898
Views
17
CrossRef citations to date
0
Altmetric
Articles

Heat transfer phenomena during thermal processing of liquid particulate mixtures—A review

, &

References

  • Abdullah A., Talib A. R. A., Jaafar A. A., Salleh M. A. M. and Chong W. T. (2010). The basics and issues of Thermochromic Liquid Crystal Calibrations. Exp. Therm. Fluid Sci. 34:1089–1121.
  • Alhamdan, A., Sastry, S. K. and Blaisdell, J. L. (1990). Natural convection heat transfer between water and an irregular-shaped particle. Trans. ASAE 33:620–624.
  • Atherton, D. and Thorpe, R. H. (1980). The processing of canned fruits and vegetables. In: Technical Bulletin No. 4. (Eds.) Atherton, D. and Thorpe, R. H.; Page no: 1-65. Campden Food Preservation Research Association, Chipping Campden, Gloucestershire, UK, pg. 1–65.
  • Awuah, G. B., Khurana, A., Weddig, L. M. and Balestrini, C. G. (2007a). A comparative study of heat penetration data using remote sensors and needle or rod-in-tube thermocouples. J. Food Process Eng. 30:458–471.
  • Awuah, G. B., Ramaswamy, H. S. and Economides, A. (2007b). Thermal processing and quality: Principles and overview. Chem. Eng. Process. 46:584–602.
  • Awuah, G. B., Ramaswamy, H. S. and Simpson, B. K. (1995). Comparison of two methods for evaluating fluid to-surface heat transfer coefficients. Food Res. Int. 28:261–271.
  • Balasubramaniam, V. M. and Sastry, S. K. (1994a). Liquid-to-particle heat transfer in a continuous flow through a horizontal scraped surface heat exchanger. Trans IChemE. 72:189–196.
  • Balasubramaniam, V. M. and Sastry, S. K. (1994b). Liquid-to-particle convective heat transfer in non-Newtonian carrier medium during continuous tube flow. J Food Eng. 23:169–187.
  • Balasubramaniam, V. M. and Sastry, S. K. (1994c). Method for non-invasive estimation of convective heat transfer coefficients in continuous flow. Am. Soc. Agric. Eng., Paper No. 946543:1–11.
  • Balasubramaniam, V. M. and Sastry, S. K. (1995). Use of liquid crystals as temperature sensors in food processing research. J. Food Eng. 26:219–230.
  • Ball, C. O. (1923). Thermal process times for canned foods. Bull. Natl. Res. Counc. (U. S.) 7:1–76.
  • Ball, C. O. and Olson, F. C. W. (1957). Sterilization in Food Technology. McGraw-Hill, New York, NY, USA.
  • Barrett, D. M., Somogyi, L. and Ramaswamy, H. S. (2004). Processing Fruits: Science and Technology. CRC Press, Boca Raton, FL, USA.
  • Bee, G. R. and Park, D. K. (1978). Heat penetration measurement for thermal process design. Food Technol. 32:56–58.
  • Berry, M. R. and Bradshaw, J. G. (1980). Heating characteristic of condensed cream of celery soup in a steritort: Heat penetration and spore count reduction. J. Food Sci. 45:869–874.
  • Berry, M. R. and Kohnhorst, A. L. (1983). Critical factors for thermal processing of institutional pouches. J. Food Prot. 46:487–489.
  • Berry, M. R. and Kohnhorst, A. L. (1985). Heating characteristic of homogeneous milk based formulas in cans processed in an agitating retort. J. Food Sci. 50:209–214.
  • Bhamidipati, S. and Singh, R. K. (1994). Fluid to particle heat transfer coefficient determination in a continuous system. Am. Soc. Agric. Eng. Paper No. 946542:1–13.
  • Bhamidipati, S. and Singh, R. K. (1995). Determination of fluid particle convective heat transfer coefficient. Trans. ASAE 38:857–862.
  • Breidt, F., Hayes, J. and McFeeters, R. F. (2007). Determination of 5-log reduction times for food pathogens in acidified cucumbers during storage at 10 and 25 degrees C. J Food Prot. 70:2638–2641.
  • Britt, I., Zhang, Z. and Tung, M. A. (1997). Influence of temperature measuring systems on heat penetration results. Presented at: The Institute for Thermal Processing Specialists (IFTPS) Annual Meeting, November 18–20. Arlington, VA. Institute for Thermal Processing Specialists, Guelph (ON), Canada.
  • Brown, K. L. (2000). Control of bacterial spores. Br. Med. Bull. 56:158–171.
  • Cariño-Sarabia, A. and Vélez-Ruiz, J. F. (2013). Evaluation of convective heat transfer coefficient between fluids and particles in suspension as food model systems for natural convection using two methodologies. J. Food Process Eng. 115:173–181.
  • CFPRA. (1997). Guidelines for the establishment of scheduled heat processes for low-acid foods. In: Technical Manual No. 3. Campden Food Preservation Research Association, Chipping Campden, Gloucestershire, UK, pp. 1–80.
  • Chandarana, D. and Gavin, A. (1989). Modeling and heat transfer study of heterogeneous foods processed aseptically. Presented at: The First International Congress on Aseptic Processing Technologies, March 19–21, pp. 1–23. Indianapolis, IN. The First International Congress on Aseptic Processing Technologies, Indianapolis, IN, USA.
  • Chandarana, D., Gavin, A. and Wheaton, F. W. (1990). Particle/Fluid Interface Heat Transfer under UHT Conditions at Low Particle/Fluid Relative Velocities. J. Food Process Eng. 13:191–206.
  • Chang, S. Y. and Toledo, R. T. (1989). Heat transfer and simulated sterilization of particulate solids in a continuously flowing system. J. Food Sci. 54:1017–1023.
  • Chang, S. Y. and Toledo, R. T. (1990). Simultaneous determination of thermal diffusivity and heat transfer coefficient during sterilization of carrot dices in a packed bed. J. Food Sci. 55:199–205.
  • Chau, K. V. and Snyder, G. V. (1988). Mathematical model for temperature distribution of thermally processed shrimp. Trans. ASAE 31:608–612.
  • Clifcorn, L. E., Peterson, G. T., Boyd, J. M. and O'Neil, J. H. (1950). A new principle for agitating in processing of canned foods. Food Technol. 4:450–460.
  • Conley, W., Kaap, L. and Shuhmann, L. (1951). The application of “End-Over-End” agitation to the heating and cooling of canned food products. Food Technol. 5:457–460.
  • Damay, L. and Pain, J. P. (1993). Mesure du coefficient d’ échange de chaleur entre une particule et un fluide en écoulement. Rapport du Diplôme d’ Etudes Approfondies en Génie des Procédes Industriels, Villetaneuse, France.
  • De Cordt, S., Avila, S., Hendrickx, M. and Tobback, P. (1994). DSC and protein-based time-temperature indicators: Case study of α-amylase stabilized by polyols and/or sugar. Biotech. Bioeng. 44:859–865.
  • De Cordt, S., Hendrickx, M., Maesmans, G. and Tobback, P. (1992). Immobilized α-amylase from Bacillus licheniformis: A potential enzymic indicator for thermal processing. Int. J. Food Sci. Technol. 27:661–673.
  • Deniston, M. F., Hassan, B. H. and Merson, R. L. (1987). Heat Transfer Coefficients to Liquids with Food Particles in Axially Rotating Cans. J. Food Sci. 52:962–966.
  • Dwivedi, M. (2008). Heat Transfer to Canned Newtonian Liquid-Particulate Mixture Subjected to Axial Agitation Processing. Doctoral dissertation, McGill University, Montreal, Canada.
  • Dwivedi, M. and Ramaswamy, H. S. (2010a). Comparison of heat transfer rates during thermal processing under end-over-end and axial modes of rotation. LWT - Food Sci. Technol. 43:350–360.
  • Dwivedi, M. and Ramaswamy, H. S. (2010b). Comparative study of wireless versus standard thermocouples for data gathering and analyses in rotary cookers. J. Food Process. Preserv. 34:557–574.
  • Ecklund, O. F. (1956). Correction factors for heat penetration thermocouples. Food Technol. 10:43–44.
  • Erdogdu, F. and Tutar, M. (2011). Velocity and temperature field characteristics of water and air during natural convection heating in cans. J. Food Sci. 76:119–129.
  • Fernandez, C. L., Rao, M. A., Rajavasireddi, S. P. and Sastry, S. K. (1988). Particulate heat transfer to canned snap beans in a steritort. J. Food Process Eng. 10:183–198.
  • Francesco, M. and Vittorio, R. (2003). Industrial assessment and control of canned food sterilization. Presented at: AIChE Annual Meeting, November, 16–21. San Francisco, CA, USA. American Institute of Chemical Engineers, New York, NY.
  • Gadonna, J. P., Pain, J. P. and Barigou, M. (1996). Determination of the convective heat transfer coefficient between a free particle and a conveying fluid in a horizontal pipe. Food Bioprod. Process. 74:27–39.
  • Ghiron, K. and Litchfield, J. B. (1997). Magnetic thermometry in the aseptic processing of multiphase foods. In: Engineering and Food at ICEF 7, pp. 77–80. Jowitt, R., Ed., Sheffeld Academic Press, Sheffeld, UK.
  • Gillespy, T. G. (1953). Estimation of the sterilizing values of processes as applied to canned foods. II – Packs heating by conduction: Complex processing conditions and value of coming-up time of retort. J. Sci. Food Agric. 4:553–565.
  • Guiavarc'h, Y. P., Deli, V., Van Loey, A. M. and Hendrickx, M. E. (2002a). Development of an enzymic time temperature integrator for sterilization processes based on Bacillus licheniformis a-amylase at reduced water content. J. Food Sci. 67:285–291.
  • Guiavarc'h, Y. P., Dintwa, E., Van Loey, A. M., Zuber, F. T. and Hendrickx, M. E. (2002b). Validation and use of an enzymic time-temperature integrator to monitor thermal impacts inside a solid/liquid model. Food. Biotechnol. Progr. 18:1087–1094.
  • Gultekin, D. H. and Gore, J. C. (2006). Measurement of thermal diffusivity by magnetic resonance imaging. Magn. Reson. Imaging 24:1203–1207.
  • Gultekin, D. H. and Gore, J. C. (2008). Measurement of heat transfer coefficients by nuclear magnetic resonance. Magn. Reson. Imaging 26:1323–1328.
  • Haentjens, T. H., Van Loey, A. M., Hendrickx, M. E. and Tobback, P. P. (1998). The use of a-amylase at reduced water content to develop time temperature integrators for sterilization processes. Lebensm.-Wiss. Technol. 31:467–472.
  • Hassan, B. H. (1984). Heat Transfer Coefficients for Particles in Liquid in Axially Rotating Cans. Doctoral dissertation, University of California, Davis, CA, USA.
  • Hassan, H. F. and Ramaswamy, H. S. (2013). Bio-validation of bi-axial rotary thermal processing. LWT - Food Sci. Technol. 53(2):418–425.
  • Hassan, H. F., Ramaswamy, H. S. and Dwivedi, M. (2012). Overall and fluid-to-particle heat transfer coefficients associated with canned particulate non-newtonian fluids during free bi-axial rotary thermal processing. Int. J. Food Eng. 40:1–24.
  • Hayakawa, K. (1964). Development of Formulas for Calculating the Theoretical Temperature History and Sterilizing Value in a Cylindrical Can of Thermally Conductive Food During Heating. Doctoral dissertation, Rutgers State University, New Brunswick, NJ, USA.
  • Heinz, G. and Hautzinger, P. (2007). Meat Processing Technology for Small-to Medium-Scale Producers. RAP (Food and Agriculture Organization of the United Nations) Publication, Bangkok, Thailand.
  • Hendrickx, M., Maesmans, G., De Cordt, S., Noronha, J., Van Loey, A. and Tobback, P. (1995). Evaluation of the integrated time-temperature effect in thermal processing of foods. Crit. Rev. Food Sci. Nutr. 35:231–262.
  • Hersom, A. C. and Hulland, E. D. (1980). Canned Foods: Thermal Processing and Microbiology. 7th ed. Churchill-Livingstone, Edinburgh, London, UK.
  • Holdsworth, S. and Simpson, R. (2007). Thermal Processing of Packaged Foods. 2nd ed. Springer, New York, USA.
  • Hotani, S. and Mihori, T. (1983). Some thermal engineering aspects of the rotation method in sterilization. In: Heat Sterilization of Food, pp. 121–129. Motohito, T. and Hayakawa, K. I., Eds., Koseisha-Koseikaku Co. Ltd., Tokyo, Japan.
  • IFTPS. (1992). Temperature Distribution Protocol for Processing in Steam Still Retorts, Excluding Crateless Retorts. Institute for Thermal Processing Specialists, Fairfax, VA, USA.
  • Institut-Appert. (1979). Barèmes de Sterilisation pour Aliments Appertisés. Institut Appert., Paris, France.
  • James, P. W., Hughes, J. P., Jones, T. E. R. and Tucker, G. S. (2006). Numerical Simulations of Non-Isothermal Flow in Off-Axis Rotation of a Can Containing a Headspace Bubble. Chem. Eng. Res. Des. 84:311–318.
  • Joseph, S. J., Speers, R. A. and Pillay, V. (1996). Effect of Head Space Variation and Heat Treatment On the Thermal and Rheological Properties of Nonagitated, Conduction Heated Materials. LWT - Food Sci. Technol. 29:556–560.
  • Kakade, V. U., Lock, G. D., Wilson, M., Owen, J. M. and Mayhew, J. E. (2009). Accurate heat transfer measurements using thermochromic liquid crystal. Part 1: Calibration and characteristics of crystals. Int. J. Heat Fluid Flow. 30:939–949.
  • Khurana, A., Awuah, G. B., Weddig, L. M., Balestrini, C. G., Podolak, R. and Shafer, B. D. (2009). Heat penetration parameters as influenced by needle thermocouples and remote temperature sensors in 211´300 three-piece can size. J. Food Process Eng. 32:855–880.
  • Larousse, J. and Brown, B. (1996). Heat Penetration in Canned Foods - Theoretical Considerations. In: Food Canning Technology, pp. 383–423. Larousse, J. and Brown, B., Eds., Wiley-VCH, New York, USA.
  • Lekwauwa, A. N. and Hayakawa, K. I. (1986). Computerized model for the prediction of thermal responses of packaged solid-liquid food mixture undergoing thermal processes. J. Food Sci. 51:1042–1049.
  • Lenz, M. K. and Lund, D. B. (1978). The lethality-Fourier number method heating rate variations and lethality confidence intervals for forced-convection heated foods in containers. J. Food Process Eng. 2:227–271.
  • Lesley, D. R. (1987). Update on Ball Electronic Systems Division's (BESD) detraces temperature environment measurement system as applied to food thermal processing. Presented at The IFTPS Annual meeting, Anaheim, California, USA. 4–6 November 1987. Institute for Thermal Processing Specialists, Guelph (ON), Canada.
  • Maesmans, G., Hendrickx, M., De Cordt, S. and Tobback, P. (1993). Theoretical considerations on design of multicomponent time temperature integrators in evaluation of thermal processes. J. Food Process. Preserv. 17:369–389.
  • Maesmans, G., Hendrickx, M., De Cordt, S. and Tobback, P. (1994). Feasibility of the use of a time–temperature integrator and a mathematical model to determine fluid-to-particle heat transfer coefficients. Food Res. Int. 27:39–51.
  • May, N. (1997). Guidelines for Performing Heat Penetration Trials for Establishing Thermal Processes in Batch Retort Systems (Guideline No. 16). Campden and Chorleywood Food Research Association, Chipping Campden, Gloucestershire, UK.
  • Meng, Y. (2006). Heat Transfer Studies on Canned Particulate Viscous Fluids during End-Over-End Rotation. Doctoral dissertation, McGill University, Montreal, Canada.
  • Meng, Y. and Ramaswamy, H. S. (2005). Heat transfer coefficients associated with canned particulate/non-Newtonian fluid (CMC) system during end-over-end rotation. Food Bioprod. Process. 83:229–237.
  • Meng, Y. and Ramaswamy, H. S. (2007a). Effect of system variables on heat transfer to canned particulate non-Newtonian fluids during end-over-end rotation. Food Bioprod. Process. 85:34–41.
  • Meng, Y. and Ramaswamy, H. S. (2007b). System variables affecting heat transfer in a canned particle in Newtonian fluid system during end-over-end rotation. LWT-Food Sci. Technol. 40:1240–1245.
  • Mohamed, I. O. (2007). Determination of an effective heat transfer coefficients for can headspace during thermal sterilization process. J. Food Eng. 79:1166–1171.
  • Montville, T. J. and Sapers, G. M. (1981). Thermal resistance of spores from pH elevating strains of Bacillus licheniformis. J. Food Sci. 46:710–1712.
  • Mwangi, J. M., Rizvi, S. S. H. and Datta, A. K. (1993). Heat transfer to particles in shear flow: Application in aseptic processing. J. Food Eng. 19:55–74.
  • National Canners Association Research Laboratories. (1968). Laboratory Manual for Food Canners and Processors. AVI Pub. Co., Westport, CT, USA.
  • Naveh, D. and Kopelman, I. J. (1980). Effect of some processing parameters on the heat transfer coefficients in a rotating autoclave. J. Food Process. Preserv. 4:67–77.
  • Nelson, P. and Tressler, D. (1980). Fruit and Vegetable Juice Processing Technology. AVI Pub. Co., Westport, CT, USA.
  • NFPA. (1971). Processes for Low-Acid Canned Foods in Glass Containers. Bulletin 30-L. National Food Processors' Association, Washington, DC, USA.
  • NFPA. (1982). Processes for Low-Acid Canned Foods in Metal Containers. Bulletin 26-L, 12th ed. National Food Processors' Association, Washington, DC, USA.
  • NFPA. (1985). Guidelines for Thermal Process Development for Foods Packaged in Flexible Containers. National Food Processors' Association, Washington, DC, USA.
  • Ochoa, A. D., Baughn, J. W. and Byerley, A. R. (2005). A new technique for dynamic heat transfer measurements and flow visualization using liquid crystal thermography. Int. J. Heat Fluid Flow 26:264–275.
  • Odlaug, T. E. and Pflug, I. J. (1997). Clostridium Botulinum and Acid Foods. J Food Prot. 41:566–573.
  • Pflug, I. J. (2003). Microbiology and Engineering of Sterilization Processes. 11th ed. Environmental Sterilization Laboratory, Minneapolis, MN, USA.
  • Pflug, I. J., Jones, A. T. and Blanchett, R. (1980a). Performance of bacterial spores in a carrier system in measuring the Fo-value delivered to cans of food heated in a steritort. J. Food Sci. 45:940–945.
  • Pflug, I. J., Smith, G., Holcomb, R. and Blanchett, R. (1980b). Measuring sterilizing values in containers of food using thermocouples and biological indicator units. J. Food Prot. 43:119–123.
  • Pham, Q. T. (1989). Calculation of thermal process lethality for conduction-heated canned foods. J. Food Sci. 52:967–974.
  • Pratap Singh, A. and Ramaswamy, H. S. (2015). Effect of Can Orientation on Heat Transfer Coefficients Associated with Liquid Particulate Mixtures During Reciprocation Agitation Thermal Processing. Food Bioprocess Technol. 8:1405–1418.
  • Pratap Singh, A. and Ramaswamy, H. S. (2016). Simultaneous optimization of heat transfer and reciprocation intensity for thermal processing of liquid particulate mixtures undergoing reciprocating agitation. Innov. Food Sci. Emerg. Technol. 33:405–415.
  • Pratap Singh, A., Singh, A. and Ramaswamy, H. S. (2015). Modification of a static steam retort for evaluating heat transfer under reciprocating agitation thermal processing. J. Food Eng. 153:63–72.
  • Pratap Singh, A., Singh, A. and Ramaswamy, H. S. (2016). Dimensionless correlations for heat transfer coefficients during reciprocating agitation thermal processing (RA-TP) of Newtonian liquid/particulate mixtures. Food Bioprod. Process. 97:76–87.
  • Ramaswamy, H. S. and Abbatemarco, C. (1996). Thermal processing of fruits. In: Processing of Fruits - Science and Technology, Vol. 1. Somogyi, L. P., Ramaswamy, H. S. and Hui, Y. H., Eds., Technomic Publishing Company, Lancaster, Pennsylvania, USA, pp. 25–65.
  • Ramaswamy, H. S., Awuah, G. B., Kim, H.-J. and Choi, Y.-M. (1996). Evaluation of a chemical marker for process lethality measurement at 110°C in a continuous flow holding tube. J. Food Proc. Preserv. 20:235–249.
  • Ramaswamy, H. S. and Grabowski, S. (1996). Influence of entrapped air on the heating behavior of a model food packaged in semi-rigid plastic containers during thermal processing. Lebensm.-Wiss. Technol. 29:82–93.
  • Ramaswamy, H. S., Lo, K. V. and Tung, M. A. (1982). Simplified Equations for Transient Temperatures in Conductive Foods with Convective Heat Transfer at the Surface. J. Food Sci. 47:2042–2047.
  • Ramaswamy, H. S. and Marcotte, M. (2005). Food Processing Principles and Applications. 1st ed. CRC Press, Boca Raton, FL, USA.
  • Ramaswamy, H. S., Tung, M. A. and Stark, R. A. (1983). A method to measure surface heat transfer from steam/air mixtures in batch retorts. J. Food Sci. 48:900–904.
  • Rao, M. A. and Anantheswaran, R. C. (1988). Convective heat transfer to fluid foods in cans. Adv. Food Res. 32:39–84.
  • Rodriguez, A. C. and Teixeira, A. A. (1988). Heat transfer in hollow cylindrical rods used as bioindicator units for thermal process validation. Trans. ASAE 31:1233–1236.
  • Rönner, U. (2002). Validation of heat processes using bio-indicators (polymer beads). In: Second International Symposium on Thermal Processing – Thermal Processing: Validation Challenges (Session 2:3). Tucker, G. S., Ed., Campden and Chorleywood Food Research Association, Chipping Campden, Gloucestershire, UK.
  • Sablani, S. S. (1996). Heat Transfer Studies of Liquid Particle Mixtures in Cans Subjected to End-Over-End Processing. Doctoral dissertation, McGill University, Montreal, Canada.
  • Sablani, S. S. and Ramaswamy, H. S. (1995). Fluid-to-particle heat-transfer coefficients in cans during end-over-end processing. Lebensm. Wiss. Technol. 28:56–61.
  • Sablani, S. S. and Ramaswamy, H. S. (1996). Particle heat transfer coefficients under various retort operating conditions with end-over-end rotation. J. Food Process Eng. 19:403–424.
  • Sablani, S. S. and Ramaswamy, H. S. (1999). End-over-end agitation processing of cans containing liquid particle mixtures. Influence of continuous versus oscillatory rotation. J. Food Sci. Technol. 5:385–389.
  • Sastry, S. K., Beelman, R. B. and Speroni, J. J. (1985). A three-dimensional finite element model for thermally induced changes in foods: Application to degradation of agaritine in canned mushrooms. J. Food Sci. 50:1293–1299.
  • Sastry, S. K., Shen, G. Q. and Blaisdell, J. L. (1989). Effect of ultrasonic vibration on fluid-to-particle convective heat transfer coefficients. J. Food Sci. 54:229–230.
  • Sielaff, H. (1996). Technologie der Konservenherstellung. 12th ed. Behr's Verlag, Hamburg, Germany.
  • Silva, C. L. M., Oliveira, F. A. R., Lamb, J., Torres, A. P. and Hendrickx, M. (1994). Experimental validation of models predicting optimal surface quality sterilization temperatures. Int. J. Food Sci. Technol. 29:227–241.
  • Singh, A., Pratap Singh, A. and Ramaswamy, H. S. (2015). Computational techniques used in heat transfer studies on canned liquid-particulate mixtures. Trends Food Sci. Technol. 43:83–103.
  • Singh, A., Pratap Singh, A. and Ramaswamy, H. S. (2016). A Controlled Agitation Process for Improving Quality of Canned Green Beans during Agitation Thermal Processing. J. Food Sci. 81:E1399–E1411.
  • Singh, A. and Ramaswamy, H. S. (2015). Effect of Can Orientation on Heat Transfer Coefficients Associated with Liquid Particulate Mixtures During Reciprocation Agitation Thermal Processing. J. Food Eng. 165:1–12.
  • Smout, C., Avila, I., Loey, A. M. L., Hendrickx, M. E. G. and Silva, C. (2000). Influence of rotational speed on the statistical variability of heat penetration parameters and on non-uniformity of lethality in retort processing. J. Food Eng. 45:93–102.
  • Steele, R. J. and Board, P. W. (1979). Thermal process calculations using sterilizing ratios. J. Food Technol. 14:227–235.
  • Stoforos, N. G. (1988). Heat Transfer in Axially Rotating Canned Liquid/Particulate Food Systems. Doctoral dissertation, University of California, Davis CA, USA.
  • Stoforos, N. G. and Merson, R. L. (1991). Measurement of heat transfer coefficients in rotating liquid/particulate systems. Biotechnol. Prog. 7:267–271.
  • Stoforos, N. G., Noronha, J., Hendrickx, M. and Tobback, P. (1997). Inverse superposition for calculating food product temperatures during in-container thermal processing. J. Food Sci. 62:219–224.
  • Stumbo, C. R. (1973). Thermobacteriology in Food Processing. 2nd ed. Academic Press, New York, USA.
  • Stumbo, C. R., Purohit, K. S. and Ramakrishnan, T. V. (1975). Thermal process lethality guide for low-acid foods in metal containers. J. Food Sci. 40:1316–1323.
  • Tattiyakul, J., Rao, M. A. and Datta, A. K. (2002). Heat transfer to three canned fluids of different thermo-rheological behavior under intermittent agitation. Food Bioprod. Process. 80:20–27.
  • Tucker, G. S. (1999). A novel validation method: Application of time-temperature integrators to food pasteurization treatments. Food Bioprod. Process. 77:223–231.
  • Tucker, G. S. (2004). Improving rotary thermal processing. In: Improving the Thermal Processing of Foods, pp. 125–137. Richardson, P., Ed., CRC Press, Boca Raton, FL, USA.
  • Van Loey, A., Guiavarc'h, Y., Claeys, W. and Hendrickx, M. (2004). The use of time temperature indicators (TTIs) to validate thermal processes. In: Improving the Thermal Processing of Foods, pp. 365–384. Richardson, P., Ed., Woodhead Publishing, Cambridge, London, UK.
  • Van Loey, A. M., Haentjens, T. H., Hendrickx, M. E. and Tobback, P. P. (1997). The development of an enzymic time temperature integrator to assess the lethal efficacy of sterilization of low-acid canned foods. Food Biotech. 11:169–188.
  • Van Loey, A., Ludikhuyze, L., Hendrickx, M., De Cordt, S. and Tobback, P. (1995). Theoretical consideration on the influence of the z-value of a single component time temperature integrator on thermal process impact evaluation. J. Food Protect. 58:39–48.
  • Van Loey, M. A. (1996). Enzymic Time Temperature Indicators for the Quantification of Thermal Processes in Terms of Food Safety. Doctoral dissertation, University of Leuven- KU Leuven, Belgium.
  • Walden, R. and Emanuel, J. (2010). Developments in in-container retort technology: The Zinetec Shaka process. In: Case Studies in Novel Food Processing Technologies: Innovation in Processing, Packaging, and Predictive Modeling, pp. 359–406. Doona, C. J., Kustin, K. and Feeherry, F. E., Eds., Woodhead Publishing Ltd., Cambridge, UK.
  • Wang, N., Zhang, N. and Wang, M. (2006). Wireless sensors in agriculture and food industry - Recent development and future perspective. Comput. Electron. Agric. 50:1–14.
  • Weng, Z. J., Hendrickx, M., Maesmans, G. and Tobback, P. (1992). The use of a time temperature integrator in conjunction with mathematical-modeling for determining liquid particle heat-transfer coefficients. J. Food Eng. 16:197–214.
  • Zitoun, K. B. and Sastry, S. K. (1994). Determination of convective heat transfer coefficient between fluid and cubic particles in continuous tube flow using non-invasive experimental techniques. J Food Process Eng. 17:209–228.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.