1,907
Views
99
CrossRef citations to date
0
Altmetric
Articles

Challenges associated in stability of food grade nanoemulsions

, &

References

  • Abismail, B., Canselier, J. P., Wilhelm, A. M., Delmas, H. and Gourdon, C. (1999). Emulsification by ultrasound: Drop size distribution and stability. Ultrason. Sonochem. 6:75–83.
  • Acosta, E. (2009). Bioavailability of nanoparticles in nutrient and nutraceutical delivery. Curr. Opin. Colloid In. 14:3–15.
  • Ahmed, K., Li, Y., McClements, D. J. and Xiao, H. (2012). Nanoemulsion- and emulsion-based delivery systems for curcumin: Encapsulation and release properties. Food Chem. 132:799–807.
  • Anandharamakrishnan, C. (2013). Techniques for Nanoencapsulation of Food Ingredients. Springer, New York.
  • Anjali, C. H., Sharma, Y., Mukherjee, A. and Chandrasekaran, N. (2012). Neem oil (Azadirachta indica) nanoemulsion—a potent larvicidal agent against Culex quinquefasciatus. Pest Manag. Sci. 68:158–163.
  • Anton, N., Benoit, J. P. and Saulnier, P. (2008). Design and production of nanoparticles formulated from nano-emulsion templates—a review. J. Control Release. 128:185–199.
  • Anton, N. and Vandamme, T. F. (2009). The universality of low-energy nanoemulsification. Int. J. Pharmaceut. 377:142–147.
  • Belhaj, N., Arab-Tehrany, E. and Linder, M. (2010). Oxidative kinetics of salmon oil in bulk and in nanoemulsion stabilized by marine lecithin. Process Biochem. 45:187–195.
  • Bouwmeester, H., Dekkers, S., Noordam, M. Y., Hagens, W. I., Bulder, A. S., Heer, C., ten Voorde, S. E., Wijnhoven, S. W., Marvin, H. J. and Sips, A. J. (2009). Review of health safety aspects of nanotechnologies in food production. Regul. Toxicol. Pharm. 53:52–62.
  • Britten, M. and Giroux, H. J. (1991). Coalescence index of protein-stabilized emulsions. J. Food Sci. 56:792–795.
  • Buranasuksombat, U., Kwon, Y. J., Turner, M. and Bhandari, B. (2011). Influence of emulsion droplet size on antimicrobial properties. Food Sci. Biotechnol. 20:793–800.
  • Capek, I. (2004). Degradation of kinetically-stable o/w emulsions. Adv. Colloid. Interface Sci. 107:125–155.
  • Chen, L., Remondetto, G. E. and Subirade, M. (2006). Food protein-based materials as nutraceutical delivery systems. Trends Food Sci. Tech. 17:272–283.
  • Chiralt, L. (2009). Food emulsion. In: Food Engineering, Vol. II, pp. 150–175. Barbosa-Canovas, G. V., Eds., EOLSS, Paris.
  • Damodaran, S. and Anand, K. (1997). Sulfhydryl-disulfide interchange-induced interparticle protein polymerization in whey protein-stabilized emulsions and its relation to emulsion stability. J. Agr. Food Chem. 45:3813–3820.
  • Delmas, T., Piraux, H., Couffin, A. C., Texier, I., Vinet, F., Poulin, P. and Bibette, J. (2011). How to prepare and stabilize very small nanoemulsions. Langmuir. 27:1683–1692.
  • Desrumaux, A. and Marcand, J. (2002). Formation of sunflower oil emulsions stabilized by whey proteins with high-pressure homogenization (up to 350 Mpa): Effect of pressure on emulsion characteristics. Int. J. Food Sci. Tech. 37:263–269.
  • Dey, T. K., Ghosh, S., Ghosh, M., Koley, H. and Dhar, P. (2012). Comparative study of gastrointestinal absorption of EPA & DHA rich fish oil from nano and conventional emulsion formulation in rats. Food Res. Int. 49:72–79.
  • Dickinson, E. (2009). Hydrocolloids as emulsifiers and emulsion stabilizers. Food Hydrocolloid. 23:1473–1482.
  • Donsi, F., Annunziata, M., Sessa, M. and Ferrari, G. (2011). Nanoencapsulation of essential oils to enhance their antimicrobial activity in foods. LWT-Food Sci. Technol. 44:1908–1914.
  • Eid, M., Mustafa, A., Ali Elmarzugi, N. and Ali El-Enshasy, H. (2013). Preparation and evaluation of olive oil nanoemulsion using sucrose monoester. Int. J. Pharm. Pharmceut. Sci. 44:434.
  • Ezhilarasi, P. N., Karthik, P., Chhanwal, N. and Anandharamakrishnan, C. (2013). Nanoencapsulation techniques for food bioactive components: A review. Food Bioproc. Tech. 6:628–647.
  • Fernandez, P., Andre, V., Rieger, J. and Kuhnle, A. (2004). Nano-emulsion formation by emulsion phase inversion. Colloids Surf A Physicochem. Eng. Asp. 251:53–58.
  • Ghosh, V., Mukherjee, A. and Chandrasekaran, N. (2013). Ultrasonic emulsification of food-grade nanoemulsion formulation and evaluation of its bactericidal activity. Ultrason. Sonochem. 20:338–344.
  • Gutierrez, J. M., Gonzalez, C., Maestro, A., Sole, I., Pey, C. M. and Nolla, J. (2008). Nano-emulsions: New applications and optimization of their preparation. Curr. Opin. Colloid In. 13:245–251.
  • Hagens, W. I., Oomen, A. G., de Jong, W. H., Cassee, F. R. and Sips, A. J. (2007). What do we (need to) know about the kinetic properties of nanoparticles in the body? Regul. Toxicol. Pharm. 49:217–229.
  • Henry, J. V., Fryer, P. J., Frith, W. J. and Norton, I. T. (2010). The influence of phospholipids and food proteins on the size and stability of model sub-micron emulsions. Food Hydrocolloid. 24:66–71.
  • Heurtault, B., Saulnier, P., Pech, B., Proust, J. E. and Benoit, J. P. (2003). Physico-chemical stability of colloidal lipid particles. Biomaterials. 24:4283–4300.
  • Hunter, R. J. (1989). Foundations of Colloid Science, Vol. 2. Oxford University Press, Oxford, UK.
  • Jafari, S. M., He, Y. H. and Bhandari, B. (2006). Nano-emulsion production by sonication and microfluidization—a comparison. Int. J. Food Prop. 9:475–485.
  • Jafari, S. M., He, Y. H. and Bhandari, B. (2007). Optimization of nano-emulsions production by microfluidization. Eur. Food Res. Technol. 225:733–741.
  • Johnson, L. R. (2001). Gastrointestinal Physiology, 6th ed. Mosby, St. Louis, MO.
  • Kabalnov, A. (2001). Ostwald ripening and related phenomena. J. Dispersion Sci. Technol. 22:1–12.
  • Karthik, P. and Anandharamakrishnan, C. (2013). Microencapsulation of docosahexaenoic acid by spray-freeze-drying method and comparison of its stability with spray-drying and freeze-drying methods. Food Bioprocess Tech. 6:2780–2790.
  • Katsumoto, Y., Ushiki, H., Mendiboure, B., Graciaa, A. and Lachaise, J. (2000). Evolutionary behavior of miniemulsion phases: II. Growth mechanism of miniemulsion droplets. J. Phys. Condens. Matter. 12:3569.
  • Kentish, S., Wooster, T. J., Ashokkumar, M., Balachandran, S., Mawson, R. and Simons, L. (2008). The use of ultrasonics for nanoemulsion preparation. Innov. Food Sci. Emerg. 9:170–175.
  • Kim, H. J., Decker, E. A. and McClements, D. J. (2002). Impact of protein surface denaturation on droplet flocculation in hexadecane oil-in-water emulsions stabilized by beta-lactoglobulin. J. Agr. Food Chem. 50:7131–7137.
  • Kim, I. H., Lee, H., Kim, J. E., Song, K. B., Lee, Y. S., Chung, D. S. and Min, S. C. (2013). Plum coatings of lemongrass oil-incorporating carnauba wax-based nanoemulsion. J. Food Sci. 78:E1551–E1559.
  • Lawrence, M. J. and Rees, G. D. (2012). Microemulsion-based media as novel drug delivery systems. Adv. Drug. Deliver Rev. 45:89–121.
  • Lee, S. J., Choi, S. J., Li, Y., Decker, E. A. and McClements, D. J. (2011). Protein-stabilized nanoemulsions and emulsions: Comparison of physicochemical stability, lipid oxidation, and lipase digestibility. J. Agr. Food Chem. 59:415–427.
  • Leong, T. S. H., Wooster, T. J., Kentish, S. E. and Ashokkumar, M. (2009). Minimising oil droplet size using ultrasonic emulsification. Ultrason. Sonochem. 16:721–727.
  • Li, Y., Le Maux, S., Xiao, H. and McClements, D. J. (2009). Emulsion-based delivery systems for tributyrin, a potential colon cancer preventative agent. J. Agr. Food Chem. 57:9243–9249.
  • Li, Y., Zheng, J., Xiao, H. and McClements, D. J. (2012). Nanoemulsion-based delivery systems for poorly water-soluble bioactive compounds: Influence of formulation parameters on polymethoxyflavone crystallization. Food Hydrocolloid. 27:517–528.
  • Liang, R., Shoemaker, C. F., Yang, X., Zhong, F. and Huang, Q. (2013). Stability and bioaccessibility of β-carotene in nanoemulsions stabilized by modified starches. J. Agr. Food Chem. 61:1249–1257.
  • Lieberman, H. A., Rieger, M. M. and Banker, G. S. (1989). Pharmaceutical Dosage Forms: Disperse Systems, Vol. 2. Mercel Dekker, New York.
  • Lifshitz, I. M. and Slyozov, V. V. (1961). The kinetics of precipitation from supersaturated solid solutions. J. Phys. Chem. Solids. 19:35–50.
  • Liu, W., Sun, D., Li, C., Liu, Q. and Xu, J. (2006). Formation and stability of paraffin oil-in-water nano-emulsions prepared by the emulsion inversion point method. J. Colloid. Interface. Sci. 303:557–563.
  • Madene, A., Jacquot, M., Scher, J. and Desobry, S. (2006). Flavour encapsulation and controlled release: A review. Int. J. Food Sci. Tech. 41:1–21.
  • Mao, L., Xu, D., Yang, J., Yuan, F., Gao, Y. and Zhao, J. (2009). Effect of small and large molecules emulsifiers on the characteristics of β-carotene nanoemulsions prepared by high pressure homogenization. Food Technol. Biotech. 47:336–342.
  • McClements, D. J. (2005). Food Emulsions: Principles, Practice, and Techniques, 2nd ed.. CRC Press, Boca Raton, FL.
  • McClements, D. J. and Rao, J. (2011). Food-grade nanoemulsions: Formulation, fabrication, properties, performance, biological fate, and potential toxicity. Crit. Rev. Food Sci. 51:285–330.
  • Mohd-Setapar, S. H., Nian-Yian, L., Kamarudin, W. N. W., Idham, Z. and Norfahana, A. T. (2013). Omega-3 emulsion of rubber (Hevea brasiliensis) seed oil. Agr. Sci. 4:84.
  • Mondain-Monval, O., Leal-Calderon, F. and Bibette, J. (1996). Forces between emulsion droplets: Role of surface charges and excess surfactant. J. de Physique II. 6:1313–1329.
  • Moschakis, T., Murray, B. S. and Biliaderis, C. G. (2010). Modifications in stability and structure of whey protein-coated o/w emulsions by interacting chitosan and gum arabic mixed dispersions. Food Hydrocolloid. 24:8–17.
  • Neethirajan, S. and Jayas, D. S. (2010). Nanotechnology for the food and bioprocessing industries. Food Bioproc. Tech. 4:39–47.
  • Ng, S. H., Woi, P. M., Basri, M. and Ismail, Z. (2013). Characterization of structural stability of palm oil esters-based nanocosmeceuticals loaded with tocotrienol. J. Nanobiotechnol. 11:27.
  • Porras, M., Solans, C., Gonzalez, C. and Gutierrez, J. M. (2008). Properties of water-in-oil (W/O) nano-emulsions prepared by a low-energy emulsification method. Colloid. Surf. A. 324:181–188.
  • Povey, M. and Ding, Y. L. (2010). Nanodispersion and method of formation thereof. WIPO Patent WO/2010/038087.
  • Qian, C., Decker, E. A., Xiao, H. and McClements, D. J. (2012). Physical and chemical stability of β-carotene-enriched nanoemulsions: Influence of pH, ionic strength, temperature, and emulsifier type. Food Chem. 132:1221–1229.
  • Quintanilla-Carvajal, M. X., Camacho-Diaz, B. H., Meraz-Torres, L. S., Chanona-Perez, J. J., Alamilla-Beltran, L., Jimenez-Aparicio, A. and Gutierrez-Lopez, G. F. (2010). Nanoencapsulation: A new trend in food engineering processing. Food Eng. Rev. 2:39–50.
  • Ramalingam, K., Amaechi, B. T., Ralph, R. H. and Lee, V. A. (2012). Antimicrobial activity of nanoemulsion on cariogenic planktonic and biofilm organisms. Arch. Oral. Biol. 57:15–22.
  • Rao, J., Decker, E. A., Xiao, H. and McClements, D. J. (2013). Nutraceutical nanoemulsions: Influence of carrier oil composition (digestible versus indigestible oil) on β-carotene bioavailability. J. Sci. Food Agr. 93:3175–3183.
  • Rao, J. and McClements, D. J. (2011). Food-grade microemulsions, nanoemulsions and emulsions: Fabrication from sucrose monopalmitate & lemon oil. Food Hydrocolloid. 25:1413–1423.
  • Rao, J. and McClements, D. J. (2012). Impact of lemon oil composition on formation and stability of model food and beverage emulsions. Food chem. 134:749–757.
  • Robins, M. M. (2000). Lipid emulsions. Grasas y aceites. 51:26–34.
  • Roland, I., Piel, G., Delattre, L. and Evrard, B. (2003). Systematic characterization of oil-in-water emulsions for formulation design. Int. J. Pharmaceut. 263:85–94.
  • Salvia-Trujillo, L., Rojas-Grau, A., Soliva-Fortuny, R. and Martin-Belloso, O. (2013). Effect of processing parameters on physicochemical characteristics of microfluidized lemongrass essential oil-alginate nanoemulsions. Food Hydrocolloid. 30:401–407.
  • Sanguansri, P. and Augustin, M. A. (2006). Nanoscale materials development—a food industry perspective. Trends Food Sci. Tech. 17:547–556.
  • Schubert, H. and Engel, R. (2004). Product and formulation engineering of emulsions. Chem. Eng. Res. Des. 82:1137–1143.
  • Sessa, M., Casazza, A. A., Perego, P., Tsao, R., Ferrari, G. and Donsi, F. (2012). Exploitation of polyphenolic extracts from grape marc as natural antioxidants by encapsulation in lipid-based nanodelivery systems. Food Bioprocess Tech. 6:2609–2620.
  • Sessa, M., Tsao, R., Liu, R., Ferrari, G. and Donsi, F. (2011). Evaluation of the stability and antioxidant activity of nanoencapsulated resveratrol during in vitro digestion. J. Agr. Food Chem. 59:12352–12360.
  • Sharma, N., Bansal, M., Visht, S., Sharma, P. K. and Kulkarni, G. T. (2010). Nanoemulsion: A new concept of delivery system. Chron. Young Scientists. 1:2.
  • Silva, H. D., Cerqueira, M. A. and Vicente, A. A. (2012). Nanoemulsions for food applications: Development and characterization. Food Bioprocess Tech. 5:854–867.
  • Solans, C. and Sole, I. (2012). Nano-emulsions: Formation by low-energy methods. Curr. Opin. Colloid In. 17:246–254.
  • Sole, I., Maestro, A., Pey, C., Gonzalez, C., Solans, C. and Gutierrez, J. M. (2006). Nano-emulsions preparation by low energy methods in an ionic surfactant system. Colloids Surf. A Physicochem. Eng. Asp. 288:138–143.
  • Sozer, N. and Kokini, J. L. (2009). Nanotechnology and its applications in the food sector. Trends Biotechnol. 27:82–89.
  • Stang, M., Schuchmann, H. and Schubert, H. (2001). Emulsification in high-pressure homogenizers. Eng. Life Sci. 1:151–157.
  • Sugumar, S., Nirmala, J., Ghosh, V., Anjali, H., Mukherjee, A. and Chandrasekaran, N. (2013). Bio-based nanoemulsion formulation, characterization and antibacterial activity against food-borne pathogens. J. Basic Microb. 53:677–685.
  • Tadros, T. F. (2009). Emulsion Science and Technology: A General Introduction. Wiley-VCH, Weinheim.
  • Tadros, T., Izquierdo, P., Esquena, J. and Solans, C. (2004). Formation and stability of nano-emulsions. Adv. Colloid Interface Sci. 108:303–318.
  • Takegami, S., Kitamura, K., Kawada, H., Matsumoto, Y., Kitade, T., Ishida, H. and Nagata, C. (2008). Preparation and characterization of a new lipid nano-emulsion containing two cosurfactants, sodium palmitate for droplet size reduction and sucrose palmitate for stability enhancement. Chem. Pharm. Bull. 56:1097–1102.
  • Tang, S. Y. and Sivakumar, M. (2013). A novel and facile liquid whistle hydrodynamic cavitation reactor to produce submicron multiple emulsions. AIChE. J. 59:155–167.
  • Taylor, P. (1998). Ostwald ripening in emulsions. Adv. Colloid Interface Sci. 75:107–163.
  • Teixeira, P. C., Leite, G. M., Domingues, R. J., Silva, J., Gibbs, P. A. and Ferreira, J. P. (2007). Antimicrobial effects of a microemulsion and a nanoemulsion on enteric and other pathogens and biofilms. Int. J. Food Microbiol. 118:15–19.
  • Teo, B. S. X., Basri, M., Zakaria, M. R. S., Salleh, A. B., Rahman, R. N. and Rahman, M. B. (2010). A potential tocopherol acetate loaded palm oil esters-in-water nanoemulsions for nanocosmeceuticals. J. Nanobiotechnol. 8(4):1–11.
  • Thakur, R. K., Villette, C., Aubry, J. M. and Delaplace, G. (2008). Dynamic emulsification and catastrophic phase inversion of lecithin-based emulsions. Colloids Surf A Physicochem Eng Asp. 315:285–293.
  • Wagner, C. (1961). Theorie der alterung von niederschlagen durch umlosen (Ostwald-Reifung). Z Elektrochem. 65:581–591.
  • Walstra, P. (1996). Emulsion stability. In: Encyclopedia of Emulsion Technology. Becher, P., Eds., Marcel Dekker, New York.
  • Wang, X., Jiang, Y., Wang, Y. W., Huang, M. T., Hoa, C. T. and Huang, Q. (2008). Enhancing anti-inflammation activity of curcumin through O/W nanoemulsions. Food Chem. 108:419–424.
  • Weiss, J., Takhistov, P. and McClements, D. J. (2006). Functional materials in food nanotechnology. J. Food Sci. 71:R107–R116.
  • Wooster, T. J., Golding, M. and Sanguansri, P. (2008). Impact of oil type on nanoemulsion formation and Ostwald ripening stability. Langmuir. 24:12758–12765.
  • Wulff-Perez, M., Torcello-Gomez, A., Galvez-Ruiz, M. J. and Martin-Rodriguez, A. (2009). Stability of emulsions for parenteral feeding: Preparation and characterization of o/w nanoemulsions with natural oils and Pluronic f68 as surfactant. Food Hydrocolloid. 23:1096–1102.
  • Yin, L., Chu, B., Kobayashi, I. and Nakajima, M. (2009). Performance of selected emulsifiers and their combinations in the preparation of beta-carotene nanodispersions. Food Hydrocolloid. 23:1617–1622.
  • Yuan, Y., Gao, Y., Zhao, J. and Mao, L. (2008). Characterization and stability evaluation of [beta]-carotene nanoemulsions prepared by high pressure homogenization under various emulsifying conditions. Food Res. Int. 41:61–68.
  • Ziani, K., Chang, Y., McLandsborough, L. and McClements, D. J. (2011). Influence of surfactant charge on antimicrobial efficacy of surfactant-stabilized thyme oil nanoemulsions. J. Agr. Food Chem. 59:6247–6255.
  • Zimet, P., Rosenberg, D. and Livney, Y. D. (2011). Re-assembled casein micelles and casein nanoparticles as nano-vehicles for ω-3 polyunsaturated fatty acids. Food hydrocolloid. 25:1270–1276.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.