci. 102:1938–1942.
  • Montonen, J., Boeing, H., Fritsche, A., et al. (2013). Consumption of red meat and whole-grain bread in relation to biomarkers of obesity, inflammation, glucose metabolism and oxidative stress. Eur. J. Nutr. 52:337–345.
  • Moonen, H. J., Dommels, Y. E., van Zwam, M., et al. (2004). Effects of polyunsaturated fatty acids on prostaglandin synthesis and cyclooxygenase-mediated DNA adduct formation by heterocyclic aromatic amines in human adenocarcinoma colon cells. Mol. Carcinog. 40:180–188.
  • Muzny, D. M., Bainbridge, M. N., Chang, K., et al. (2012). Comprehensive molecular characterization of human colon and rectal cancer. Nature. 487:330–337.
  • Myers, B. R., Sever, N., Chong, Y. C., et al. (2013). Hedgehog pathway modulation by multiple lipid binding sites on the smoothened effector of signal response. Dev. Cell. 26:346–357.
  • Nachtergaele, S., Mydock, L. K., Krishnan, K., et al. (2012). Oxysterols are allosteric activators of the oncoprotein Smoothened. Nat. Chem. Biol. 8:211–220.
  • Nishihara, R., Lochhead, P., Kuchiba, A., et al. (2013). Aspirin use and risk of colorectal cancer according to BRAF mutation status. JAMA. 309:2563–2571.
  • Norat, T., Bingham, S., Ferrari, P., et al. (2005). Meat, fish, and colorectal cancer risk: the European Prospective Investigation into cancer and nutrition. J. Natl. Cancer Inst. 97:906–916.
  • Norat, T., Lukanova, A., Ferrari, P., et al. (2002). Meat consumption and colorectal cancer risk: dose-response meta-analysis of epidemiological studies. Int. J. Cancer. 98:241–256.
  • Oniscu, A., James, R. M., Morris, R. G., et al. (2004). Expression of Sonic hedgehog pathway genes is altered in colonic neoplasia. J. Pathol. 203:909–917.
  • Ouellet, V., Weisnagel, S. J., Marois, J., et al. (2008). Dietary cod protein reduces plasma C-reactive protein in insulin-resistant men and women. J. Nutr. 138:2386–2391.
  • Paz, E. A., Lafleur, B., and Gerner, E. W. (2013). Polyamines are oncometabolites that regulate the LIN28/let-7 pathway in colorectal cancer cells. Mol. Carcinog. 2013:22051.
  • Pegg, A. E. (2009). Mammalian polyamine metabolism and function. IUBMB Life. 61:880–894.
  • Peltomaki, P. (2012). Mutations and epimutations in the origin of cancer. Exp. Cell Res. 318:299–310.
  • Phillips, D. H. (1999). Polycyclic aromatic hydrocarbons in the diet. Mutat. Res. 443:139–147.
  • Pierre, F. H., Santarelli, R. L., Allam, O., et al. (2010). Freeze-dried ham promotes azoxymethane-induced mucin-depleted foci and aberrant crypt foci in rat colon. Nutr. Cancer. 62:567–573.
  • Pierre, F., Freeman, A., Tache, S., et al. (2004). Beef meat and blood sausage promote the formation of azoxymethane-induced mucin-depleted foci and aberrant crypt foci in rat colons. J. Nutr. 134:2711–2716.
  • Pierre, F., Peiro, G., Tache, S., et al. (2006). New marker of colon cancer risk associated with heme intake: 1,4-dihydroxynonane mercapturic acid. Cancer Epidemiol. Biomarkers Prev. 15:2274–2279.
  • Pierre, F., Santarelli, R., Tache, S., et al. (2008). Beef meat promotion of dimethylhydrazine-induced colorectal carcinogenesis biomarkers is suppressed by dietary calcium. Br. J. Nutr. 99:1000–1006.
  • Pierre, F., Tache, S., Gueraud, F., et al. (2007). Apc mutation induces resistance of colonic cells to lipoperoxide-triggered apoptosis induced by faecal water from haem-fed rats. Carcinogenesis. 28:321–327.
  • Pierre, F., Tache, S., Petit, C. R., et al. (2003). Meat and cancer: haemoglobin and haemin in a low-calcium diet promote colorectal carcinogenesis at the aberrant crypt stage in rats. Carcinogenesis. 24:1683–1690.
  • Polakis, P. (2012). Wnt signaling in cancer. Cold Spring Harb. Perspect. Biol. 4:a008052.
  • Portela, A. and Esteller, M. (2010). Epigenetic modifications and human disease. Nat. Biotechnol. 28:1057–1068.
  • Pot, G. K., Geelen, A., Majsak-Newman, G., et al. (2010). Increased consumption of fatty and lean fish reduces serum C-reactive protein concentrations but not inflammation markers in feces and in colonic biopsies. J. Nutr. 140:371–376.
  • Pot, G. K., Geelen, A., van Heijningen, E. M., et al. (2008). Opposing associations of serum n-3 and n-6 polyunsaturated fatty acids with colorectal adenoma risk: an endoscopy-based case-control study. Int. J. Cancer. 123:1974–1977.
  • Puglisi, M. A., Tesori, V., Lattanzi, W., et al. (2013). Colon cancer stem cells: Controversies and perspectives. World. J. Gastroenterol. 19:2997–3006.
  • Puppa, G., Sonzogni, A., Colombari, R., et al. (2010). TNM staging system of colorectal carcinoma: a critical appraisal of challenging issues. Arch. Pathol. Lab. Med. 134:837–852.
  • Qiu, W., Wang, X., Leibowitz, B., et al. (2010). Chemoprevention by nonsteroidal anti-inflammatory drugs eliminates oncogenic intestinal stem cells via SMAC-dependent apoptosis. Proc. Natl. Acad. Sci. USA. 107:20027–20032.
  • Radtke, F., Clevers, H., and Riccio, O. (2006). From gut homeostasis to cancer. Curr. Mol. Med. 6:275–289.
  • Raj, K. P., Zell, J. A., Rock, C. L., et al. (2013). Role of dietary polyamines in a phase III clinical trial of difluoromethylornithine (DFMO) and sulindac for prevention of sporadic colorectal adenomas. Br. J. Cancer. 108:512–518.
  • Reddy, B. S. (2004). Omega-3 fatty acids in colorectal cancer prevention. Int. J. Cancer. 112:1–7.
  • Reedijk, M., Odorcic, S., Zhang, H., et al. (2008). Activation of Notch signaling in human colon adenocarcinoma. Int. J. Oncol. 33:1223–1229.
  • Renehan, A. G., Roberts, D. L., and Dive, C. (2008). Obesity and cancer: pathophysiological and biological mechanisms. Arch. Physiol. BioChem. 114:71–83.
  • Riobo, N. A. (2012). Cholesterol and its derivatives in Sonic Hedgehog signaling and cancer. Curr. Opin. Pharmacol. 12:736–741.
  • Rodriguez, I. R. and Larrayoz, I. M. (2010). Cholesterol oxidation in the retina: implications of 7KCh formation in chronic inflammation and age-related macular degeneration. J. Lipid Res. 51:2847–2862.
  • Ronchini, C. and Capobianco, A. J. (2001). Induction of cyclin D1 transcription and CDK2 activity by Notch(ic): implication for cell cycle disruption in transformation by Notch(ic). Mol. Cell. Biol. 21:5925–5934.
  • Rustgi, A. K. (2007). The genetics of hereditary colon cancer. Genes Dev. 21:2525–2538.
  • Sadanandam, A., Wang, X., de Sousa, E. M. F., et al. (2014). Reconciliation of classification systems defining molecular subtypes of colorectal cancer: interrelationships and clinical implications. Cell Cycle. 13:353–357.
  • Samuels, Y., Wang, Z., Bardelli, A., et al. (2004). High frequency of mutations of the PIK3CA gene in human cancers. Science. 304:554.
  • Sandhu, M. S., White, I. R., and McPherson, K. (2001). Systematic review of the prospective cohort studies on meat consumption and colorectal cancer risk: a meta-analytical approach. Cancer Epidemiol. Biomarkers Prev. 10:439–446.
  • Sandler, R. S., Halabi, S., Baron, J. A., et al. (2003). A randomized trial of aspirin to prevent colorectal adenomas in patients with previous colorectal cancer. N. Engl. J. Med. 348:883–890.
  • Santarelli, R. L., Pierre, F., and Corpet, D. E. (2008). Processed meat and colorectal cancer: a review of epidemiologic and experimental evidence. Nutr. Cancer. 60:131–144.
  • Santarelli, R. L., Vendeuvre, J. L., Naud, N., et al. (2010). Meat processing and colon carcinogenesis: cooked, nitrite-treated, and oxidized high-heme cured meat promotes mucin-depleted foci in rats. Cancer Prev. Res. (Phila). 3:852–864.
  • Scholer-Dahirel, A., Schlabach, M. R., Loo, A., et al. (2011). Maintenance of adenomatous polyposis coli (APC)-mutant colorectal cancer is dependent on Wnt/beta-catenin signaling. Proc. Natl. Acad. Sci. USA. 108:17135–17140.
  • Schwitalla, S., Fingerle, A. A., Cammareri, P., et al. (2013). Intestinal tumorigenesis initiated by dedifferentiation and acquisition of stem-cell-like properties. Cell. 152:25–38.
  • Segditsas, S. and Tomlinson, I. (2006). Colorectal cancer and genetic alterations in the Wnt pathway. Oncogene. 25:7531–7537.
  • Sesink, A. L., Termont, D. S., Kleibeuker, J. H., et al. (1999). Red meat and colon cancer: the cytotoxic and hyperproliferative effects of dietary heme. Cancer Res. 59:5704–5709.
  • Sesink, A. L., Termont, D. S., Kleibeuker, J. H., et al. (2000). Red meat and colon cancer: dietary haem, but not fat, has cytotoxic and hyperproliferative effects on rat colonic epithelium. Carcinogenesis. 21:1909–1915.
  • Shaker, A. and Rubin, D. C. (2010). Intestinal stem cells and epithelial-mesenchymal interactions in the crypt and stem cell niche. Transl. Res. 156:180–187.
  • Sharma, S., Kelly, T. K., and Jones, P. A. (2010). Epigenetics in cancer. Carcinogenesis. 31:27–36.
  • Sikandar, S. S., Pate, K. T., Anderson, S., et al. (2010). NOTCH signaling is required for formation and self-renewal of tumor-initiating cells and for repression of secretory cell differentiation in colon cancer. Cancer Res. 70:1469–1478.
  • Simopoulos, A. P. (2006). Evolutionary aspects of diet, the omega-6/omega-3 ratio and genetic variation: nutritional implications for chronic diseases. Biomed. Pharmacother. 60:502–507.
  • Sinha, R., Peters, U., Cross, A. J., et al. (2005). Meat, meat cooking methods and preservation, and risk for colorectal adenoma. Cancer Res. 65:8034–8041.
  • Skinner, M. K., Manikkam, M., and Guerrero-Bosagna, C. (2010). Epigenetic transgenerational actions of environmental factors in disease etiology. Trends Endocrinol Metab. 21:214–222.
  • Slattery, M. L., Boucher, K. M., Caan, B. J., et al. (1998). Eating patterns and risk of colon cancer. Am. J. Epidemiol. 148:4–16.
  • Snover, D. C. (2011). Update on the serrated pathway to colorectal carcinoma. Hum. Pathol. 42:1–10.
  • Soerjomataram, I., Lortet-Tieulent, J., Parkin, D. M., et al. (2012). Global burden of cancer in 2008: a systematic analysis of disability-adjusted life-years in 12 world regions. Lancet. 380:1840–1850.
  • Spann, N. J. and Glass, C. K. (2013). Sterols and oxysterols in immune cell function. Nat. Immunol. 14:893–900.
  • Stavric, B. (1994). Biological significance of trace levels of mutagenic heterocyclic aromatic amines in human diet: a critical review. Food Chem. Toxicol. 32:977–994.
  • Sturla, S. J., Boobis, A. R., Fitzgerald, R. E., et al. (2014). Systems toxicology: from basic research to risk assessment. Chem. Res. Toxicol. 27:314–329.
  • Sugimura, T., Wakabayashi, K., Nakagama, H., et al. (2004). Heterocyclic amines: Mutagens/carcinogens produced during cooking of meat and fish. Cancer Sci. 95:290–299.
  • Sun, K., Deng, H. J., Lei, S. T., et al. (2013). miRNA-338–3p suppresses cell growth of human colorectal carcinoma by targeting smoothened. World J. Gastroenterol. 19:2197–2207.
  • Suzuki, H., Maruyama, R., Yamamoto, E., et al. (2013). Epigenetic alteration and microRNA dysregulation in cancer. Front. Genet. 4:258.
  • Takebe, N., Harris, P. J., Warren, R. Q., et al. (2011). Targeting cancer stem cells by inhibiting Wnt, Notch, and Hedgehog pathways. Nat. Rev. Clin. Oncol. 8:97–106.
  • Tanaka, J., Watanabe, T., Kanazawa, T., et al. (2007). Left-Sided microsatellite unstable colorectal cancers show less frequent methylation of hMLH1 and CpG island methylator phenotype than right-sided ones. J Surg Oncol. 96:611–618.
  • Thomson, T. M., Sewer, A., Martin, F., et al. (2013). Quantitative assessment of biological impact using transcriptomic data and mechanistic network models. Toxicol. Appl. Pharmacol. 272:863–878.
  • Tinsley, H. N., Gary, B. D., Thaiparambil, J., et al. (2010). Colon tumor cell growth-inhibitory activity of sulindac sulfide and other nonsteroidal anti-inflammatory drugs is associated with phosphodiesterase 5 inhibition. Cancer Prev. Res. (Phila). 3:1303–1313.
  • Toyota, M., Ahuja, N., Ohe-Toyota, M., et al. (1999). CpG island methylator phenotype in colorectal cancer. Proc. Natl. Acad. Sci. USA. 96:8681–8686.
  • Tricker, A. R. and Preussmann, R. (1991). Carcinogenic N-nitrosamines in the diet: occurrence, formation, mechanisms and carcinogenic potential. Mutat. Res. 259:277–289.
  • Trifan, O. C. and Hla, T. (2003). Cyclooxygenase-2 modulates cellular growth and promotes tumorigenesis. J. Cell. Mol. Med. 7:207–222.
  • Tsai, H. C. and Baylin, S. B. (2011). Cancer epigenetics: linking basic biology to clinical medicine. Cell Res. 21:502–517.
  • Ullman, T. A. and Itzkowitz, S. H. (2011). Intestinal inflammation and cancer. Gastroenterology. 140:1807–1816.
  • Uno, S., Endo, K., Jeong, Y., et al. (2009). Suppression of beta-catenin signaling by liver X receptor ligands. Biochem. Pharmacol. 77:186–195.
  • Ushijima, T. (2005). Detection and interpretation of altered methylation patterns in cancer cells. Nat. Rev. Cancer. 5:223–231.
  • van der Flier, L. G. and Clevers, H. (2009). Stem cells, self-renewal, and differentiation in the intestinal epithelium. Annu. Rev. Physiol. 71:241–260.
  • van der Meer-van Kraaij, C., Kramer, E., Jonker-Termont, D., et al. (2005). Differential gene expression in rat colon by dietary heme and calcium. Carcinogenesis. 26:73–79.
  • van Duijnhoven, F. J., Bueno-De-Mesquita, H. B., Ferrari, P., et al. (2009). Fruit, vegetables, and colorectal cancer risk: the European Prospective Investigation into Cancer and Nutrition. Am. J. Clin. Nutr. 89:1441–1452.
  • van Es, J. H., van Gijn, M. E., Riccio, O., et al. (2005). Notch/gamma-secretase inhibition turns proliferative cells in intestinal crypts and adenomas into goblet cells. Nature. 435:959–963.
  • van Loon, A. J., Botterweck, A. A., Goldbohm, R. A., et al. (1998). Intake of nitrate and nitrite and the risk of gastric cancer: a prospective cohort study. Br. J. Cancer. 78:129–135.
  • van Woudenbergh, G. J., Kuijsten, A., Tigcheler, B., et al. (2012). Meat consumption and its association with C-reactive protein and incident type 2 diabetes: the Rotterdam Study. Diabetes Care. 35:1499–1505.
  • Vargas, A. J., Wertheim, B. C., Gerner, E. W., et al. (2012). Dietary polyamine intake and risk of colorectal adenomatous polyps. Am. J. Clin. Nutr. 96:133–141.
  • Varnat, F., Duquet, A., Malerba, M., et al. (2009). Human colon cancer epithelial cells harbour active HEDGEHOG-GLI signalling that is essential for tumour growth, recurrence, metastasis and stem cell survival and expansion. EMBO Mol. Med. 1:338–351.
  • Vejux, A. and Lizard, G. (2009). Cytotoxic effects of oxysterols associated with human diseases: Induction of cell death (apoptosis and/or oncosis), oxidative and inflammatory activities, and phospholipidosis. Mol. Aspects Med. 30:153–170.
  • Vermeulen, L., De Sousa, E. M. F., van der Heijden, M., et al. (2010). Wnt activity defines colon cancer stem cells and is regulated by the microenvironment. Nat. Cell. Biol. 12:468–476.
  • Visvader, J. E. (2011). Cells of origin in cancer. Nature. 469:314–322.
  • Visvader, J. E. and Lindeman, G. J. (2012). Cancer stem cells: current status and evolving complexities. Cell Stem Cell. 10:717–728.
  • Vogt, T., McClelland, M., Jung, B., et al. (2001). Progression and NSAID-induced apoptosis in malignant melanomas are independent of cyclooxygenase II. Melanoma Res. 11:587–599.
  • Waldner, M. J., Foersch, S., and Neurath, M. F. (2012). Interleukin-6–a key regulator of colorectal cancer development. Int. J. Biol. Sci. 8:1248–1253.
  • Wang, X., Lei, X. G., and Wang, J. (2014). Malondialdehyde regulates glucose-stimulated insulin secretion in murine islets via TCF7L2-dependent Wnt signaling pathway. Mol. Cell Endocrinol. 382:8–16.
  • Wang, X., Liu, X., Li, A. Y., et al. (2011). Overexpression of HMGA2 promotes metastasis and impacts survival of colorectal cancers. Clin. Cancer Res. 17:2570–2580.
  • WCRF/AICR. (2007). Nutrition, physical activity and the prevention of cancer: a global perspective., World Cancer Research Fund/American Institute for Cancer Research Food, Washington DC.
  • Weisenberger, D. J., Siegmund, K. D., Campan, M., et al. (2006). CpG island methylator phenotype underlies sporadic microsatellite instability and is tightly associated with BRAF mutation in colorectal cancer. Nat. Genet. 38:787–793.
  • Wend, P., Holland, J. D., Ziebold, U., et al. (2010). Wnt signaling in stem and cancer stem cells. Semin. Cell Dev. Biol. 21:855–863.
  • Weng, A. P., Millholland, J. M., Yashiro-Ohtani, Y., et al. (2006). c-Myc is an important direct target of Notch1 in T-cell acute lymphoblastic leukemia/lymphoma. Genes Dev. 20:2096–2109.
  • White, B. D., Chien, A. J., and Dawson, D. W. (2012). Dysregulation of Wnt/beta-catenin signaling in gastrointestinal cancers. Gastroenterology. 142:219–232.
  • Wilson, B. J., Schatton, T., Frank, M. H., et al. (2011). Colorectal Cancer Stem Cells: Biology and Therapeutic Implications. Curr. Colorectal. Cancer Rep. 7:128–135.
  • Wirfalt, E., Midthune, D., Reedy, J., et al. (2009). Associations between food patterns defined by cluster analysis and colorectal cancer incidence in the NIH-AARP diet and health study. Eur. J. Clin. Nutr. 63:707–717.
  • Wood, L. D., Parsons, D. W., Jones, S., et al. (2007). The genomic landscapes of human breast and colorectal cancers. Science. 318:1108–1113.
  • Xu, W., Tamim, H., Shapiro, S., et al. (2006). Use of antidepressants and risk of colorectal cancer: a nested case-control study. Lancet Oncol. 7:301–308.
  • Yoon, J. H., Canbay, A. E., Werneburg, N. W., et al. (2004). Oxysterols induce cyclooxygenase-2 expression in cholangiocytes: implications for biliary tract carcinogenesis. Hepatology. 39:732–738.
  • Yu, H., Pardoll, D., and Jove, R. (2009). STATs in cancer inflammation and immunity: a leading role for STAT3. Nat. Rev. Cancer. 9:798–809.
  • Zell, J. A., Ignatenko, N. A., Yerushalmi, H. F., et al. (2007). Risk and risk reduction involving arginine intake and meat consumption in colorectal tumorigenesis and survival. Int. J. Cancer. 120:459–468.
  • Zell, J. A., Lin, B. S., Ziogas, A., et al. (2012). Meat consumption, ornithine decarboxylase gene polymorphism, and outcomes after colorectal cancer diagnosis. J. Carcinog. 11:17.
  • Zhu, S., Wu, H., Wu, F., et al. (2008). MicroRNA-21 targets tumor suppressor genes in invasion and metastasis. Cell Res. 18:350–359.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.