1,790
Views
77
CrossRef citations to date
0
Altmetric
Articles

Design of whey protein nanostructures for incorporation and release of nutraceutical compounds in food

, , , , , , , & show all

References

  • Akkermans, C., Venema, P., van der Goot, A. J., Gruppen, H. and Bakx, E. J. (2008). Peptides are building blocks of heatinduced fibrillar protein aggregates of β-lactoglobulin formed at pH 2. Biomacromolecules 9:1474–1479.
  • Arnaudov, L. N., de Vries, R., Ippel, H. and van Mierlo, C. P. M. (2003). Multiple steps during the formation of β-lactoglobulin fibrils. Biomacromolecules 4:1614–1622.
  • Authority, E. F. S. (2009). Scientific opinion of the scientific committee on a request from the European commission on the potential risks arising from nanoscience and nanotechnologies on food and feed safety. The EFSA Journal 058:1–39.
  • Balandrán-Quintana, R. R., Valdéz-Covarrubias, M. A., Mendoza-Wilson, A. M. and Sotelo-Mundo, R. R. (2013). α-Lactalbumin hydrolysate spontaneously produces disk-shaped nanoparticles. Int. Dairy J. 32:133–135.
  • Ballister, E. R., Lai, A. H., Zuckermann, R. N., Cheng, Y. and Mougous, J. D. (2008). In vitro self-assembly of tailorable nanotubes from a simple protein building block. Proc. Natl. Acad. Sci. U.S.A. 105:3733–3738.
  • Banik, S., Bandyopadhyay, S. and Ganguly, S. (2003). Bioeffects of microwave—a brief review. Bioresour. Technol. 87:155–159.
  • Bateman, L., Ye, A. and Singh, H. (2010). In vitro digestion of beta-lactoglobulin fibrils formed by heat treatment at low pH. J. Agric. Food Chem. 58:9800–9808.
  • Bengoechea, C., Jones, O. G., Guerrero, A. and McClements, D. J. (2011). Formation and characterization of lactoferrin/pectin electrostatic complexes: Impact of composition, pH and thermal treatment. Food Hydrocolloids 25:1227–1232.
  • Betz, S. F. (1993). Disulfide bonds and the stability of globular-proteins. Protein Sci. 2:1551–1558.
  • Bodnár, I., Alting, A. C. and Verschueren, M. (2007). Structural effects on the permeability of whey protein films in an aqueous environment. Food Hydrocolloids 21:889–895.
  • Bolder, S. G., Hendrickx, H., Sagis, L. and van der Linden, E. (2006a). Ca2+-induced cold-set gelation of whey protein isolate fibrils. Appl. Rheol. 16:258–264.
  • Bolder, S. G., Hendrickx, H., Sagis, L. M. C. and van der Linden, E. (2006b). Fibril assemblies in aqueous whey protein mixtures. J. Agric. Food Chem. 54:4229–4234.
  • Bolder, S. G., Vasbinder, A. J., Sagis, L. M. C. and van der Linden, E. (2007). Heat-induced whey protein isolate fibrils: Conversion, hydrolysis, and disulphide bond formation. Int. Dairy J. 17:846–853.
  • Bolisetty, S., Harnau, L., Jung, J.-m. and Mezzenga, R. (2012). Gelation, phase behavior, and dynamics of β-lactoglobulin amyloid fibrils at varying concentrations and ionic strengths. Biomacromolecules 13:3241–3252.
  • Bouhallab, S. and Croguennec, T. (2014). Spontaneous assembly and induced aggregation of food proteins. In: Polyelectrolyte Complexes in the Dispersed and Solid State II, pp. 67–101. Müller, M., Ed., Springer, Berlin Heidelberg.
  • Bouwmeester, H., Dekkers, S., Noordam, M. Y., Hagens, W. I., Bulder, A. S., de Heer, C., ten Voorde, S. E. C. G., Wijnhoven, S. W. P., Marvin, H. J. P. and Sips, A. J. A. M. (2009). Review of health safety aspects of nanotechnologies in food production. Regul. Toxicol. Pharm. 53:52–62.
  • Brown, A. W. (2014). Human nutrition | nutraceuticals. In: Encyclopedia of Meat Sciences, 2nd ed., pp. 130–134. Dikeman, M. and Devine, C., Eds., Academic Press, Oxford.
  • Bryant, C. M. and McClements, D. J. (1998). Molecular basis of protein functionality with special consideration of cold-set gels derived from heat-denatured whey. Trends Food Sci. Technol. 9:143–151.
  • Castro, A. J., Swanson, B. G. and Barbosa-Cánovas, G. V. (2001). Pulsed electric field modification of milk alkaline phosphatase activity. In: Electric Fields in Food Processing, pp. 65–82. Barbosa-Cánovas, G. V. and Zhang, Q. H., Eds., Technomic, Lancaster, PA.
  • Cencic, A. and Chingwaru, W. (2010). The Role of Functional Foods, Nutraceuticals, and Food Supplements in Intestinal Health. Nutrients 2:611–625.
  • Cerqueira, M., Pinheiro, A., Silva, H., Ramos, P., Azevedo, M., Flores-López, M., Rivera, M., Bourbon, A., Ramos, Ó. and Vicente, A. (2014). Design of bio-nanosystems for oral delivery of functional compounds. Food. Eng. Rev. 6:1–19.
  • Chau, C.-F., Wu, S.-H. and Yen, G.-C. (2007). The development of regulations for food nanotechnology. Trends Food Sci. Technol. 18:269–280.
  • Chaudhry, Q., Watkins, R. and Castle, L. (2010). Nanotechnologies in the food arena: New opportunities, new questions, new concerns. In: Nanotechnologies in Food, pp. 1–17. Chaudhry, Q., Castle, L. and Watkins, R., Eds., Royal Society of Chemistry.
  • Chen, G., Wang, H., Zhang, X. and Yang, S.-T. (2014). Nutraceuticals and functional foods in the management of hyperlipidemia. Crit. Rev. Food Sci. Nutr. 54:1180–1201.
  • Chen, H. (1995). Functional properties and applications of edible films made of milk proteins. J. Dairy Sci. 78:2563–2583.
  • Chen, L., Remondetto, G. E. and Subirade, M. (2006). Food protein-based materials as nutraceutical delivery systems. Trends Food Sci. Technol. 17:272–283.
  • Chen, L. Y. and Subirade, M. (2006). Alginate-whey protein granular microspheres as oral delivery vehicles for bioactive compounds. Biomaterials 27:4646–4654.
  • Cho, Y., Singh, H. and Creamer, L. K. (2003). Heat-induced interactions of β-lactoglobulin A and κ-casein B in a model system. J. Dairy Res. 70:61–67.
  • Cockburn, A., Bradford, R., Buck, N., Constable, A., Edwards, G., Haber, B., Hepburn, P., Howlett, J., Kampers, F., Klein, C., Radomski, M., Stamm, H., Wijnhoven, S. and Wildemann, T. (2012). Approaches to the safety assessment of engineered nanomaterials (ENM) in food. Food Chem. Toxicol. 50:2224–2242.
  • Commission, E. (2013). Nanotechnology: the invisible giant tackling Europe's future challenges.
  • Corredig, M. and Dalgleish, D. G. (1996). Effect of temperature and pH on the interactions of whey proteins with casein micelles in skim milk. Food Res. Int. 29:49–55.
  • Cramariuc, R., Donescu, V., Popa, M. and Cramariuc, B. (2005). The biological effect of the electrical field treatment on the potato seed: agronomic evaluation. J. Electrostat. 63:837–846.
  • Croguennec, T., O'Kennedy, B. T. and Mehra, R. (2004). Heat-induced denaturation/aggregation of beta-lactoglobulin A and B: kinetics of the first intermediates formed. Int. Dairy J. 14:399–409.
  • Dave, A. C., Loveday, S. M., Anema, S. G., Loo, T. S., Norris, G. E., Jameson, G. B. and Singh, H. (2013). β-Lactoglobulin self-assembly: Structural changes in early stages and disulfide bonding in fibrils. J. Agric. Food Chem. 61:7817–7828.
  • de la Fuente, M. A., Singh, H. and Hemar, Y. (2002). Recent advances in the characterisation of heat-induced aggregates and intermediates of whey proteins. Trends Food Sci. Technol. 13:262–274.
  • de Pomerai, D. I., Smith, B., Dawe, A., North, K., Smith, T., Archer, D. B., Duce, I. R., Jones, D. and Candido, E. P. M. (2003). Microwave radiation can alter protein conformation without bulk heating. FEBS Lett. 543:93–97.
  • De Volder, M. F., Tawfick, S. H., Baughman, R. H. and Hart, A. J. (2013). Carbon nanotubes: present and future commercial applications. Science 339:535–539.
  • De Wit, J. N. (1990). Thermal stability and functionality of whey proteins. J. Dairy Sci. 73:3602–3612.
  • de Wit, J. N. (1998). Nutritional and functional characteristics of whey proteins in food products. J. Dairy Sci. 81:597–608.
  • Debeaufort, F., Quezada-Gallo, J. A. and Voilley, A. (1998). Edible films and coatings: Tomorrow's packagings: A review. Crit. Rev. Food Sci. Nutr. 38:299–313.
  • Dickinson, E. (2003). Colloidal aggregation: Mechanism and implications. In: Food Colloids, Biopolymers and Materials, pp. 68–83. Dickinson, E., Vlie, T. van, Ed., Royal Society of Chemistry, Cambridge.
  • Dissanayake, M. and Vasiljevic, T. (2009). Functional properties of whey proteins affected by heat treatment and hydrodynamic high-pressure shearing. J. Dairy Sci. 92:1387–1397.
  • Dobson, C. M. (2003). Protein folding and misfolding. Nature 426:884–890.
  • Doi, E. (1993). Gels and gelling of globular proteins. Trends Food Sci. Technol. 4:1–5.
  • Domike, K. R., Hardin, E., Armstead, D. N. and Donald, A. M. (2009). Investigating the inner structure of irregular \beta -lactoglobulin spherulites. Eur. Phys. J. E 29:173–182.
  • Dumay, E. M., Kalichevsky, M. T. and Cheftel, J. C. (1998). Characteristics of pressure-induced gels of β-lactoglobulin at various times after pressure release. LWT-Food Sci. Technol. 31:10–19.
  • EC, 2013. Nanotechnology: the Invisible Giant Tackling Europe's Future Challenges (1–44). Brussels: European Commission. ISBN 978-92-79-28892-0; doi:10.2777/62323.
  • Edwards, P. J. B. and Jameson, G. B. (2014). Chapter 7 - Structure and stability of whey proteins. In: Milk Proteins, 2nd ed., pp. 201–242. Singh, H., Boland, M. and Thompson, A., Eds., Academic Press, San Diego.
  • Elfagm, A. A. and Wheelock, J. V. (1978). Heat interaction between α-lactalbumin, β-lactoglobulin and casein in bovine milk. J. Dairy Sci. 61:159–163.
  • Esmaeilzadeh, P., Fakhroueian, Z., Esmaeilzadeh, P. and Mohammadi, N. (2013). Synthesis and characterization of various protein α-lactalbumin nanotubes structures by chemical hydrolysis method. ANP. 2:154–164.
  • Famelart, M.-H., Tomazewski, J., Piot, M. and Pezennec, S. (2003). Comparison of rheological properties of acid gels made from heated casein combined with β-lactoglobulin or egg ovalbumin. Int. Dairy J. 13:123–134.
  • Feng, W. and Ji, P. (2011). Enzymes immobilized on carbon nanotubes. Biotechnol. Adv. 29:889–895.
  • Ferry, J. D. (1948). Protein gels. Adv. Protein Chem. 4:1–76.
  • Filipcsei, G., Csetneki, I., Szilágyi, A. and Zrínyi, M. (2007). Magnetic field-responsive smart polymer composites. In: Oligomers—Polymer Composites—Molecular Imprinting, 137–189. Springer Berlin Heidelberg.
  • Foegeding, E. A. (2006). Food biophysics of protein gels: A challenge of nano and macroscopic proportions. Food Biophys. 1:41–50.
  • Foegeding, E. A. and Davis, J. P. (2011). Food protein functionality: A comprehensive approach. Food Hydrocolloid. 25:1853–1864.
  • Giroux, H. J. and Britten, M. (2011). Encapsulation of hydrophobic aroma in whey protein nanoparticles. J. Microencapsulation 28:337–343.
  • Goers, J., Permyakov, S. E., Permyakov, E. A., Uversky, V. N. and Fink, A. L. (2002). Conformational prerequisites for α-Lactalbumin fibrillation†. Biochemistry 41:12546–12551.
  • Gomaa, A. I., Sedman, J. and Ismail, A. A. (2013). An investigation of the effect of microwave treatment on the structure and unfolding pathways of β-lactoglobulin using FTIR spectroscopy with the application of two-dimensional correlation spectroscopy (2D-COS). Vib. Spectrosc. 65:101–109.
  • Gosal, W. S., Clark, A. H. and Ross-Murphy, S. B. (2004). Fibrillar β-lactoglobulin gels: Part 1. Fibril formation and structure. Biomacromolecules 5:2408–2419.
  • Gounga, M. E., Xu, S.-Y. and Wang, Z. (2007). Whey protein isolate-based edible films as affected by protein concentration, glycerol ratio and pullulan addition in film formation. J. Food Eng. 83:521–530.
  • Graveland-Bikker, J. F. (2005). Self-Assembly of Hydrolysis α-Lactalbumin into Nanotubes. PhD, Utrecht University: The Netherlands.
  • Graveland-Bikker, J. F. and de Kruif, C. G. (2006). Unique milk protein based nanotubes: Food and nanotechnology meet. Trends Food Sci. Technol. 17:196–203.
  • Graveland-Bikker, J. F., Ipsen, R., Otte, J. and de Kruif, C. G. (2004). Influence of calcium on the self-assembly of partially hydrolyzed alpha-lactalbumin. Langmuir. 20:6841–6846.
  • Guilmineau, F. and Kulozik, U. (2006). Impact of a thermal treatment on the emulsifying properties of egg yolk. Part 2: Effect of the environmental conditions. Food Hydrocolloids 20:1114–1123.
  • Gülseren, İ., Fang, Y. and Corredig, M. (2012a). Whey protein nanoparticles prepared with desolvation with ethanol: Characterization, thermal stability and interfacial behavior. Food Hydrocolloids 29:258–264.
  • Gülseren, İ., Fang, Y. and Corredig, M. (2012b). Zinc incorporation capacity of whey protein nanoparticles prepared with desolvation with ethanol. Food Chem. 135:770–774.
  • Gunasekaran, S., Ko, S. and Xiao, L. (2007). Use of whey proteins for encapsulation and controlled delivery applications. J. Food Eng. 83:31–40.
  • Gunasekaran, S., Xiao, L. and Ould Eleya, M. M. (2006). Whey protein concentrate hydrogels as bioactive carriers. J. Appl. Polym. Sci. 99:2470–2476.
  • Gyarmati, B., Némethy, Á. and Szilágyi, A. (2013). Reversible disulphide formation in polymer networks: A versatile functional group from synthesis to applications. Eur. Polym. J. 49:1268–1286.
  • Hennink, W. E. and van Nostrum, C. F. (2002). Novel crosslinking methods to design hydrogels. Adv. Drug Delivery Rev. 54:13–36.
  • Hoare, T. R. and Kohane, D. S. (2008). Hydrogels in drug delivery: Progress and challenges. Polymer 49:1993–2007.
  • Hoffman, A. S. (2002). Hydrogels for biomedical applications. Adv. Drug Delivery Rev. 54:3–12.
  • Hoffmann, M. A. M. and van Mil, P. J. J. M. (1997). Heat-induced aggregation of β-lactoglobulin: Role of the free thiol group and disulfide bonds. J. Agric. Food Chem. 45:2942–2948.
  • Huang, G., Gao, J., Hu, Z., St John, J. V., Ponder, B. C. and Moro, D. (2004). Controlled drug release from hydrogel nanoparticle networks. J. Control Release 94:303–311.
  • Huffman, L. M. (1996). Processing whey protein for use as a food ingredient. Food Technol. 50:49–52.
  • Huppertz, T., Fox, P. F., de Kruif, K. G. and Kelly, A. L. (2006). High pressure-induced changes in bovine milk proteins: A review. BBA-Proteins Proteom. 1764:593–598.
  • Ikeda, S. and Morris, V. J. (2002). Fine-stranded and particulate aggregates of heat-denatured whey proteins visualized by atomic force microscopy. Biomacromolecules 3:382–389.
  • Ipsen, R. and Otte, J. (2007). Self-assembly of partially hydrolysed alpha-lactalbumin. Biotechnol Adv. 25:602–605.
  • Ipsen, R., Otte, J. and Qvist, K. B. (2001). Molecular self-assembly of partially hydrolysed alpha-lactalbumin resulting in strong gels with a novel microstructure. J. Dairy Res. 68:277–286.
  • Jaeger, H., Reineke, K., Schoessler, K. and Knorr, D. (2012). Effects of Emerging Processing Technologies on Food Material Properties, In: Food Materials Science and Engineering (pp. 222–262). Bhandari, B. and Roos, Y. H. Eds. Wiley-Blackwell: Oxford, UK.
  • Jo, C., Kang, H., Lee, N. Y., Kwon, J. H. and Byun, M. W. (2005). Pectin- and gelatin-based film: effect of gamma irradiation on the mechanical properties and biodegradation. Radiat. Phys. Chem. 72:745–750.
  • Jovanovic, S., Barac, M., Macej, O., Vucic, T. and Lacnjevac, C. (2007). SDS-PAGE Analysis of soluble proteins in reconstituted milk exposed to different heat treatments. Sensors 7:371–383.
  • Karshikoff, A. (2006a). Electrostatic interactions. In: Non-Covalent Interactions in Proteins, pp. 129–176. Karshikoff, A. Ed. Imperial College Press, London, UK.
  • Karshikoff, A. (2006b). Electrostatic interactions and stability of proteins. In: Non-Covalent Interactions in Proteins, pp. 255–282. Karshikoff, A. Ed. Imperial College Press, London, UK.
  • Karshikoff, A. (2006c). Hydrophobic interactions. In: Non-Covalent Interactions in Proteins, pp. 91–128. Karshikoff, A. Ed, Imperial College Press, London, UK.
  • Karshikoff, A. (2006d). Non-Covalent Interactions in Proteins (Vol.). Imperial College Press, London.
  • Kavanagh, G. M., Clark, A. H. and Ross-Murphy, S. B. (2000). Heat-induced gelation of globular proteins: part 3. Molecular studies on low pH β-lactoglobulin gels. Int. J. Biol. Macromol. 28:41–50.
  • Kaya-Celiker, H. and Mallikarjunan, K. (2012). Better Nutrients and therapeutics delivery in food through nanotechnology. Food. Eng. Rev. 4:114–123.
  • Kinsella, J. E. and Whitehead, D. M. (1989). Proteins in whey: chemical, physical, and functional properties. Adv. Food Nutr. Res. 33:343–438.
  • Kitabatake, N., Wada, R. and Fujita, Y. (2001). Reversible conformational change in beta-lactoglobulin A modified with N-ethylmaleimide and resistance to molecular aggregation on heating. J. Agric. Food Chem. 49:4011–4018.
  • Kopeček, J. (2003). Smart and genetically engineered biomaterials and drug delivery systems. Eur. J. Pharm. Sci. 20:1–16.
  • Lara, C. C., Adamcik, J., Jordens, S. and Mezzenga, R. (2011). General self-assembly mechanism converting hydrolyzed globular proteins into giant multistranded amyloid ribbons. Biomacromolecules 12:1868–1875.
  • Leadley, C. (2008). Novel commercial preservation methods. In: Food Biodeterioration and Preservation, pp. 211–244. Tucker, G. S. Ed. Blackwell Publishing Ltd: Oxford, UK.
  • Lefèvre, T. and Subirade, M. (2000). Molecular differences in the formation and structure of fine-stranded and particulate β-lactoglobulin gels. Biopolymers 54:578–586.
  • Li, B., Du, W., Jin, J. and Du, Q. (2012). Preservation of (−)-epigallocatechin-3-gallate antioxidant properties loaded in heat treated β-lactoglobulin nanoparticles. J. Agric. Food Chem. 60:3477–3484.
  • Lin, C.-C. and Metters, A. T. (2006). Hydrogels in controlled release formulations: Network design and mathematical modeling. Adv. Drug Delivery Rev. 58:1379–1408.
  • Liu, F. and Urban, M. W. (2010). Recent advances and challenges in designing stimuli-responsive polymers. Prog. Polym. Sci. 35:3–23.
  • Liu, G. and Zhong, Q. (2013). Dispersible and thermal stable nanofibrils derived from glycated whey protein. Biomacromolecules 14:2146–2153.
  • Livney, Y. D. (2010). Milk proteins as vehicles for bioactives. Curr. Opin. Colloid Interface Sci. 15:73–83.
  • Livney, Y. D. (2012). Biopolymeric amphiphiles and their assemblies as functional food ingredients and nutraceutical delivery systems. In: Encapsulation Technologies and Delivery Systems for Food Ingredients and Nutraceuticals, pp. 252–273. Garti, N. and McClements, D. J., Eds., Woodhead Publishing: Cambridge UK.
  • Livney, Y. D. and Dalgleish, D. G. (2004). Specificity of disulfide bond formation during thermal aggregation in solutions of β-Lactoglobulin B and κ-casein A. J. Agric. Food Chem. 52:5527–5532.
  • Lopez-Fandiño, R., Carrascosa, A. V. and Olano, A. (1996). The effects of high pressure on whey protein denaturation and cheese-making properties of raw milk. J. Dairy Sci. 79:929–936.
  • Loveday, S. M., Rao, M. A., Creamer, L. K. and Singh, H. (2009). Factors affecting rheological characteristics of fibril gels: the case of beta-lactoglobulin and alpha-lactalbumin. J. Food Sci. 74:R47–55.
  • Loveday, S. M., Rao, M. A. and Singh, H. (2012a). Food protein nanoparticles: Formation, properties and applications. In: Food Materials Science and Engineering, pp. 263–294. Bhandari B. and Roos Y. H. Eds. pp. 222–262. Wiley-Blackwell: Oxford, UK.
  • Loveday, S. M., Su, J., Rao, M. A., Anema, S. G. and Singh, H. (2011). Effect of calcium on the morphology and functionality of whey protein nanofibrils. Biomacromolecules 12:3780–3788.
  • Loveday, S. M., Wang, X. L., Rao, M. A., Anema, S. G., Creamer, L. K. and Singh, H. (2010). Tuning the properties of β-lactoglobulin nanofibrils with pH, NaCl and CaCl2. Int. Dairy J. 20:571–579.
  • Loveday, S. M., Wang, X. L., Rao, M. A., Anema, S. G. and Singh, H. (2012b). β-Lactoglobulin nanofibrils: Effect of temperature on fibril formation kinetics, fibril morphology and the rheological properties of fibril dispersions. Food Hydrocolloids 27:242–249.
  • Machado, L. F., Pereira, R. N., Martins, R. C., Teixeira, J. A. and Vicente, A. A. (2010). Moderate electric fields can inactivate Escherichia coli at room temperature. J. Food Eng. 96:520–527.
  • Madureira, A. R., Pereira, C. I., Gomes, A. M. P., Pintado, M. E. and Xavier Malcata, F. (2007). Bovine whey proteins—Overview on their main biological properties. Food Res. Int. 40:1197–1211.
  • Maltais, A., Remondetto, G. E., Gonzalez, R. and Subirade, M. (2005). Formation of soy protein isolate cold-set gels: Protein and salt effects. J. Food Sci. 70:C67–C73.
  • Masson, P. (1992). Pressure denaturation of proteins. In: High Pressure and Biotechnology, pp. 89–99. Balny, C., Hayashi, K., Heremans, K. and Masson, P. Eds., Colloque Inserm/ John Libbey Eurotext: London, UK.
  • Matalanis, A., Jones, O. G. and McClements, D. J. (2011). Structured biopolymer-based delivery systems for encapsulation, protection, and release of lipophilic compounds. Food Hydrocolloids 25:1865–1880.
  • McSwiney, M., Singh, H., Campanella, O. and Creamer, L. K. (1994). Thermal gelation and denaturation of bovine β-lactoglobulins A and B. J. Dairy Res. 61:221–232.
  • Mody, C. C. M. (2008). The larger world of nano. Physics Today 61:38–43.
  • Mohamed, M. E. A. and Eissa, A. H. A. (2012). Pulsed Electric Fields for Food Processing Technology, Structure and Function of Food Engineering, In: InTech pp. 275–306. Ayman Amer Eissa (Ed.), Chapter 11, DOI: 10.5772/48678. Available from: http://www.intechopen.com/books/structure-and-function-of-food-engineering/pulsed-electric-fields-for-food-processing-technology
  • Morr, C. V. (1985). Functionality of heated milk proteins in dairy and related foods. J. Dairy Sci. 68:2773–2781.
  • Mozhaev, V. V., Lange, R., Kudryashova, E. V. and Balny, C. (1996). Application of high hydrostatic pressure for increasing activity and stability of enzymes. Biotechnol. Bioeng. 52:320–331.
  • Mulvihill, D. M. and Kinsella, J. E. (1988). Gelation of β-lactoglobulin: Effects of sodium chloride and calcium chloride on the rheological and structural properties of gels. J. Food Sci. 53:231–236.
  • Mulvihill, D. M., Rector, D. and Kinsella, J. E. (1991). Mercaptoethanol, N-ethylmaleimide, propylene-Glycol and urea effects on rheological properties of thermally induced beta-lactoglobulin gels at alkaline Ph. J. Food Sci. 56:1338–1341.
  • Nagpal, R., Behare, P., Rana, R., Kumar, A., Kumar, M., Arora, S., Morotta, F., Jain, S. and Yadav, H. (2011). Bioactive peptides derived from milk proteins and their health beneficial potentials: an update. Food Funct. 2:18–27.
  • Nicolai, T., Britten, M. and Schmitt, C. (2011). β-Lactoglobulin and WPI aggregates: Formation, structure and applications. Food Hydrocolloids 25:1945–1962.
  • Nicolai, T. and Durand, D. (2013). Controlled food protein aggregation for new functionality. Curr. Opin. Colloid Interface Sci. 18:249–256.
  • Oh, J. K., Lee, D. I. and Park, J. M. (2009). Biopolymer-based microgels/nanogels for drug delivery applications. Prog. Polym. Sci. 34:1261–1282.
  • Otte, J., Ipsen, R., Bauer, R., Bjerrum, M. J. and Waninge, R. (2005). Formation of amyloid-like fibrils upon limited proteolysis of bovine α-lactalbumin. Int. Dairy J. 15:219–229.
  • Otte, J., Lomholt, S. B., Ipsen, R., Stapelfeldt, H., Bukrinsky, J. T. and Qvist, K. B. (1997). Aggregate formation during hydrolysis of β-lactoglobulin with a Glu and Asp specific protease from bacillus licheniformis. J. Agric. Food Chem. 45:4889–4896.
  • Otte, J., Schumacher, E., Ipsen, R., Ju, Z. Y. and Qvist, K. B. (1999). Protease-induced gelation of unheated and heated whey proteins: effects of pH, temperature, and concentrations of protein, enzyme and salts. Int. Dairy J. 9:801–812.
  • Parrott, D. L. (1992). Use of Ohmic heating for aseptic processing of food particulates. Food Technol. 46:68–72.
  • Peppas, N. A., Hilt, J. Z., Khademhosseini, A. and Langer, R. (2006). Hydrogels in biology and medicine: From molecular principles to bionanotechnology. Adv. Mater. 18:1345–1360.
  • Pereira, R. N., Souza, B. W. S., Cerqueira, M. A., Teixeira, J. A. and Vicente, A. A. (2010). Effects of electric fields on protein unfolding and aggregation: Influence on edible films formation. Biomacromolecules 11:2912–2918.
  • Pereira, R. N., Teixeira, J. A. and Vicente, A. A. (2011). Exploring the denaturation of whey proteins upon application of moderate electric fields: A kinetic and thermodynamic study. J. Agric. Food Chem. 59:11589–11597.
  • Pereira, R. N. and Vicente, A. A. (2010). Environmental impact of novel thermal and non-thermal technologies in food processing. Food Res. Int. 43:1936–1943.
  • Pérez-Gago, M. B., Nadaud, P. and Krochta, J. M. (1999). Water vapor permeability, solubility, and tensile properties of heat-denatured versus native whey protein films. J. Food Sci. 64:1034–1037.
  • Phan-Xuan, T., Durand, D., Nicolai, T., Donato, L., Schmitt, C. and Bovetto, L. (2013). Tuning the structure of protein particles and gels with calcium or sodium ions. Biomacromolecules 14:1980–1989.
  • Pizones, R.-H., Víctor, M., Martinez, M. J., Carrera, S. C., Rodríguez, P., Juan, M. and Pilosof, A. M. R. (2014). Mixed soy globulins and β-lactoglobulin systems behaviour in aqueous solutions and at the air—water interface. Food Hydrocolloids 35:106–114.
  • Puyol, P., Pérez, M. D. and Horne, D. S. (2001). Heat-induced gelation of whey protein isolates (WPI): effect of NaCl and protein concentration. Food Hydrocolloids 15:233–237.
  • Ramos, O. L., Fernandes, J. C., Silva, S. I., Pintado, M. E. and Malcata, F. X. (2012a). Edible films and coatings from whey proteins: a review on formulation, and on mechanical and bioactive properties. Crit. Rev. Food Sci. Nutr. 52:533–552.
  • Ramos, O. L., Pereira, J. O., Silva, S. I., Amorim, M. M., Fernandes, J. C., Lopes-da-Silva, J. A., Pintado, M. E. and Malcata, F. X. (2012b). Effect of composition of commercial whey protein preparations upon gelation at various pH values. Food Res. Int. 48:681–689.
  • Ramos, Ó. L., Reinas, I., Silva, S. I., Fernandes, J. C., Cerqueira, M. A., Pereira, R. N., Vicente, A. A., Poças, M. F., Pintado, M. E. and Malcata, F. X. (2013). Effect of whey protein purity and glycerol content upon physical properties of edible films manufactured therefrom. Food Hydrocolloids 30:110–122.
  • Relkin, P. and Shukat, R. (2012). Food protein aggregates as vitamin-matrix carriers: Impact of processing conditions. Food Chem. 134:2141–2148.
  • Remondetto, G. E., Beyssac, E. and Subirade, M. (2004). Iron availability from whey protein hydrogels:  An in vitro study. J. Agric. Food Chem. 52:8137–8143.
  • Remondetto, G. E., Paquin, P. and Subirade, M. (2002). Cold Gelation of β-lactoglobulin in the presence of iron. J. Food Sci. 67:586–595.
  • Remondetto, G. E. and Subirade, M. (2003). Molecular mechanisms of Fe2+-induced beta-lactoglobulin cold gelation. Biopolymers 69:461–469.
  • Rodrigues, R. M., Martins, A. J., Ramos, O. L., Malcata, F. X., Teixeira, J. A., Vicente, A. A. and Pereira, R. N. (2015). Influence of moderate electric fields on gelation of whey protein isolate. Food Hydrocolloids 43:329–339.
  • Roefs, S. P. F. M. and De Kruif, K. G. (1994). A model for the denaturation and aggregation of β-lactoglobulin. Eur. J. Biochem. 226:883–889.
  • Rubinstein, M. and Colby, R. H. (2003). Polymer Physics (Vol.). Oxford University Press, Oxford.
  • Sadeghi, R., Kalbasi, A., Emam-jomeh, Z., Razavi, S. H., Kokini, J. and Moosavi-Movahedi, A. A. (2013). Biocompatible nanotubes as potential carrier for curcumin as a model bioactive compound. J. Nanopart. Res. 15:1–11.
  • Sagis, L. M., Veerman, C. and van der Linden, E. (2004). Mesoscopic properties of semiflexible amyloid fibrils. Langmuir. 20:924–927.
  • Sahiner, N., Alb, A. M., Graves, R., Mandal, T., McPherson, G. L., Reed, W. F. and John, V. T. (2007). Core–shell nanohydrogel structures as tunable delivery systems. Polymer 48:704–711.
  • Said, H. M., Abd Alla, S. G. and El-Naggar, A. W. M. (2004). Synthesis and characterization of novel gels based on carboxymethyl cellulose/acrylic acid prepared by electron beam irradiation. React. Funct. Polym. 61:397–404.
  • Sanghoon, K. and Sundaram, G. (2009). In situ microstructure evaluation during gelation of β-lactoglobulin. J. Food Eng. 90:161–170.
  • Santos, M. J., Teixeira, J. A. and Rodrigues, L. R. (2012). Fractionation of the major whey proteins and isolation of β-Lactoglobulin variants by anion exchange chromatography. Sep. Purif. Technol. 90:133–139.
  • Sarkar, A., Goh, K. K. T., Singh, R. P. and Singh, H. (2009). Behaviour of an oil-in-water emulsion stabilized by β-lactoglobulin in an in vitro gastric model. Food Hydrocolloids 23:1563–1569.
  • Sasso, L., Suei, S., Domigan, L., Healy, J., Nock, V., Williams, M. A. K. and Gerrard, J. A. (2014). Versatile multi-functionalization of protein nanofibrils for biosensor applications. Nanoscale 6:1629–1634.
  • Sawyer, W. H. (1968). Heat denaturation of bovine β-lactoglobulins and relevance of disulfide aggregation. J. Dairy Sci. 51:323–329.
  • Schuetz, Y. B., Gurny, R. and Jordan, O. (2008). A novel thermoresponsive hydrogel based on chitosan. Eur. J. Pharm. Biopharm. 68:19–25.
  • Sharma, R. (2012). Food structures and delivery of nutrients. In: Food Materials Science and Engineering, pp. 204–221. Bhandari, B. and Roos, Y. H., Eds., Wiley-Blackwell: Oxford, UK.
  • Shiga, T. (1997). Deformation and viscoelastic behavior of polymer gels in electric fields. In: Neutron Spin Echo Spectroscopy Viscoelasticity Rheology, pp. 131–163. Springer, Berlin Heidelberg.
  • Shimada, K. and Cheftel, J. C. (1989). Sulfhydryl group/disulfide bond interchange reactions during heat-induced gelation of whey protein isolate. J. Agric. Food Chem. 37:161–168.
  • Shpigelman, A., Cohen, Y. and Livney, Y. D. (2012). Thermally-induced β-lactoglobulin—EGCG nanovehicles: Loading, stability, sensory and digestive-release study. Food Hydrocolloids 29:57–67.
  • Shpigelman, A., Israeli, G. and Livney, Y. D. (2010). Thermally-induced protein–polyphenol co-assemblies: beta lactoglobulin-based nanocomplexes as protective nanovehicles for EGCG. Food Hydrocolloids 24:735–743.
  • Smilowitz, J. T., Dillard, C. J. and German, J. B. (2005). Milk beyond essential nutrients: The metabolic food. Aust. J. Dairy Technol. 60:77–83.
  • Somchue, W., Sermsri, W., Shiowatana, J. and Siripinyanond, A. (2009). Encapsulation of α-tocopherol in protein-based delivery particles. Food Res. Int. 42:909–914.
  • Stading, M. and Hermansson, A.-M. (1990). Viscoelastic behaviour of β-lactoglobulin gel structures. Food Hydrocolloids 4:121–135.
  • Stading, M. and Hermansson, A.-M. (1991). Large deformation properties of β-lactoglobulin gel structures. Food Hydrocolloids 5:339–352.
  • Stading, M., Langton, M. and Hermansson, A.-M. (1992). Inhomogeneous fine-stranded β-lactoglobulin gels. Food Hydrocolloids 6:455–470.
  • Stokes, J. R. (2012). Food biopolymer gels, microgel and nanogel structures, formation and rheology. In: Food Materials Science and Engineering, pp. 151–176. Bhandari, B. and Roos, Y. H., Eds., Wiley-Blackwell: Oxford, UK.
  • Svendsen, I. and Breddam, K. (1992). Isolation and amino acid sequence of a glutamic acid specific endopeptidase from Bacillus licheniformis. Eur. J. Biochem. 204:165–171.
  • Tanaka, N. and Kunugi, S. (1996). Effect of pressure on the deuterium exchange reaction of α-lactalbumin and β-lactoglobulin. Int. J. Biol. Macromol. 18:33–39.
  • Tarhan, O., Tarhan, E. and Harsa, S. (2014). Investigation of the structure of alpha-lactalbumin protein nanotubes using optical spectroscopy. J. Dairy Res. 81:98–106.
  • Tavares, G. M., Croguennec, T., Carvalho, A. F. and Bouhallab, S. (2014). Milk proteins as encapsulation devices and delivery vehicles: Applications and trends. Trends Food Sci. Technol. 37:5–20.
  • TNS-BMRB - Food Standards Agency and BMRB Ltd. (2011). FSA citizens’ forums: nanotechnology and food. In: FSA Citizens Forums: Nanotechnology and Food, p. 39 (JN21986). Food Standards Agency. (available at: http://www.food.gov.uk/multimedia/pdfs/publication/fsacfnanotechnologyfood.pdf)
  • Toepfl, S., Heinz, V. and Knorr, D. (2007). High intensity pulsed electric fields applied for food preservation. Chem. Eng. Process. 46:537–546.
  • Toepfla, S., Mathysa, A., Heinzb, V. and Knorr, D. (2006). Review: Potential of high hydrostatic pressure and pulsed electric fields for energy efficient and environmentally friendly food processing. Food Res. Int. 22:405–423.
  • Tokarev, I. and Minko, S. (2009). Stimuli-responsive hydrogel thin films. Soft Matter 5:511–524.
  • Totosaus, A., Montejano, J. G., Salazar, J. A. and Guerrero, I. (2002). A review of physical and chemical protein-gel induction. Int. J. Food Sci. Technol. 37:589–601.
  • Vadivambal, R. and Jayas, D. S. (2010). Non-uniform temperature distribution during microwave heating of food materials—A review. Food Bioprocess Technol. 3:161–171.
  • Veerman, C., Sagis, L. M. C., Heck, J. and van der Linden, E. (2003). Mesostructure of fibrillar bovine serum albumin gels. Int. J. Biol. Macromol. 31:139–146.
  • Velusamy, V. and Palaniappan, L. (2011). Compositional analysis α-lactalbumin. Amer. J. Biochem. Mol. Biol. 1:106–120.
  • Vermonden, T., Censi, R. and Hennink, W. E. (2012). Hydrogels for protein delivery. Chem. Rev. 112:2853–2888.
  • Villamiel, M., Corzo, N., Martínez-Castro, I. and Olano, A. (1996). Chemical changes during microwave treatment of milk. Food Chem. 56:385–388.
  • Vinogradov, S. V., Bronich, T. K. and Kabanov, A. V. (2002). Nanosized cationic hydrogels for drug delivery: preparation, properties and interactions with cells. Adv. Drug Delivery Rev. 54:135–147.
  • Wehbi, Z., Perez, M. D., Sanchez, L., Pocovi, C., Barbana, C. and Calvo, M. (2005). Effect of heat treatment on denaturation of bovine alpha-lactalbumin: determination of kinetic and thermodynamic parameters. J. Agric. Food Chem. 53:9730–9736.
  • Wildman, R. E. C. (2006). Handbook of Nutraceuticals and Functional Foods (Vol.). CRC Press, Boca Raton FL.
  • Ye, A., Singh, H., James Oldfield, D. and Anema, S. (2004). Kinetics of heat-induced association of β-lactoglobulin and α-lactalbumin with milk fat globule membrane in whole milk. Int. Dairy J. 14:389–398.
  • Zeng, X. A., Yu, S. J., Zhang, L. and Chen, X. D. (2008). The effects of AC electric field on wine maturation. Innovat. Food Sci. Emerg. Tech. 9:463–468.
  • Zhao, C., Zhuang, X., He, P., Xiao, C., He, C., Sun, J., Chen, X. and Jing, X. (2009). Synthesis of biodegradable thermo- and pH-responsive hydrogels for controlled drug release. Polymer 50:4308–4316.
  • Zimet, P. and Livney, Y. D. (2009). Beta-lactoglobulin and its nanocomplexes with pectin as vehicles for ω-3 polyunsaturated fatty acids. Food Hydrocolloids 23:1120–1126.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.