4,667
Views
57
CrossRef citations to date
0
Altmetric
Articles

The use of exergetic indicators in the food industry – A review

, , &

References

  • Aghbashlo M., Kianmehr, M. H. and Arabhosseini A. (2008). Energy and exergy analyses of thin-layer drying of potato slices in a semi-industrial continuous band dryer. Dry. Technol. 26:1501–1508.
  • Aghbashlo, M., Kianmehr, M. H. and Arabhosseini, A. (2009). Performance analysis of drying of carrot slices in a semi-industrial continuous band dryer. J. Food Eng. 91:99–108.
  • Aghbashlo, M., Mobli, H., Madadlou, A. and Rafiee, S. (2012). Influence of spray dryer parameters on exergetic performance of microencapsulation processes. Int. J. Exergy. 10:267–289.
  • Aghbashlo, M., Mobli, H., Rafiee, S. and Madadlou, A. (2012a). Energy and exergy analyses of the spray drying process of fish oil microencapsulation. Biosyst. Eng. 111:229–241.
  • Aghbashlo, M., Mobli, H., Rafiee, S. and Madadlou, A. (2012b). Optimization of emulsification procedure for mutual maximizing the encapsulation and exergy efficiencies of fish oil microencapsulation. Powder Technol. 225:107–117.
  • Aghbashlo, M., Mobli, H., Rafiee, S. and Madadlou, A. (2012c). The use of artificial neural network to predict exergetic performance of spray drying process: A preliminary study. Comput. Electron. Agr. 88:32–43.
  • Aghbashlo, M., Mobli, H., Rafiee, S. and Madadlou, A. (2013). A review on exergy analysis of drying processes and systems. Renew. Sust. Energ. Rev. 22:1–22.
  • Ahamed, J. U., Saidur, R., Masjuki, H. H., Mekhilef, S., Ali, M. B. and Furqon, M. H. (2011). An application of energy and exergy analysis in agricultural sector of Malaysia. Energy Policy. 39:7922–7929.
  • Akbulut, A. and Durmuş, A. (2010). Energy and exergy analyses of thin layer drying of mulberry in a forced solar dryer. Energy. 35:1754–1763.
  • Akinoso, R., Lawal, I. A. and Aremu, A. K. (2013). Energy requirements of size reduction of some selected cereals using attrition mill. Int. Food Res. J. 20:1205–1209.
  • Akpinar, E. K. (2004). Energy and exergy analyses of drying of red pepper slices in a convective type dryer. Int. Commun. Heat Mass Transf. 31:1165–1176.
  • Akpinar, E. K. (2005a). Energy and exergy analyses of drying of eggplant slices in a cyclone type dryer. J. Mech. Sci. Technol. 19:692–703.
  • Akpinar, E. K. (2005b). Thermodynamic analysis of the apple drying process. Proc. Inst. Mech. Eng. A. 219:1–14.
  • Akpinar, E. K. (2007). Thermodynamic analysis of strawberry drying process in a cyclone type dryer. J.. Sci. Ind. Res. 66:152–161.
  • Akpinar, E. K. (2010a). Drying of mint leaves in a solar dryer and under open sun: Modelling, performance analyses. Energy Convers. Manage. 51:2407–2418.
  • Akpinar, E. K. (2010b). Exergy analysis associated with heat transfer during heating of slab products. Int. J. Exergy. 7:66–75.
  • Akpinar, E. K. (2011). Drying of parsley leaves in a solar dryer and under open sun: Modelling, energy and exergy aspects. J. Food Process Eng. 34:27–48.
  • Akpinar, E. K., Midilli, A. and Bicer, Y. (2005). Energy and exergy of potato drying process via cyclone type dryer. Energy Convers. Manage. 46:2530–2552.
  • Akpinar, E. K., Midilli, A. and Bicer, Y. (2006). The first and second law analyses of thermodynamic of pumpkin drying process. J. Food Eng. 72:320–331.
  • Akpinar, E. K. and Sarsilmaz, C. (2004). Energy and exergy analyses of drying of apricots in a rotary solar dryer. Int. J. Exergy 1:457–474.
  • Alamilla-Beltrán, L., Welti-Chanes, J., Chanona-Pérez, J. J., Perea-flores, M. D. J. and Gutierrez-López, G. F. (2011). Emerging technologies for food processing. In: Food Processing Handbook, (Eds., James G. Brennan, Alistair S. Grandison) pp. 205–224. Wiley-VCH Verlag GmbH, KgaA, Germany.
  • Amantéa, R. P., Fortes, M., Martins, J. H. and Ferreira, W. R. (2013). Numerical simulation techniques for optimizing thermodynamic efficiencies of cereal grain dryers. Dry. Technol. 31:672–683.
  • Andresen, B. (2011). Current trends in finite-time thermodynamics. Angew. Chemie Int. Edit. 50:2690–2704.
  • Aneke, M., Agnew, B., Underwood, C. and Menkiti, M. (2012). Thermodynamic analysis of alternative refrigeration cycles driven from waste heat in a food processing application. Int. J. Refrig. 35:1349–1358.
  • Apaiah, R. K., Linnemann, A. R., van der Kooi, H..J. (2006a). Desigining Food Supply Chains – A Structured Methodology: A Case on Novel Protein Foods. Wageningen University. Wageningen, The Netherlands.
  • Apaiah, R. K., Linnemann, A. R. and Van der Kooi, H. J. (2006b). Exergy analysis: A tool to study the sustainability of food supply chains. Food Res. Int. 39:1–11.
  • Assari, M. R., Basirat Tabrizi, H. and Najafpour, E. (2013). Energy and exergy analysis of fluidized bed dryer based on two-fluid modeling. Int. J. Therm. Sci. 64:213–219.
  • Balkan, F., Colak, N. and Hepbasli, A. (2005). Performance evaluation of a triple-effect evaporator with forward feed using exergy analysis. Int. J. Energ. Res. 29:455–470.
  • Bapat, S. M., Majali, V. S. and Ravindranath, G. (2013). Exergetic evaluation and comparison of quintuple effect evaporation units in Indian sugar industries. Int. J. Energy Res. 37:1415–1427.
  • Bennamoun, L. (2012). An overview on application of exergy and energy for determination of solar drying efficiency. Int. J. Energy Eng. 2:184–194.
  • Berg, C. A. (1980). Process integration and the second law of thermodynamics: Future possibilities. Energy. 5:733–742.
  • Bolaji, B. O. (2011). Exergetic analysis of solar energy drying systems. Nat. Resour. 2:92–97.
  • BoroumandJazi, G., Rismanchi, B. and Saidur, R. (2013). A review on exergy analysis of industrial sector. Renew. Sust. Energy Rev. 27:198–203.
  • Boulemtafes-Boukadoum, A. and Benzaoui, A. (2011). Energy and exergy analysis of solar drying process of mint. In: Energy Procedia, Vol. 6, pp. 583–591.
  • Boyar, S., Akdeniz, R. C. and Hepbasli, A. (2012). Performance evaluation of an extruder system in a mixed feed factory. J. Food Agric. Environ. 10:524–527.
  • Braungart, M., McDonough, W. and Bollinger, A. (2007). Cradle-to-cradle design: creating healthy emissions – a strategy for eco-effective product and system design. J. Cleaner Prod. 15:1337–1348.
  • Bruttini, R., Crosser, O. K. and Liapis, A. I. (2001). Exergy analysis for the freezing stage of the freeze drying process. Dry. Technol. 19:2303–2313.
  • Catton, W., Carrington, G. and Sun, Z. (2011). Exergy analysis of an isothermal heat pump dryer. Energy. 36:4616–4624.
  • Caudill, R. J., Olapiriyakul, S. and Seale, B. (2010). An exergy footprint metric normalized to US exergy consumption per capita. In: 2010 IEEE International Symposium on Sustainable Systems and Technology (ISSST), pp. 1–6. DOI:10.1016/j.egypro.2011.05.067.
  • Celma, A. R. and Cuadros, F. (2009). Energy and exergy analyses of OMW solar drying process. Renew. Energy 34:660–666.
  • Chowdhury, M. M. I., Bala, B. K. and Haque, M. A. (2011). Energy and exergy analysis of the solar drying of jackfruit leather. Biosyst. Eng. 110:222–229.
  • Colak, N., Balta, M. T., Icier, F., Kuzgunkaya, E., Hepbasli, A. and Erbay, Z. (2010). Exergy analysis of food drying processes. In: Global Warming – Engineering Solutions. Dincer, I., Hepbasli, A., Midilli, A. and Hikmet Karakoc, T., Eds. pgs. 267–279. Springer, USA.
  • Colak, N., Erbay, Z. and Hepbasli, A. (2013). Performance assessment and optimization of industrial pasta drying. Int. J. Energy Res. 37:913–922.
  • Colak, N. and Hepbasli, A. (2007). Performance analysis of drying of green olive in a tray dryer. J. Food Eng. 80:1188–1193.
  • Colak, N. and Hepbasli, A. (2009). A review of heat pump drying: Part 1 – Systems, models and studies. Energy Convers. Manage. 50:2180–2186.
  • Colak, N., Kuzgunkaya, E. and Hepbasli, A. (2008). Exergetic assessment of drying of mint leaves in a heat pump dryer. J. Food Process Eng. 31:281–298.
  • Connelly, L. and Koshland, C. P. (1997). Two aspects of consumption: using an exergy-based measure of degradation to advance the theory and implementation of industrial ecology. Resour. Conserv. Recycl. 19:199–217.
  • Cornelissen, R. L. (1997). Thermodynamics and Sustainable Development: The Use of Exergy Analysis and the Reduction of Irreversibility. University of Twente, Enschede, The Netherlands.
  • Corzo, O., Bracho, N., Vásquez, A. and Pereira, A. (2008a). Energy and exergy analyses of thin layer drying of coroba slices. J. Food Eng. 86:151–161.
  • Corzo, O., Bracho, N., Vásquez, A. and Pereira, A. (2008b). Optimization of a thin layer drying process for coroba slices. J. Food Eng. 85:372–380.
  • Cuce, E. and Cuce, P. M. (2013). Energetic and exergetic performance assessment of solar cookers with different geometrical designs. Int. J. Ambient Energy. 36(2):1–8.
  • Čuček, L., Klemeš, J. J. and Kravanja, Z. (2012). A Review of footprint analysis tools for monitoring impacts on sustainability. J. Cleaner Prod. 34:9–20.
  • Dalsgard, H. and Munkoe, L. (2000). Process integration in the Danish food industry – A case study. Int. J. Appl. Thermodyn. 3:163–170.
  • Damour, C., Hamdi, M., Josset, C., Auvity, B. and Boillereaux, L. (2012). Energy analysis and optimization of a food defrosting system. Energy. 37:562–570.
  • Dewulf, J., Bösch, M. E., Meester, B. D., Vorst, G. V. D., Langenhove, H. V., Hellweg, S. and Huijbregts, M. A. J. (2007). Cumulative Exergy Extraction from the Natural Environment (CEENE): a comprehensive life cycle impact assessment method for resource accounting. Environ. Sci. Technol. 41:8477–8483.
  • Dewulf, J., Van Langenhove, H., Mulder, J., van den Berg, M. M. D., van der Kooi, H. J. and de Swaan Arons, J. (2000). Illustrations towards quantifying the sustainability of technology. Green Chem. 2:108–114.
  • Dincer, I. (2002a). On energetic, exergetic and environmental aspects of drying systems. Int. J. Energy Res. 26:717–727.
  • Dincer, I. (2002b). The role of exergy in energy policy making. Energy Policy. 30:137–149.
  • Dincer, I. (2011). Exergy as a potential tool for sustainable drying systems. Sustain. Cities Soc. 1:91–96.
  • Dincer, I. and Cengel, Y. (2001). Energy, entropy and exergy concepts and their roles in thermal engineering. Entropy. 3:116–149.
  • Dincer, I. and Rosen, M. A. (2013a). Exergy and energy analyses. In: Exergy, 2nd ed., Chap. 2, pp. 21–30. Ibrahim, D. and Marc, A. R., Eds., Elsevier, London.
  • Dincer, I. and Rosen, M. A. (2013b). Chemical exergy. In: Exergy, 2nd ed., Chap. 3, pp. 31–49. Ibrahim, D. and Marc, A. R., Eds., Elsevier, London.
  • Dincer, I. and Rosen, M. A. (2013c). Applications of exergy in industry. In: Exergy, 2nd ed., Chap. 5, pp. 75–82. Ibrahim, D. and Marc, A. R., Eds., Elsevier, London.
  • Dincer, I. and Rosen, M. A. (2013d). Exergy analysis of psychrometric processes. In: Exergy, 2nd ed., Chap. 6, pp. 83–100. Ibrahim, D. and Marc, A. R., Eds., Elsevier, London.
  • Dincer, I. and Sahin, A. Z. (2004). A new model for thermodynamic analysis of a drying process. Int. J. Heat Mass Transf. 47:645–652.
  • Draganovic, V., Jørgensen, S. E., Boom, R., Jonkers, J., Riesen, G. and van der Goot, A. J. (2013). Sustainability assessment of salmonid feed using energy, classical exergy and eco-exergy analysis. Ecol. Indic. 34:277–289.
  • Ducoulombier, M., Sorin, M. and Teyssedou, A. (2007). Thermodynamic bounds for food deep chilling tray tunnel operation. Int. J. Therm. Sci. 46:172–179.
  • Duhem, P. (1889). Sur les transformations et l’ equilibre en Thermodynamique – Note de M.P. Duhem. Comptes Rendus de l’Academie des Sciences Paris. 108:666–667.
  • El-Sebaii, A. A. and Shalaby, S. M. (2012). Solar drying of agricultural products: A review. Renew. Sust. Energy Rev. 16:37–43.
  • Erbay, Z. and Hepbasli, A. (2013). Advanced exergy analysis of a heat pump drying system used in food drying. Dry. Technol. 31:802–810.
  • Erbay, Z. and Hepbasli, A. (2014). Application of conventional and advanced exergy analyses to evaluate the performance of a ground-source heat pump (GSHP) dryer used in food drying. Energy Convers. Manage. 78:499–507.
  • Erbay, Z. and Icier, F. (2009a). Optimization of drying of olive leaves in a pilot-scale heat pump dryer. Dry. Technol. 27:416–427.
  • Erbay, Z. and Icier, F. (2009b). Optimization of hot air drying of olive leaves using response surface methodology. J. Food Eng. 91:533–541.
  • Erbay, Z. and Icier, F. (2011). Energy and exergy analyses on drying of olive leaves in tray drier. J. Food Process Eng. 34:2105–2123.
  • Erbay, Z., Icier, F. and Hepbasli, A. (2010). Exergetic performance assessment of a pilot-scale heat pump belt conveyor dryer. Int. J. Energy Res. 34:249–264.
  • Erbay, Z. and Koca, N. (2012a). Energetic, exergetic, and exergoeconomic analyses of spray-drying process during white cheese powder production. Dry. Technol. 30:435–444.
  • Erbay, Z. and Koca, N. (2012b). Investigating the effects of operating conditions on the exergetic performance of a pilot-scale spray-drying system. Int. J. Exergy. 11:302–321.
  • Erbay, Z., Koca, N., Kaymak-Ertekin, F. and Ucuncu, M. (2014). Optimization of spray drying process in cheese powder production. Food Bioprod. Process. 93:156–165.
  • Fang, Z., Larson, D. L. and Fleischmen, G. (1995). Exergy analysis of a milk processing system. Trans. Am. Soc. Agric. Eng. 38:1825–1832.
  • Fissore, D., Pisano, R. and Barresi, A. A. (2014). Applying quality-by-design to develop a coffee freeze-drying process. J. Food Eng. 123:179–187.
  • Fortes, M. (2004). Second-law modeling of deep bed drying processes with a simulation study of wheat air-recirculated fluidized-bed drying. In: 14th International Drying Symposium (IDS 2004), Vol. A, pp. 18–32, Sao Paulo, Brazil.
  • Fortes, M. and Ferreira, W. R. (2004). Second law analysis of drying – Modeling and simulation of fluidized bed grain drying. In: 14th International Drying Symposium (IDS 2004), Vol. A, pp. 301–308, Sao Paulo, Brazil.
  • Fortes, M., Martins, J. H., Amantéa, R. P. and Ferreira, W. R. (2009). Transient and spatial energy and exergy analysis of deep-bed corn drying. In: American Society of Agricultural and Biological Engineers Annual International Meeting 2009, Reno, Nevada. Vol. 1, pp. 226–233.
  • Fritzsche, A. F., Hahnemann, H. W. and Rant, Z. (1956). Rundschau. Forschung auf dem Gebiet des Ingenieurwesens A. 22:33–37.
  • Gaudreau, K., Roydon, A. F. and Murphy, S. (2009). The tenuous use of exergy as a measure of resource value or waste impact. Sustainability. 1:1444–1463.
  • Gerbens-Leenes, P. W., Nonhebel, S. and Krol, M. S. (2010). Food consumption patterns and economic growth. Increasing affluence and the use of natural resources. Appetite. 55:597–608.
  • Giampietro, M., Bukkens, S. G. F. and Pimentel, D. (1994). Models of energy analysis to assess the performance of food systems. Agric. Syst. 45:19–41.
  • Gong, M. and Wall, G. (1997). Exergy use in the Swedish society 1994. In: TAIES ‘97, pp. 453–460, Beijing, China.
  • Gong, M. and Wall, G. (2001). On exergy and sustainable development – Part 2: Indicators and methods. Exergy Int. J. 1:217–233.
  • Gouy, G. (1889a). Sur l’ energie utilisable. J. de Phys. 8:501–518.
  • Gouy, G. (1889b). Sur l’ energie utilisable et le potentiel thermodynamique – Note de M. Gouy. Comptes Rendus de l’Academie des Sciences Paris. 108:794.
  • Gouy, G. (1889c). Sur les transformation et l’equilibre en Thermodynamique. Comptes Rendus de l’Academie des Sciences Paris. 108:507–509.
  • Grip, C. E., Elfgren, E., Soderstrom, M., Thollander, P., Berntsson, T., Asblad, A. and Wang, C. (2011). Possibilities and problems in using exergy expressions in process integration. In: World Renewable Energy Congress, Linkoping, Sweden.
  • Gungor, A., Erbay, Z. and Hepbasli, A. (2011a). Exergetic analysis and evaluation of a new application of gas engine heat pumps (GEHPs) for food drying processes. Appl. Energy. 88:882–891.
  • Gungor, A., Erbay, Z. and Hepbasli, A. (2011b). Exergoeconomic analyses of a gas engine driven heat pump drier and food drying process. Appl. Energy. 88:2677–2684.
  • Gungor, A., Erbay, Z. and Hepbasli, A. (2012c). Exergoeconomic (thermoeconomic) analysis and performance assessment of a gas engine-driven heat pump drying system based on experimental data. Dry. Technol. 30:52–62.
  • Gungor, A., Erbay, Z., Hepbasli, A. and Gunerhan, H. (2013). Splitting the exergy destruction into avoidable and unavoidable parts of a gas engine heat pump (GEHP) for food drying processes based on experimental values. Energy Convers. Manage. 73:309–316.
  • Gustavsson, J., Cederberg, C., Sonesson, U., Otterdijk, R. v. and Meybeck, A. (2011). Global Food Losses and Food Waste – Extent, Causes and Prevention. Food and Agriculture Organization of the United Nations, Geneva, Switzerland, 37 pp.
  • Hau, J. L. and Bakshi, B. R. (2004). Expanding exergy analysis to account for ecosystem products and services. Environ. Sci. Technol. 38:3768–3777.
  • Hepbasli, A. (2011). A comparative investigation of various greenhouse heating options using exergy analysis method. Appl Energy. 88:4411–4423.
  • Hepbasli, A., Colak, N., Hancioglu, E., Icier, F. and Erbay, Z. (2010). Exergoeconomic analysis of plum drying in a heat pump conveyor dryer. Dry. Technol. 28:1385–1395.
  • Hepbasli, A., Erbay, Z., Colak, N., Hancioglu, E. and Icier, F. (2010). An exergetic performance assessment of three different food driers. Proc. Inst. Mech. Eng. A. 224:1–12.
  • Hermann, W. A. (2006). Quantifying global exergy resources. Energy. 31:1685–1702.
  • Hernández-Díaz, W. N., Hernandez-Campos, F. J., Vargas-Galarza, Z., Rodríguez-Jimenes, G. C. and García-Alvarado, M. A. (2013). Coffee grain rotary drying optimization optimizacion del secado de granos de cafe en un secador rotatorio. Revista Mexicana de Ingeniera Qumica. 12:315–325.
  • Hernando, F. M. D. and Hector, C. A. (2013). An exergetic cold chain methodological analysis on horticultural productive chains to evaluate productivity and competitiveness – Study case Andean blackberry. Int. J. Agric. Forestry. 3:16–28.
  • Herrero, M., Laca, A. and Díaz, M. (2013). Life cycle assessment focusing on food industry wastes. In: Food Industry Wastes, Maria R. Kosseva and Colin Webb, Eds., Chap. 15, pp. 265–280. Academic Press, San Diego, CA.
  • Hevert, H. W. and Hevert, S. C. (1980). Second law analysis: An alternative indicator of system efficiency. Energy. 5:865–873.
  • Ho, J. C., Wijeysundera, N. E. and Chou, S. K. (1986). Energy analysis applied to food processing. Energy. 11:887–892.
  • Hoang, V.-N. and Rao, D. S. P. (2010). Measuring and decomposing sustainable efficiency in agricultural production: A cumulative exergy balance approach. Ecol. Econ. 69:1765–1776.
  • Icier, F., Colak, N., Erbay, Z., Kuzgunkaya, E. H. and Hepbasli, A. (2010). A comparative study on exergetic performance assessment for drying of broccoli florets in three different drying systems. Dry. Technol. 28:193–204.
  • Inaba, H. (2007). Heat and mass transfer analysis of fluidized bed grain drying. In: Memoirs of the Faculty of Engineering, Vol. 41, pp. 52–62. Okayama University, Okayama, Japan.
  • Jankowiak, L., Jonkman, J., Rossier-Miranda, F. J., van der Goot, A. J. and Boom, R. M. (2014). Exergy-driven process synthesis for isoflavone recovery from okara. Energy. 74:471–483.
  • Jin, Y. and Chen, X. D. (2011). Entropy production during the drying process of milk droplets in an industrial spray dryer. Int. J. Therm. Sci. 50:615–625.
  • Jørgensen, S. E. (2007). Evolution and exergy. Ecol. Model. 203:490–494.
  • Kamate, S. C. and Gangavati, P. B. (2009). Exergy analysis of cogeneration power plants in sugar industries. Appl. Therm. Eng. 29:1187–1194.
  • Karimi, F., Rafiee, S., Taheri-Garavand, A. and Karimi, M. (2012). Optimization of an air-drying process for Artemisia absinthium leaves using response surface and artificial neural network models. J. Taiwan Inst. Chem. Eng. 43:29–39.
  • Kay, J. J. (2002). Musings on the second law and life. In: Minkel, R. J., Ed., Available from http:www.jameskay.camusings/thermomusings.pdf.
  • Khoa, T. D., Shuhaimi, M., Hashim, H. and Panjeshahi, M. H. (2010). Optimal design of distillation column using three dimensional exergy analysis curves. Energy. 35:5309–5319.
  • Kjelstrup, S., Rosjorde, A. and Johannessen, E. (2004). Non-equilibrium thermodynamics in industry. In: Chemical Thermodynamics for Industry, Chap. 1. Letcher, T. M., Ed., RSC Publishing.
  • Klemeš, J. and Perry, S. (2008). Methods to minimise energy use in food processing. In: Handbook of Water and Energy Management in Food Processing, Series in Food Science, Technology and Nutrition, pp. 136–199. Klemeš, J. S. and Kim, R.,  , J. K., Ed., Woodhead Publishing.
  • Koning, N. B. J., Van Ittersum, M. K., Becx, G. A., Van Boekel, M. A. J. S., Brandenburg, W. A., Van Den Broek, J. A., Goudriaan, J., Van Hofwegen, G., Jongeneel, R. A., Schiere, J. B. and Smies, M. (2008). Long-term global availability of food: continued abundance or new scarcity? NJAS Wageningen J. Life Sci. 55:229–292.
  • Koroneos, C., Spachos, T. and Moussiopoulos, N. (2003). Exergy analysis of renewable energy sources. Renew. Energy. 28:295–310.
  • Kumar, N., Vishwanath, G. and Gupta, A. (2012). An exergy-based unified test protocol for solar cookers of different geometries. Renew. Energy. 44:457–462.
  • Kuzgunkaya, E. H. and Hepbasli, A. (2007). Exergetic evaluation of drying of laurel leaves in a vertical ground-source heat pump drying cabinet. Int. J. Energy Res. 31:245–258.
  • Kytzia, S., Faist, M. and Baccini, P. (2004). Economically extended MFA: a material flow approach for a better understanding of food production chain. J. Cleaner Prod. 12:877–889.
  • Lamnatou, C., Papanicolaou, E., Belessiotis, V. and Kyriakis, N. (2012). Experimental investigation and thermodynamic performance analysis of a solar dryer using an evacuated-tube air collector. Appl. Energy. 94:232–243.
  • La Rocca, V. (2011). Cold recovery during regasification of LNG part two: Applications in an agro food industry and a hypermarket. Energy. 36:4897–4908.
  • Lee, W. and Okos, M. R. (2011). Sustainable food processing systems – Path to a zero discharge: Reduction of water, waste and energy. Proc. Food Sci. 1:1768–1777.
  • Leites, I. L., Sama, D. A. and Lior, N. (2003). The theory and practice of energy saving in the chemical industry: Some methods for reducing thermodynamic irreversibility in chemical technology processes. Energy. 28:55–97.
  • Le Pierrès, N., Stitou, D. and Mazet, N. (2007). New deep-freezing process using renewable low-grade heat: From the conceptual design to experimental results. Energy. 32:600–608.
  • Liu, Y., Zhao, Y. and Feng, X. (2008). Exergy analysis for a freeze-drying process. Appl. Therm. Eng. 28:675–690.
  • Luis, P. (2013). Exergy as a tool for measuring process intensification in chemical engineering. J. Chem. Technol. Biotechnol. 88:1951–1958.
  • Mady, C. E. K. (2013). Human body exergy metabolism. Int. J. Thermodyn. 16:73–78.
  • Mady, K. C. E., Silva Ferreira, M., Itizo Yanagihara, J., Hilário Nascimento Saldiva, P. and de Oliveira Junior, S. (2012). Modeling the exergy behavior of human body. Energy. 45:546–553.
  • Maes, D. and Van Passel, S. (2014). Advantages and limitations of exergy indicators to assess sustainability of bioenergy and biobased materials. Environ. Impact Assess. Rev. 45:19–29.
  • Michalski, M. C., Genot, C., Gayet, C., Lopez, C., Fine, F., Joffre, F., Vendeuvre, J. L., Bouvier, J., Chardigny, J. M. and Raynal-Ljutovac, K. (2013). Multiscale structures of lipids in foods as parameters affecting fatty acid bioavailability and lipid metabolism. Prog. Lipid Res. 52:354–373.
  • Midilli, A. and Kucuk, H. (2003). Energy and exergy analyses of solar drying process of pistachio. Energy. 28:539–556.
  • Morosuk, T., Tsatsaronis, G. and Schult, M. (2013). Conventional and advanced exergetic analyses: Theory and application. Arabian J. Sci. Eng. 38:395–404.
  • Motevali, A. and Minaei, S. (2012). Effects of microwave pretreatment on the energy and exergy utilization in thin-layer drying of sour pomegranate arils. Chem. Ind. Chem. Eng. Q. 18.
  • Moya, C., Domínguez, R., Van Langenhove, H., Herrero, S., Gil, P., Ledón, C. and Dewulf, J. (2013). Exergetic analysis in cane sugar production in combination with life cycle assessment. J. Cleaner Prod. 59:43–50.
  • Nazghelichi, T., Aghbashlo, M. and Kianmehr, M. H. (2011). Optimization of an artificial neural network topology using coupled response surface methodology and genetic algorithm for fluidized bed drying. Comput. Electron. Agric. 75:84–91.
  • Nazghelichi, T., Aghbashlo, M., Kianmehr, M. H. and Omid, M. (2011). Prediction of energy and exergy of carrot cubes in a fluidized bed dryer by artificial neural networks. Dry. Technol. 29:295–307.
  • Nazghelichi, T., Kianmehr, M. H. and Aghbashlo, M. (2010). Thermodynamic analysis of fluidized bed drying of carrot cubes. Energy. 35:4679–4684.
  • Nikbakht, A. M., Motevali, A. and Minaei, S. (2013). Energy and exergy investigation of microwave assisted thin-layer drying of pomegranate arils using artificial neural networks and response surface methodology. J. Saudi Soc. Agric. Sci. 13:81–91.
  • Nishitani, H. and Kunugita, E. (1983). Multiobjective analysis for energy and resource conservation in an evaporation system. In: Efficiency and Costing, Richard A Gaggioli, Ed., Vol. 235, pp. 333–347. American Chemical Society. DOI:10.1021/bk-1983-0235.
  • Ohlsson, T. (2014). Sustainability and food production. In: Food Safety Management, Chap. 43, pp. 1085–1097. Motarjemi, Y. and Lelieveld, H., Eds., Academic Press, San Diego, CA.
  • Ozgener, L. (2007). Exergoeconomic analysis of small industrial pasta drying systems. Proc. Inst. Mech. Eng. A. 221:889–906.
  • Ozgener, L. and Ozgener, O. (2006). Exergy analysis of industrial pasta drying process. Int. J. Energy Res. 30:1323–1335.
  • Ozgener, L. and Ozgener, O. (2009a). Exergy analysis of drying process: An experimental study in solar greenhouse. Dry. Technol. 27:580–586.
  • Ozgener, L. and Ozgener, O. (2009b). Parametric study of the effect of reference state on energy and exergy efficiencies of a small industrial pasta drying process. Int. J. Exergy. 6:477–490.
  • Özilgen, M. and Sorgüven, E. (2011). Energy and exergy utilization, and carbon dioxide emission in vegetable oil production. Energy. 36:5954–5967.
  • Palacios-Bereche, R., Mosqueira-Salazar, K. J., Modesto, M., Ensinas, A. V., Nebra, S. A., Serra, L. M. and Lozano, M.-A. (2013). Exergetic analysis of the integrated first- and second-generation ethanol production from sugarcane. Energy. 62:46–61.
  • Pandey, S. D. and Nema, V. K. (2011). An experimental investigation of exergy loss reduction in corrugated plate heat exchanger. Energy. 36:2997–3001.
  • Pandey, A. K., Tyagi, V. V., Park, S. R. and Tyagi, S. K. (2012). Comparative experimental study of solar cookers using exergy analysis. Journal of Thermal Analysis and Calorimetry 109:425–431.
  • Panwar, N. L., Kaushik, S. C. and Kothari, S. (2012). A review on energy and exergy analysis of solar drying systems. Renew. Sustain. Energy Rev. 16:2812–2819.
  • Pellegrini, L. F. and de Oliveira Junior, S. (2011). Combined production of sugar, ethanol and electricity: Thermoeconomic and environmental analysis and optimization. Energy. 36:3704–3715.
  • Prommas, R., Keangin, P. and Rattanadecho, P. (2010). Energy and exergy analyses in convective drying process of multi-layered porous packed bed. Int. Commun. Heat Mass Transf. 37:1106–1114.
  • Prommas, R., Rattanadecho, P. and Cholaseuk, D. (2010). Energy and exergy analyses in drying process of porous media using hot air. Int. Commun. Heat Mass Transf. 37:372–378.
  • Prommas, R., Rattanadecho, P. and Jindarat, W. (2012). Energy and exergy analyses in drying process of non-hygroscopic porous packed bed using a combined multi-feed microwave-convective air and continuous belt system (CMCB). Int. Commun. Heat Mass Transf. 39:242–250.
  • Quijera, J. A., García, A., Alriols, M. G. and Labidi, J. (2013). Heat integration options based on pinch and exergy analyses of a thermosolar and heat pump in a fish tinning industrial process. Energy. 55:23–37.
  • Quijera, J. A. and Labidi, J. (2013). Pinch and exergy based thermosolar integration in a dairy process. Appl. Therm. Eng. 50:464–474.
  • Raghu Ram, J. and Banerjee, R. (2003). Energy and cogeneration targeting for a sugar factory. Appl. Therm. Eng. 23:1567–1575.
  • Ramirez, C. A. (2005). Monitoring Energy Efficiency in the Food Industry. University of Utrecht, Utrecht, the Netherlands.
  • Ranjbaran, M. and Zare, D. (2013). Simulation of energetic and exergetic performance of microwave-assisted fluidized bed drying of soybeans. Energy. 59:484–493.
  • Rant, Z. (1956). Exergie, ein neues Wort für technische Arbeitsfähigkeit. In: Forschung im Ingenieurwesen 22(1), S. 36–37. DOI: 10.1007/BF02592661.
  • Rosen, M. A., Dincer, I. and Kanoglu, M. (2008). Role of exergy in increasing efficiency and sustainability and reducing environmental impact. Energy Policy. 36:128–137.
  • Roy, P., Nei, D., Orikasa, T., Xu, Q., Okadome, H., Nakamura, N. and Shiina, T. (2009). A review of life cycle assessment (LCA) on some food products. J. Food Eng. 90:1–10.
  • Saidur, R., Ahamed, J. U. and Masjuki, H. H. (2010). Energy, exergy and economic analysis of industrial boilers. Energy Policy. 38:2188–2197.
  • Sami, S., Etesami, N. and Rahimi, A. (2011). Energy and exergy analysis of an indirect solar cabinet dryer based on mathematical modeling results. Energy. 36:2847–2855.
  • Sciubba, E. (2001). Beyond thermoeconomics? The concept of extended exergy accounting and its application to the analysis and design of thermal systems. Exergy Int. J. 1:68–84.
  • Sciubba, E. (2009). Exergy-based ecological indicators – A necessary tool for resource use assessment studies. Termotehnica. 1:11–25.
  • Seckin, C., Sciubba, E. and Bayulken, A. R. (2013). Extended exergy analysis of Turkish transportation sector. J. Cleaner Prod. 47:422–436.
  • Shukuya, M. (2013a). Renewing our view with the concept of exergy. In: Exergy, Masanori Shukuya, Ed., pp. 1–15. Springer, London.
  • Shukuya, M. (2013b). Theory for open systems. In: Exergy, pp. 231–364. Springer, London.
  • Sogut, Z., Ilten, N. and Oktay, Z. (2010). Energetic and exergetic performance evaluation of the quadruple-effect evaporator unit in tomato paste production. Energy. 35:3821–3826.
  • Sorgüven, E. and Özilgen, M. (2012). Energy utilization, carbon dioxide emission, and exergy loss in flavored yogurt production process. Energy. 40:214–225.
  • Stanek, W. and Gazda, W. (2014). Exergo-ecological evaluation of adsorption chiller system. Energy. 76:42–48.
  • Stougie, L., Bart, G. C. J., Boelman, E. C., Asada, H., Infante Ferreira, C. A., van Der Kooi, H. J., Oldenhof, S. and Woudstra, N. (2002). Energy Efficiency and the Quality of Energy in the Food Processing Industry. Delft University of Technology, Delft, the Netherlands.
  • Stougie, L. and Van Der Kooi, H. J. (2011). The relation between exergy and sustainability according to literature. In: 2nd International Exergy, Life Cycle Assessment and Sustainability Workshop & Symposium (ELCAS2), pp. 590–597. Nisyros, Greece.
  • Syahrul, S., Dincer, I. and Hamdullahpur, F. (2003). Thermodynamic modeling of fluidized bed drying of moist particles. Int. J. Therm. Sci. 42:691–701.
  • Syahrul, S., Hamdullahpur, F. and Dincer, I. (2002). Exergy analysis of fluidized bed drying of moist particles. Exergy Int. J. 2:87–98.
  • Szargut, J. (1980). International progress in second law analysis. Energy. 5:709–718.
  • Szargut, J. (1987). Analysis of cumulative exergy consumption. Int. J. Energy Res. 11:541–547.
  • Szargut, J. (1988). Exergy losses in the chains of technological processes. Bull. Pol. Acad. Sci. Tech. Sci. 36:513–521.
  • Szargut, J. (1989). Chemical exergies of the elements. Appl. Energy. 32:269–286.
  • Szargut, J. (2005). Exergy analysis. In: Academia, Vol. 3, pp. 31–33.
  • Szargut, J., Morris, D. R. and Steward, F. R. (1988). Exergy Analysis of Thermal, Chemical, and Metallurgical Processes. Hemisphere, New York, NY.
  • Talens Peiró, L., Lombardi, L., Villalba Méndez, G. and Gabarrell i Durany, X. (2010). Life cycle assessment (LCA) and exergetic life cycle assessment (ELCA) of the production of biodiesel from used cooking oil (UCO). Energy. 35:889–893.
  • Talens Peiró, L. T., Méndez, G. V. and Durany, X. G. I. (2008). Exergy analysis of integrated waste management in the recovery and recycling of used cooking oils. Environ. Sci. Technol. 42:4977–4981.
  • Tambunan, A. H., Manalu, L. P. and Abdullah, K. (2010). Exergy analysis on simultaneous charging and discharging of solar thermal storage for drying application. Dry. Technol. 28:1107–1112.
  • Tiwari, G. N., Das, T., Chen, C. R. and Barnwal, P. (2009). Energy and exergy analyses of greenhouse fish drying. Int. J. Exergy. 6:620–636.
  • Tsatsaronis, G. and Cziezla, F. (1999). Strengths and limitations of exergy analysis. In: Encyclopedia of Life Support Systems, Vol. I. pp. 93–100. Adrian Bejan, Ed., Technical University of Berlin, Berlin, Germany.
  • Tsatsaronis, G. and Morosuk, T. (2012). Understanding and improving energy conversion systems with the aid of exergy-based methods. Int. J. Exergy. 11:518–542.
  • Tyagi, S. K., Tyagi, V. V., Anand, S., Chandra, V. and Diwedi, R. C. (2009). First and second law analyses of a typical solar air dryer system: A case study. Int. J. Sustain. Energy. 29:8–18.
  • United Nations. (2013, June 13). World population prospects: The 2012 revision. Press Release, Department of Economic and Social Affairs, Geneva, Switzerland.
  • Valero, A. (1998). Thermoeconomics as a conceptual basis for energy-ecological analysis. In: Advances in Energy Studies – Energy Flows in Ecology and Economy, pp. 415–444. Ulgiati, S., Ed. Roma.
  • Van Gool, W. (1980). Thermodynamic aspects of energy conservation. Energy. 5:783–792.
  • Van Gool, W. (1997). Energy policy: Fairy tales and factualities. In: Innovation and Technology — Strategies and Policies, pp. 93–105. Soares, O. D., Cruz, A. M., Pereira, G. C., Soares, I. R. T. and Reis, A. P. S., Eds., Springer, the Netherlands.
  • Velásquez-Arredondo, H. I., Ruiz-Colorado, A. A. and De Oliveira junior, S. (2010). Ethanol production process from banana fruit and its lignocellulosic residues: Energy analysis. Energy. 35:3081–3087.
  • Vintila, I. (2012). Mass and heat transfer coefficients assessment, optimisation and validation for multiphase food systems under transient stages. Trends Food Sci. Technol. 26:114–119.
  • Waheed, M. A., Jekayinfa, S. O., Ojediran, J. O. and Imeokparia, O. E. (2008). Energetic analysis of fruit juice processing operations in Nigeria. Energy. 33:35–45.
  • Wall, G. (1988). Exergy flows in industrial processes. Energy. 13:197–208.
  • Wall, G. (1990). Exergy conversion in the Japanese society. Energy. 15:435–444.
  • Wall, G. (2009). Exergetics. In: Bucaramanga. Wall, G., Ed. Foran Wall, Bucaramanga.
  • Xiang, J. Y., Calì, M. and Santarelli, M. (2004). Calculation for physical and chemical exergy of flows in systems elaborating mixed-phase flows and a case study in an IRSOFC plant. Int. J. Energy Res. 28:101–115.
  • Xydis, G., Koroneos, C. and Nanaki, E. (2011). Exergy-based comparison of two Greek industries. Int. J. Exergy. 8:460–476.
  • Zhu, P. and Feng, X. (2007). Allocation of cumulative exergy in multiple product separation processes. Energy. 32:137–142.
  • Zvolinschi, A., Kjelstrup, S., Bolland, O. and van der Kooi, H. J. (2007). Exergy sustainability indicators as a tool in industrial ecology. J. Ind. Ecol. 11:85–98.