785
Views
11
CrossRef citations to date
0
Altmetric
Research Article

Contemporary nucleic acid-based molecular techniques for detection, identification, and characterization of Bifidobacterium

&

References

  • Abu Al-Soud, W. and Radstrom, P. (2000). Effects of amplification facilitators on diagnostic PCR in the presence of blood, feces, and meat. J. Clin. Microbiol. 38:4463–4470.
  • Aires, J., Thouverez, M., Allano, S. and Butel, M. J. (2011). Longitudinal analysis and genotyping of infant dominant bifidobacterial populations. Syst. Appl. Microbiol. 34:536–541.
  • Alander, M., Mättö, J., Kneifel, W., Johansson, M., Kögler, B., Crittenden, R., Mattila-Sandholm, T. and Saarela, M. (2001). Effect of galacto-oligosaccharide supplementation on human faecal microflora and on survival and persistence of Bifidobacterium lactis Bb-12 in the gastrointestinal tract. Int. Dairy J. 11:817–825.
  • Atienzar, F. A. and Jha, A. N. (2006). The random amplified polymorphic DNA (RAPD) assay and related techniques applied to genotoxicity and carcinogenesis studies: a critical review. Mutat. Res. 613:76–102.
  • Baffoni, L., Stenico, V., Strahsburger, E., Gaggia, F., Di Gioia, D., Modesto, M., Mattarelli, P. and Biavati, B. (2013). Identification of species belonging to the Bifidobacterium genus by PCR-RFLP analysis of a hsp60 gene fragment. BMC Microbiol. 13:149.
  • Balajee, S. A., Sigler, L. and Brandt, M. E. (2007). DNA and the classical way: Identification of medically important molds in the 21st century. Med. Mycol. 45:475–490.
  • Balleste, E. and Blanch, A. R. (2011). Bifidobacterial diversity and the development of new microbial source tracking indicators. Appl. Environ. Microbiol. 77:3518–3525.
  • Bernhard, A. E. and Field, K. G. (2000). Identification of nonpoint sources of fecal pollution in coastal waters by using host-specific 16S ribosomal DNA genetic markers from fecal anaerobes. Appl. Environ. Microbiol. 66:1587–1594.
  • Boesten, R. J., Schuren, F. H. and de Vos, W. M. (2009). A Bifidobacterium mixed-species microarray for high resolution discrimination between intestinal bifidobacteria. J. Microbiol. Methods. 76:269–277.
  • Bonjoch, X., Balleste, E. and Blanch, A. R. (2004). Multiplex PCR with 16S rRNA gene-targeted primers of bifidobacterium spp. to identify sources of fecal pollution. Appl. Environ. Microbiol. 70:3171–3175.
  • Bouchet, V., Huot, H. and Goldstein, R. (2008). Molecular genetic basis of ribotyping. Clin. Microbiol. Rev. 21:262–273, table of contents.
  • Bourget, N., Simonet, J. M. and Decaris, B. (1993). Analysis of the genome of the five Bifidobacterium breve strains: Plasmid content, pulsed-field gel electrophoresis genome size estimation and rrn loci number. FEMS Microbiol. Lett. 110:11–20.
  • Briczinski, E. P., Loquasto, J. R., Barrangou, R., Dudley, E. G., Roberts, A. M. and Roberts, R. F. (2009). Strain-specific genotyping of Bifidobacterium animalis subsp. lactis by using single-nucleotide polymorphisms, insertions, and deletions. Appl. Environ. Microbiol. 75:7501–7508.
  • Brigidi, P., Vitali, B., Swennen, E., Altomare, L., Rossi, M. and Matteuzzi, D. (2000). Specific detection of bifidobacterium strains in a pharmaceutical probiotic product and in human feces by polymerase chain reaction. Syst. Appl. Microbiol. 23:391–399.
  • Bustin, S. A. (2005). Real-time, fluorescence-based quantitative PCR: A snapshot of current procedures and preferences. Expert Rev. Mol. Diagn. 5:493–498.
  • Bustin, S. A., Benes, V., Nolan, T. and Pfaffl, M. W. (2005). Quantitative real-time RT-PCR—a perspective. J. Mol. Endocrinol. 34:597–601.
  • Candela, M., Consolandi, C., Severgnini, M., Biagi, E., Castiglioni, B., Vitali, B., De Bellis, G. and Brigidi, P. (2010). High taxonomic level fingerprint of the human intestinal microbiota by ligase detection reaction—universal array approach. BMC Microbiol. 10:116.
  • Carmen Collado, M. and Hernandez, M. (2007). Identification and differentiation of Lactobacillus, Streptococcus and Bifidobacterium species in fermented milk products with bifidobacteria. Microbiol. Res. 162:86–92.
  • Centanni, M., Turroni, S., Biagi, E., Severgnini, M., Consolandi, C., Brigidi, P. and Candela, M. (2013). A novel combined approach based on HTF-Microbi. Array and qPCR for a reliable characterization of the Bifidobacterium-dominated gut microbiota of breast-fed infants. FEMS Microbiol. Lett. 343:121–126.
  • Cha, R. S. and Thilly, W. G. (1993). Specificity, efficiency, and fidelity of PCR. PCR Methods Appl. 3:S18–S29.
  • Chamberlain, J. S., Gibbs, R. A., Ranier, J. E., Nguyen, P. N. and Caskey, C. T. (1988). Deletion screening of the Duchenne muscular dystrophy locus via multiplex DNA amplification. Nucleic Acids Res. 16:11141–11156.
  • Chandler, D. P., Wagnon, C. A. and Bolton, H., Jr. (1998). Reverse transcriptase (RT) inhibition of PCR at low concentrations of template and its implications for quantitative RT-PCR. Appl. Environ. Microbiol. 64:669–677.
  • Chaturvedi, U., Tiwari, A. K., Ratta, B., Ravindra, P. V., Rajawat, Y. S., Palia, S. K. and Rai, A. (2008). Detection of canine adenoviral infections in urine and faeces by the polymerase chain reaction. J. Virol. Methods. 149:260–263.
  • Chou, Q., Russell, M., Birch, D. E., Raymond, J. and Bloch, W. (1992). Prevention of pre-PCR mis-priming and primer dimerization improves low-copy-number amplifications. Nucleic Acids Res. 20:1717–1723.
  • Cleusix, V., Lacroix, C., Dasen, G., Leo, M. and Le Blay, G. (2010). Comparative study of a new quantitative real-time PCR targeting the xylulose-5-phosphate/fructose-6-phosphate phosphoketolase bifidobacterial gene (xfp) in faecal samples with two fluorescence in situ hybridization methods. J. Appl. Microbiol. 108:181–193.
  • Cronin, M., Ventura, M., Fitzgerald, G. F. and van Sinderen, D. (2011). Progress in genomics, metabolism and biotechnology of bifidobacteria. Int. J. Food Microbiol. 149:4–18.
  • Cusick, S. M. and O'Sullivan, D. J. (2000). Use of a single, triplicate arbitrarily primed-PCR procedure for molecular fingerprinting of lactic acid bacteria. Appl. Environ. Microbiol. 66:2227–2231.
  • Delcenserie, V., Bechoux, N., China, B., Daube, G. and Gavini, F. (2005). A PCR method for detection of bifidobacteria in raw milk and raw milk cheese: Comparison with culture-based methods. J. Microbiol. Methods. 61:55–67.
  • Delcenserie, V., Bechoux, N., Leonard, T., China, B. and Daube, G. (2004). Discrimination between Bifidobacterium species from human and animal origin by PCR-restriction fragment length polymorphism. J. Food. Prot. 67:1284–1288.
  • Delcenserie, V., Taminiau, B., Gavini, F., de Schaetzen, M. A., Cleenwerck, I., Theves, M., Mahieu, M. and Daube, G. (2013). Detection and characterization of Bifidobacterium crudilactis and B. mongoliense able to grow during the manufacturing process of French raw milk cheeses. BMC Microbiol. 13:239.
  • Delgado, S., Suarez, A. and Mayo, B. (2006). Bifidobacterial diversity determined by culturing and by 16S rDNA sequence analysis in feces and mucosa from ten healthy Spanish adults. Dig. Dis. Sci. 51:1878–1885.
  • Delroisse, J. M., Boulvin, A. L., Parmentier, I., Dauphin, R. D., Vandenbol, M. and Portetelle, D. (2008). Quantification of Bifidobacterium spp. and Lactobacillus spp. in rat fecal samples by real-time PCR. Microbiol. Res. 163:663–670.
  • Dhanasekaran, S., Doherty, T. M., Kenneth, J. and Group, T. B. T. S. (2010). Comparison of different standards for real-time PCR-based absolute quantification. J. Immunol. Methods. 354:34–39.
  • Di Cello, F. P. and Fani, R. (1996). A molecular strategy for the study of natural bacterial communities by PCR-based techniques. Minerva Biotec. 8:126–134.
  • Donelli, G., Vuotto, C. and Mastromarino, P. (2013). Phenotyping and genotyping are both essential to identify and classify a probiotic microorganism. Microb. Ecol. Health Dis. 24.
  • Dong, X., Cheng, G. and Jian, W. (2000). Simultaneous identification of five bifidobacterium species isolated from human beings using multiple PCR primers. Syst. Appl. Microbiol. 23:386–390.
  • Drisko, J., Bischoff, B., Giles, C., Adelson, M., Rao, R. V. and McCallum, R. (2005). Evaluation of five probiotic products for label claims by DNA extraction and polymerase chain reaction analysis. Dig. Dis. Sci. 50:1113–1117.
  • Ellsworth, D. L., Rittenhouse, K. D. and Honeycutt, R. L. (1993). Artifactual variation in randomly amplified polymorphic DNA banding patterns. Biotechniques. 14:214–217.
  • Ercolini, D. (2004). PCR-DGGE fingerprinting: Novel strategies for detection of microbes in food. J. Microbiol. Methods. 56:297–314.
  • Erlich, H. A., Gelfand, D. and Sninsky, J. J. (1991). Recent advances in the polymerase chain reaction. Science. 252:1643–1651.
  • Favier, C. F., Vaughan, E. E., De Vos, W. M. and Akkermans, A. D. (2002). Molecular monitoring of succession of bacterial communities in human neonates. Appl. Environ. Microbiol. 68:219–226.
  • Fischer, S. G. and Lerman, L. S. (1983). DNA fragments differing by single base-pair substitutions are separated in denaturing gradient gels: Correspondence with melting theory. Proc. Natl. Acad. Sci. USA. 80:1579–1583.
  • Foley, S. L., Lynne, A. M. and Nayak, R. (2009). Molecular typing methodologies for microbial source tracking and epidemiological investigations of Gram-negative bacterial foodborne pathogens. Infect. Genet. Evol. 9:430–440.
  • Fontana, L., Bermudez-Brito, M., Plaza-Diaz, J., Munoz-Quezada, S. and Gil, A. (2013). Sources, isolation, characterisation and evaluation of probiotics. Br. J. Nutr. 109(Suppl 2):S35–S50.
  • Freeman, W. M., Walker, S. J. and Vrana, K. E. (1999). Quantitative RT-PCR: Pitfalls and potential. Biotechniques. 26:112–122, 124–115.
  • Frothingham, R., Duncan, A. J. and Wilson, K. H. (1993). Ribosomal DNA sequences of bifidobacteria: Implications for sequence-based identification of the human colonic flora. Microb. Ecol. Health Dis. 6:23–27.
  • Fujimoto, J., Tanigawa, K., Kudo, Y., Makino, H. and Watanabe, K. (2011). Identification and quantification of viable Bifidobacterium breve strain Yakult in human faeces by using strain-specific primers and propidium monoazide. J. Appl. Microbiol. 110:209–217.
  • Fujimoto, J. and Watanabe, K. (2013). Quantitative detection of viable Bifidobacterium bifidum BF-1 cells in human feces by using propidium monoazide and strain-specific primers. Appl. Environ. Microbiol. 79:2182–2188.
  • Gómez Zavaglia, A., de Urraza, P. and De Antoni, G. (2000). Characterization of bifidobacterium strains using box primers. Anaerobe. `6:169–177.
  • Germond, J. E., Mamin, O. and Mollet, B. (2002). Species specific identification of nine human Bifidobacterium spp. in feces. Syst. Appl. Microbiol. 25:536–543.
  • Gibson, U. E., Heid, C. A. and Williams, P. M. (1996). A novel method for real time quantitative RT-PCR. Genome Res. 6:995–1001.
  • Goering, R. V. (2010). Pulsed field gel electrophoresis: A review of application and interpretation in the molecular epidemiology of infectious disease. Infect. Genet. Evol. 10:866–875.
  • Gomez-Donate, M., Balleste, E., Muniesa, M. and Blanch, A. R. (2012). New molecular quantitative PCR assay for detection of host-specific Bifidobacteriaceae suitable for microbial source tracking. Appl. Environ. Microbiol. 78:5788–5795.
  • Griffin, H. G., Swindell, S. R. and Gasson, M. J. (1992). Cloning and sequence analysis of the gene encoding L-lactate dehydrogenase from Lactococcus lactis: Evolutionary relationships between 21 different LDH enzymes. Gene. 122:193–197.
  • Grunberg-Manago, M. (1999). Messenger RNA stability and its role in control of gene expression in bacteria and phages. Annu. Rev. Genet. 33:193–227.
  • Guarner, F. and Malagelada, J. R. (2003). Gut flora in health and disease. Lancet. 361:512–519.
  • Gueimonde, M., Debor, L., Tolkko, S., Jokisalo, E. and Salminen, S. (2007). Quantitative assessment of faecal bifidobacterial populations by real-time PCR using lanthanide probes. J. Appl. Microbiol. 102:1116–1122.
  • Gueimonde, M., Tolkko, S., Korpimaki, T. and Salminen, S. (2004). New real-time quantitative PCR procedure for quantification of bifidobacteria in human fecal samples. Appl. Environ. Microbiol. 70:4165–4169.
  • Haarman, M. and Knol, J. (2005). Quantitative real-time PCR assays to identify and quantify fecal Bifidobacterium species in infants receiving a prebiotic infant formula. Appl. Environ. Microbiol. 71:2318–2324.
  • Hayashi, H., Sakamoto, M. and Benno, Y. (2004). Evaluation of three different forward primers by terminal restriction fragment length polymorphism analysis for determination of fecal bifidobacterium spp. in healthy subjects. Microbiol. Immunol. 48:1–6.
  • Heid, C. A., Stevens, J., Livak, K. J. and Williams, P. M. (1996). Real time quantitative PCR. Genome Res. 6:986–994.
  • Hempel, S., Newberry, S. J., Maher, A. R., Wang, Z., Miles, J. N., Shanman, R., Johnsen, B. and Shekelle, P. G. (2012). Probiotics for the prevention and treatment of antibiotic-associated diarrhea: A systematic review and meta-analysis. JAMA. 307:1959–1969.
  • Henegariu, O., Heerema, N. A., Dlouhy, S. R., Vance, G. H. and Vogt, P. H. (1997). Multiplex PCR: Critical parameters and step-by-step protocol. Biotechniques. 23:504–511.
  • Higuchi, R., Fockler, C., Dollinger, G. and Watson, R. (1993). Kinetic PCR analysis: Real-time monitoring of DNA amplification reactions. Biotechnology (N Y). 11:1026–1030.
  • Hoyles, L., Clear, J. A. and McCartney, A. L. (2013). Use of denaturing gradient gel electrophoresis to detect Actinobacteria associated with the human faecal microbiota. Anaerobe. 22:90–96.
  • Janssen, P., Coopman, R., Huys, G., Swings, J., Bleeker, M., Vos, P., Zabeau, M. and Kersters, K. (1996). Evaluation of the DNA fingerprinting method AFLP as an new tool in bacterial taxonomy. Microbiology. 142(Pt 7):1881–1893.
  • Jian, W., Zhu, L. and Dong, X. (2001). New approach to phylogenetic analysis of the genus Bifidobacterium based on partial HSP60 gene sequences. Int. J. Syst. Evol. Microbiol. 51:1633–1638.
  • Joossens, M., Huys, G., Van Steen, K., Cnockaert, M., Vermeire, S., Rutgeerts, P., Verbeke, K., Vandamme, P. and De Preter, V. (2011). High-throughput method for comparative analysis of denaturing gradient gel electrophoresis profiles from human fecal samples reveals significant increases in two bifidobacterial species after inulin-type prebiotic intake. FEMS Microbiol. Ecol. 75:343–349.
  • Josephson, K. L., Gerba, C. P. and Pepper, I. L. (1993). Polymerase chain reaction detection of nonviable bacterial pathogens. Appl. Environ. Microbiol. 59:3513–3515.
  • Jung, R., Soondrum, K. and Neumaier, M. (2000). Quantitative PCR. Clin. Chem. Lab Med. 38:833–836.
  • Junick, J. and Blaut, M. (2012). Quantification of human fecal bifidobacterium species by use of quantitative real-time PCR analysis targeting the groEL gene. Appl. Environ. Microbiol. 78:2613–2622.
  • Kaplan, C. W. and Kitts, C. L. (2003). Variation between observed and true terminal restriction fragment length is dependent on true TRF length and purine content. J. Microbiol. Methods. 54:121–125.
  • Kaufmann, P., Pfefferkorn, A., Teuber, M. and Meile, L. (1997). Identification and quantification of Bifidobacterium species isolated from food with genus-specific 16S rRNA-targeted probes by colony hybridization and PCR. Appl. Environ. Microbiol. 63:1268–1273.
  • Kent, A. D., Smith, D. J., Benson, B. J. and Triplett, E. W. (2003). Web-based phylogenetic assignment tool for analysis of terminal restriction fragment length polymorphism profiles of microbial communities. Appl. Environ. Microbiol. 69:6768–6776.
  • Kitts, C. L. (2001). Terminal restriction fragment patterns: A tool for comparing microbial communities and assessing community dynamics. Curr. Issues Intest. Microbiol. 2:17–25.
  • Kok, R. G., de Waal, A., Schut, F., Welling, G. W., Weenk, G. and Hellingwerf, K. J. (1996). Specific detection and analysis of a probiotic Bifidobacterium strain in infant feces. Appl. Environ. Microbiol. 62:3668–3672.
  • Kolbert, C. P. and Persing, D. H. (1999). Ribosomal DNA sequencing as a tool for identification of bacterial pathogens. Curr. Opin. Microbiol. 2:299–305.
  • Krizova, J., Spanova, A. and Rittich, B. (2006). Evaluation of amplified ribosomal DNA restriction analysis (ARDRA) and species-specific PCR for identification of Bifidobacterium species. Syst. Appl. Microbiol. 29:36–44.
  • Krizova, J., Spanova, A. and Rittich, B. (2008). RAPD and rep-PCR fingerprinting for characterization of Bifidobacterium species. Folia Microbiol. (Praha). 53:99–104.
  • Kulagina, E. V., Shkoporov, A. N., Kafarskaia, L. I., Khokhlova, E. V., Volodin, N. N., Donskikh, E. E., Korshunova, O. V. and Efimov, B. A. (2010). Molecular genetic study of species and strain variability in bifidobacteria population in intestinal microflora of breast-fed infants and their mothers. Bull. Exp. Biol. Med. 150:61–64.
  • Kullen, M. J., Brady, L. J. and O'Sullivan, D. J. (1997). Evaluation of using a short region of the recA gene for rapid and sensitive speciation of dominant bifidobacteria in the human large intestine. FEMS Microbiol. Lett. 154:377–383.
  • Kutyavin, I. V., Afonina, I. A., Mills, A., Gorn, V. V., Lukhtanov, E. A., Belousov, E. S., Singer, M. J., Walburger, D. K., Lokhov, S. G., Gall, A. A., Dempcy, R., Reed, M. W., Meyer, R. B. and Hedgpeth, J. (2000). 3′-minor groove binder-DNA probes increase sequence specificity at PCR extension temperatures. Nucleic Acids Res. 28:655–661.
  • Kwon, H. S., Yang, E. H., Lee, S. H., Yeon, S. W., Kang, B. H. and Kim, T. Y. (2005). Rapid identification of potentially probiotic Bifidobacterium species by multiplex PCR using species-specific primers based on the region extending from 16S rRNA through 23S rRNA. FEMS Microbiol. Lett. 250:55–62.
  • Laitinen, R., Malinen, E. and Palva, A. (2002). PCR-ELISA I: Application to simultaneous analysis of mixed bacterial samples composed of intestinal species. Syst. Appl. Microbiol. 25:241–248.
  • Langendijk, P. S., Schut, F., Jansen, G. J., Raangs, G. C., Kamphuis, G. R., Wilkinson, M. H. and Welling, G. W. (1995). Quantitative fluorescence in situ hybridization of Bifidobacterium spp. with genus-specific 16S rRNA-targeted probes and its application in fecal samples. Appl. Environ. Microbiol. 61:3069–3075.
  • Leblond-Bourget, N., Philippe, H., Mangin, I. and Decaris, B. (1996). 16S rRNA and 16S to 23S internal transcribed spacer sequence analyses reveal inter- and intraspecific Bifidobacterium phylogeny. Int. J. Syst. Bacteriol. 46:102–111.
  • Lewis, Z. T., Bokulich, N. A., Kalanetra, K. M., Ruiz-Moyano, S., Underwood, M. A. and Mills, D. A. (2013). Use of bifidobacterial specific terminal restriction fragment length polymorphisms to complement next generation sequence profiling of infant gut communities. Anaerobe. 19:62–69.
  • Lindstedt, B. A. (2005). Multiple-locus variable number tandem repeats analysis for genetic fingerprinting of pathogenic bacteria. Electrophoresis. 26:2567–2582.
  • Liu, W. and Saint, D. A. (2002). A new quantitative method of real time reverse transcription polymerase chain reaction assay based on simulation of polymerase chain reaction kinetics. Anal. Biochem. 302:52–59.
  • Liu, W. T., Marsh, T. L., Cheng, H. and Forney, L. J. (1997). Characterization of microbial diversity by determining terminal restriction fragment length polymorphisms of genes encoding 16S rRNA. Appl. Environ. Microbiol. 63:4516–4522.
  • Lupski, J. R. and Weinstock, G. M. (1992). Short, interspersed repetitive DNA sequences in prokaryotic genomes. J. Bacteriol. 174:4525–4529.
  • Lynch, P. A., Gilpin, B. J., Sinton, L. W. and Savill, M. G. (2002). The detection of Bifidobacterium adolescentis by colony hybridization as an indicator of human faecal pollution. J. Appl. Microbiol. 92:526–533.
  • Mackay, I. M. (2004). Real-time PCR in the microbiology laboratory. Clin. Microbiol. Infect. 10:190–212.
  • Madigan, M. T., Martinko, J. M. and Parker, J. (2003). Brock Biology of Microorganisms, 10th ed. Prentice Hall/Pearson Education, Upper Saddle River, NJ.
  • Makino, H., Kushiro, A., Ishikawa, E., Muylaert, D., Kubota, H., Sakai, T., Oishi, K., Martin, R., Ben Amor, K., Oozeer, R., Knol, J. and Tanaka, R. (2011). Transmission of intestinal Bifidobacterium longum subsp. longum strains from mother to infant, determined by multilocus sequencing typing and amplified fragment length polymorphism. Appl. Environ. Microbiol. 77:6788–6793.
  • Malinen, E., Kassinen, A., Rinttila, T. and Palva, A. (2003). Comparison of real-time PCR with SYBR Green I or 5′-nuclease assays and dot-blot hybridization with rDNA-targeted oligonucleotide probes in quantification of selected faecal bacteria. Microbiology. 149:269–277.
  • Malinen, E., Matto, J., Salmitie, M., Alander, M., Saarela, M. and Palva, A. (2002). PCR-ELISA II: Analysis of Bifidobacterium populations in human faecal samples from a consumption trial with Bifidobacterium lactis Bb-12 and a galacto-oligosaccharide preparation. Syst. Appl. Microbiol. 25:249–258.
  • Mangin, I., Bouhnik, Y., Bisetti, N. and Decaris, B. (1999). Molecular monitoring of human intestinal Bifidobacterium strain diversity. Res. Microbiol. 150:343–350.
  • Mangin, I., Bourget, N., Bouhnik, Y., Bisetti, N., Simonet, J. M. and Decaris, B. (1994). Identification of Bifidobacterium strains by rRNA gene restriction patterns. Appl. Environ. Microbiol. 60:1451–1458.
  • Mangin, I., Bourget, N. and Decaris, B. (1996). Ribosomal DNA polymorphism in the genus Bifidobacterium. Res. Microbiol. 147:183–192.
  • Mangin, I., Bourget, N., Simonet, J. M. and Decaris, B. (1995). Selection of species-specific DNA probes which detect strain restriction polymorphism in four Bifidobacterium species. Res. Microbiol. 146:59–71.
  • Marcobal, A., Underwood, M. A. and Mills, D. A. (2008). Rapid determination of the bacterial composition of commercial probiotic products by terminal restriction fragment length polymorphism analysis. J. Pediatr. Gastroenterol. Nutr. 46:608–611.
  • Markoulatos, P., Siafakas, N. and Moncany, M. (2002). Multiplex polymerase chain reaction: A practical approach. J. Clin. Lab Anal. 16:47–51.
  • Marsh, T. L. (1999). Terminal restriction fragment length polymorphism (T-RFLP): An emerging method for characterizing diversity among homologous populations of amplification products. Curr. Opin. Microbiol. 2:323–327.
  • Marsh, T. L., Saxman, P., Cole, J. and Tiedje, J. (2000). Terminal restriction fragment length polymorphism analysis program, a web-based research tool for microbial community analysis. Appl. Environ. Microbiol. 66:3616–3620.
  • Marteau, P., Pochart, P., Bouhnik, Y., Zidi, S., Goderel, I. and Rambaud, J. C. (1992). Survival of Lactobacillus acidophilus and Bifidobacterium sp. in the small intestine following ingestion in fermented milk. A rational basis for the use of probiotics in man. Gastroenterol. Clin. Biol. 16:25–28.
  • Marteau, P., Pochart, P., Dore, J., Bera-Maillet, C., Bernalier, A. and Corthier, G. (2001). Comparative study of bacterial groups within the human cecal and fecal microbiota. Appl. Environ. Microbiol. 67:4939–4942.
  • Martin, R., Jimenez, E., Heilig, H., Fernandez, L., Marin, M. L., Zoetendal, E. G. and Rodriguez, J. M. (2009). Isolation of bifidobacteria from breast milk and assessment of the bifidobacterial population by PCR-denaturing gradient gel electrophoresis and quantitative real-time PCR. Appl. Environ. Microbiol. 75:965–969.
  • Masco, L., Huys, G., Gevers, D., Verbrugghen, L. and Swings, J. (2003). Identification of Bifidobacterium species using rep-PCR fingerprinting. Syst. Appl. Microbiol. 26:557–563.
  • Masco, L., Vanhoutte, T., Temmerman, R., Swings, J. and Huys, G. (2007). Evaluation of real-time PCR targeting the 16S rRNA and recA genes for the enumeration of bifidobacteria in probiotic products. Int. J. Food Microbiol. 113:351–357.
  • Matamoros, S., Savard, P. and Roy, D. (2011). Genotyping of Bifidobacterium longum subsp. longum strains by multilocus variable number of tandem repeat analysis. J. Microbiol. Methods. 87:378–380.
  • Mathys, S., Lacroix, C., Mini, R. and Meile, L. (2008). PCR and real-time PCR primers developed for detection and identification of Bifidobacterium thermophilum in faeces. BMC Microbiol. 8:179.
  • Matsuki, T., Watanabe, K., Fujimoto, J., Kado, Y., Takada, T., Matsumoto, K. and Tanaka, R. (2004). Quantitative PCR with 16S rRNA-gene-targeted species-specific primers for analysis of human intestinal bifidobacteria. Appl. Environ. Microbiol. 70:167–173.
  • Matsuki, T., Watanabe, K., Fujimoto, J., Miyamoto, Y., Takada, T., Matsumoto, K., Oyaizu, H. and Tanaka, R. (2002). Development of 16S rRNA-gene-targeted group-specific primers for the detection and identification of predominant bacteria in human feces. Appl. Environ. Microbiol. 68:5445–5451.
  • Matsuki, T., Watanabe, K., Tanaka, R., Fukuda, M. and Oyaizu, H. (1999). Distribution of bifidobacterial species in human intestinal microflora examined with 16S rRNA-gene-targeted species-specific primers. Appl. Environ. Microbiol. 65:4506–4512.
  • Matsuki, T., Watanabe, K., Tanaka, R. and Oyaizu, H. (1998). Rapid identification of human intestinal bifidobacteria by 16S rRNA-targeted species- and group-specific primers. FEMS Microbiol. Lett. 167:113–121.
  • Matto, J., Malinen, E., Suihko, M. L., Alander, M., Palva, A. and Saarela, M. (2004). Genetic heterogeneity and functional properties of intestinal bifidobacteria. J. Appl. Microbiol. 97:459–470.
  • McCartney, A. L. (2002). Application of molecular biological methods for studying probiotics and the gut flora. Br. J. Nutr. 88(Suppl 1):S29–37.
  • McCartney, A. L. and Tannock, G. W. (1995). Ribotyping of bifidobacterium strains using cells embedded in agarose plugs and a 16S rDNA probe. Microb. Ecol. Health Dis. 8:79–84.
  • McCartney, A. L., Wenzhi, W. and Tannock, G. W. (1996). Molecular analysis of the composition of the bifidobacterial and lactobacillus microflora of humans. Appl. Environ. Microbiol. 62:4608–4613.
  • McFarland, L. V. (2007). Meta-analysis of probiotics for the prevention of traveler's diarrhea. Travel Med. Infect. Dis. 5:97–105.
  • Meng, X. C., Pang, R., Wang, C. and Wang, L. Q. (2010). Rapid and direct quantitative detection of viable bifidobacteria in probiotic yogurt by combination of ethidium monoazide and real-time PCR using a molecular beacon approach. J. Dairy Res. 77:498–504.
  • Mhlanga, M. M. and Malmberg, L. (2001). Using molecular beacons to detect single-nucleotide polymorphisms with real-time PCR. Methods. 25:463–471.
  • Miller, L. E. and Ouwehand, A. C. (2013). Probiotic supplementation decreases intestinal transit time: Meta-analysis of randomized controlled trials. World J. Gastroenterol. 19:4718–4725.
  • Miller, M. B. and Tang, Y. W. (2009). Basic concepts of microarrays and potential applications in clinical microbiology. Clin. Microbiol. Rev. 22:611–633.
  • Miller, R. V. and Kokjohn, T. A. (1990). General microbiology of recA: Environmental and evolutionary significance. Annu. Rev. Microbiol. 44:365–394.
  • Miyake, T., Watanabe, K., Watanabe, T. and Oyaizu, H. (1998). Phylogenetic analysis of the genus Bifidobacterium and related genera based on 16S rDNA sequences. Microbiol. Immunol. 42:661–667.
  • Mohania, D., Nagpal, R., Kumar, M., Bhardwaj, A., Yadav, M., Jain, S., Marotta, F., Singh, V., Parkash, O. and Yadav, H. (2008). Molecular approaches for identification and characterization of lactic acid bacteria. J. Dig. Dis. 9:190–198.
  • Morel, P. (2011). Ten years of nucleic acid testing: Lessons and prospects. Transfus. Clin. Biol. 18:133–139.
  • Mueller, U. G. and Wolfenbarger, L. L. (1999). AFLP genotyping and fingerprinting. Trends Ecol. Evol. 14:389–394.
  • Mullie, C., Odou, M. F., Singer, E., Romond, M. B. and Izard, D. (2003). Multiplex PCR using 16S rRNA gene-targeted primers for the identification of bifidobacteria from human origin. FEMS Microbiol. Lett. 222:129–136.
  • Muyzer, G. (1999). DGGE/TGGE a method for identifying genes from natural ecosystems. Curr. Opin. Microbiol. 2:317–322.
  • Muyzer, G., de Waal, E. C. and Uitterlinden, A. G. (1993). Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl. Environ. Microbiol. 59:695–700.
  • Nocker, A., Burr, M. and Camper, A. K. (2007). Genotypic microbial community profiling: A critical technical review. Microb. Ecol. 54:276–289.
  • Nocker, A., Cheung, C. Y. and Camper, A. K. (2006). Comparison of propidium monoazide with ethidium monoazide for differentiation of live vs. dead bacteria by selective removal of DNA from dead cells. J. Microbiol. Methods. 67:310–320.
  • Nurmi, J., Wikman, T., Karp, M. and Lovgren, T. (2002). High-performance real-time quantitative RT-PCR using lanthanide probes and a dual-temperature hybridization assay. Anal. Chem. 74:3525–3532.
  • Ortiz-Lucas, M., Tobias, A., Saz, P. and Sebastian, J. J. (2013). Effect of probiotic species on irritable bowel syndrome symptoms: A bring up to date meta-analysis. Rev. Esp. Enferm. Dig. 105:19–36.
  • Osborn, A. M., Moore, E. R. and Timmis, K. N. (2000). An evaluation of terminal-restriction fragment length polymorphism (T-RFLP) analysis for the study of microbial community structure and dynamics. Environ. Microbiol. 2:39–50.
  • Pace, N. R., Olsen, G. J. and Woese, C. R. (1986). Ribosomal RNA phylogeny and the primary lines of evolutionary descent. Cell. 45:325–326.
  • Pal, K., Szen, O., Kiss, A. and Naar, Z. (2012). Comparison and evaluation of molecular methods used for identification and discrimination of lactic acid bacteria. J. Sci. Food Agric. 92:1931–1936.
  • Pan, Y. and Breidt, F., Jr. (2007). Enumeration of viable Listeria monocytogenes cells by real-time PCR with propidium monoazide and ethidium monoazide in the presence of dead cells. Appl. Environ. Microbiol. 73:8028–8031.
  • Penders, J., Vink, C., Driessen, C., London, N., Thijs, C. and Stobberingh, E. E. (2005). Quantification of Bifidobacterium spp., Escherichia coli and Clostridium difficile in faecal samples of breast-fed and formula-fed infants by real-time PCR. FEMS Microbiol. Lett. 243:141–147.
  • Pereira, F., Carneiro, J. and Amorim, A. (2008). Identification of species with DNA-based technology: Current progress and challenges. Recent Pat. DNA Gene. Seq. 2:187–199.
  • Perry, J. J. and Staley, J. T. (1997). Microbiology: Dynamics and Diversity. Saunders College Pub., Fort Worth, TX.
  • Piacentini, G., Peroni, D., Bessi, E. and Morelli, L. (2010). Molecular characterization of intestinal microbiota in infants fed with soymilk. J. Pediatr. Gastroenterol. Nutr. 51:71–76.
  • Postollec, F., Falentin, H., Pavan, S., Combrisson, J. and Sohier, D. (2011). Recent advances in quantitative PCR (qPCR) applications in food microbiology. Food Microbiol. 28:848–861.
  • Reimann, S., Grattepanche, F., Rezzonico, E. and Lacroix, C. (2010). Development of a real-time RT-PCR method for enumeration of viable Bifidobacterium longum cells in different morphologies. Food Microbiol. 27:236–242.
  • Requena, T., Burton, J., Matsuki, T., Munro, K., Simon, M. A., Tanaka, R., Watanabe, K. and Tannock, G. W. (2002). Identification, detection, and enumeration of human bifidobacterium species by PCR targeting the transaldolase gene. Appl. Environ. Microbiol. 68:2420–2427.
  • Rinne, M. M., Gueimonde, M., Kalliomaki, M., Hoppu, U., Salminen, S. J. and Isolauri, E. (2005). Similar bifidogenic effects of prebiotic-supplemented partially hydrolyzed infant formula and breastfeeding on infant gut microbiota. FEMS Immunol. Med. Microbiol. 43:59–65.
  • Rinttila, T., Kassinen, A., Malinen, E., Krogius, L. and Palva, A. (2004). Development of an extensive set of 16S rDNA-targeted primers for quantification of pathogenic and indigenous bacteria in faecal samples by real-time PCR. J. Appl. Microbiol. 97:1166–1177.
  • Ririe, K. M., Rasmussen, R. P. and Wittwer, C. T. (1997). Product differentiation by analysis of DNA melting curves during the polymerase chain reaction. Anal. Biochem. 245:154–160.
  • Ritchie, M. L. and Romanuk, T. N. (2012). A meta-analysis of probiotic efficacy for gastrointestinal diseases. PLoS One. 7:e34938.
  • Rossen, L., Norskov, P., Holmstrom, K. and Rasmussen, O. F. (1992). Inhibition of PCR by components of food samples, microbial diagnostic assays and DNA-extraction solutions. Int. J. Food Microbiol. 17:37–45.
  • Roy, D. and Sirois, S. (2000). Molecular differentiation of Bifidobacterium species with amplified ribosomal DNA restriction analysis and alignment of short regions of the ldh gene. FEMS Microbiol. Lett. 191:17–24.
  • Roy, D., Ward, P. and Champagne, G. (1996). Differentiation of bifidobacteria by use of pulsed-field gel electrophoresis and polymerase chain reaction. Int. J. Food Microbiol. 29:11–29.
  • Sachse, K. (2004). Specificity and performance of PCR detection assays for microbial pathogens. Mol. Biotechnol. 26:61–80.
  • Saiki, R. K., Gelfand, D. H., Stoffel, S., Scharf, S. J., Higuchi, R., Horn, G. T., Mullis, K. B. and Erlich, H. A. (1988). Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science. 239:487–491.
  • Samland, A. K., Baier, S., Schurmann, M., Inoue, T., Huf, S., Schneider, G., Sprenger, G. A. and Sandalova, T. (2012). Conservation of structure and mechanism within the transaldolase enzyme family. FEBS J. 279:766–778.
  • Sang, L. X., Chang, B., Zhang, W. L., Wu, X. M., Li, X. H. and Jiang, M. (2010). Remission induction and maintenance effect of probiotics on ulcerative colitis: A meta-analysis. World J. Gastroenterol. 16:1908–1915.
  • Satokari, R. M., Vaughan, E. E., Akkermans, A. D., Saarela, M. and de Vos, W. M. (2001a). Bifidobacterial diversity in human feces detected by genus-specific PCR and denaturing gradient gel electrophoresis. Appl. Environ. Microbiol. 67:504–513.
  • Satokari, R. M., Vaughan, E. E., Akkermans, A. D., Saarela, M. and De Vos, W. M. (2001b). Polymerase chain reaction and denaturing gradient gel electrophoresis monitoring of fecal bifidobacterium populations in a prebiotic and probiotic feeding trial. Syst. Appl. Microbiol. 24:227–231.
  • Satokari, R. M., Vaughan, E. E., Smidt, H., Saarela, M., Matto, J. and de Vos, W. M. (2003). Molecular approaches for the detection and identification of bifidobacteria and lactobacilli in the human gastrointestinal tract. Syst. Appl. Microbiol. 26:572–584.
  • Schrader, C., Schielke, A., Ellerbroek, L. and Johne, R. (2012). PCR inhibitors—occurrence, properties and removal. J. Appl. Microbiol. 113:1014–1026.
  • Schutte, U. M., Abdo, Z., Bent, S. J., Shyu, C., Williams, C. J., Pierson, J. D. and Forney, L. J. (2008). Advances in the use of terminal restriction fragment length polymorphism (T-RFLP) analysis of 16S rRNA genes to characterize microbial communities. Appl. Microbiol. Biotechnol. 80:365–380.
  • Scott, T. M., Rose, J. B., Jenkins, T. M., Farrah, S. R. and Lukasik, J. (2002). Microbial source tracking: current methodology and future directions. Appl. Environ. Microbiol. 68:5796–5803.
  • Sheu, S. J., Hwang, W. Z., Chen, H. C., Chiang, Y. C. and Tsen, H. Y. (2009). Development and use of tuf gene-based primers for the multiplex PCR detection of Lactobacillus acidophilus, Lactobacillus casei group, Lactobacillus delbrueckii, and Bifidobacterium longum in commercial dairy products. J. Food Prot. 72:93–100.
  • Sheu, S. J., Hwang, W. Z., Chiang, Y. C., Lin, W. H., Chen, H. C. and Tsen, H. Y. (2010). Use of tuf gene-based primers for the PCR detection of probiotic Bifidobacterium species and enumeration of bifidobacteria in fermented milk by cultural and quantitative real-time PCR methods. J. Food Sci. 75:M521–527.
  • Shkoporov, A. N., Khokhlova, E. V., Kulagina, E. V., Smeianov, V. V., Kafarskaia, L. I. and Efimov, B. A. (2008). Application of several molecular techniques to study numerically predominant Bifidobacterium spp. and Bacteroidales order strains in the feces of healthy children. Biosci. Biotechnol. Biochem. 72:742–748.
  • Shuhaimi, M., Ali, A. M., Saleh, N. M. and Yazid, A. M. (2001). Utilisation of enterobacterial repetitive intergenic consensus (ERIC) sequence-based PCR to fingerprint the genomes of Bifidobacterium isolates and other probiotic bacteria. Biotechnol. Lett. 23:731–736.
  • Shyu, C., Soule, T., Bent, S. J., Foster, J. A. and Forney, L. J. (2007). MiCA: A web-based tool for the analysis of microbial communities based on terminal-restriction fragment length polymorphisms of 16S and 18S rRNA genes. Microb. Ecol. 53:562–570.
  • Sibley, C. D., Peirano, G. and Church, D. L. (2012). Molecular methods for pathogen and microbial community detection and characterization: Current and potential application in diagnostic microbiology. Infect. Genet. Evol. 12:505–521.
  • Simpson, J. M., Santo Domingo, J. W. and Reasoner, D. J. (2002). Microbial source tracking: State of the science. Environ. Sci. Technol. 36:5279–5288.
  • Smith, C. J. and Osborn, A. M. (2009). Advantages and limitations of quantitative PCR (Q-PCR)-based approaches in microbial ecology. FEMS Microbiol. Ecol. 67:6–20.
  • Solano-Aguilar, G., Dawson, H., Restrepo, M., Andrews, K., Vinyard, B. and Urban, J. F., Jr. (2008). Detection of Bifidobacterium animalis subsp. lactis (Bb12) in the intestine after feeding of sows and their piglets. Appl. Environ. Microbiol. 74:6338–6347.
  • Srutkova, D., Spanova, A., Spano, M., Drab, V., Schwarzer, M., Kozakova, H. and Rittich, B. (2011). Efficiency of PCR-based methods in discriminating Bifidobacterium longum ssp. longum and Bifidobacterium longum ssp. infantis strains of human origin. J. Microbiol. Methods. 87:10–16.
  • Stsepetova, J., Sepp, E., Julge, K., Vaughan, E., Mikelsaar, M. and de Vos, W. M. (2007). Molecularly assessed shifts of Bifidobacterium ssp. and less diverse microbial communities are characteristic of 5-year-old allergic children. FEMS Immunol. Med. Microbiol. 51:260–269.
  • Su, P., Henriksson, A., Tandianus, J. E., Park, J. H., Foong, F. and Dunn, N. W. (2005). Detection and quantification of Bifidobacterium lactis LAFTI B94 in human faecal samples from a consumption trial. FEMS Microbiol. Lett. 244:99–103.
  • Sul, S. Y., Kim, H. J., Kim, T. W. and Kim, H. Y. (2007). Rapid identification of Lactobacillus and Bifidobacterium in probiotic products using multiplex PCR. J. Microbiol. Biotechnol. 17:490–495.
  • Sun, Z., Chen, X., Wang, J., Gao, P., Zhou, Z., Ren, Y., Sun, T., Wang, L., Meng, H., Chen, W. and Zhang, H. (2010). Complete genome sequence of probiotic Bifidobacterium animalis subsp. lactis strain V9. J. Bacteriol. 192:4080–4081.
  • Szajewska, H., Guandalini, S., Morelli, L., Van Goudoever, J. B. and Walker, A. (2010). Effect of Bifidobacterium animalis subsp lactis supplementation in preterm infants: A systematic review of randomized controlled trials. J. Pediatr. Gastroenterol. Nutr. 51:203–209.
  • Tait, R. C. (1999). The application of molecular biology. Curr. Issues Mol. Biol. 1:1–12.
  • Takada, T., Matsumoto, K. and Nomoto, K. (2004). Development of multi-color FISH method for analysis of seven Bifidobacterium species in human feces. J. Microbiol. Methods. 58:413–421.
  • Takahashi, O., Noguchi, Y., Omata, F., Tokuda, Y. and Fukui, T. (2007). Probiotics in the prevention of traveler's diarrhea: Meta-analysis. J. Clin. Gastroenterol. 41:336–337.
  • Tan, S. C. and Yiap, B. C. (2009). DNA, RNA, and protein extraction: The past and the present. J. Biomed. Biotechnol. 2009:574398.
  • Tang, Z. R., Li, K., Zhou, Y. X., Xiao, Z. X., Xiao, J. H., Huang, R. and Gu, G. H. (2012). Comparative quantification of human intestinal bacteria based on cPCR and LDR/LCR. World J. Gastroenterol. 18:268–274.
  • Tannock, G. W. (1999). Identification of lactobacilli and bifidobacteria. Curr. Issues Mol. Biol. 1:53–64.
  • Tannock, G. W. (2001). Molecular assessment of intestinal microflora. Am. J. Clin. Nutr. 73:410S–414S.
  • Temmerman, R., Masco, L., Vanhoutte, T., Huys, G. and Swings, J. (2003a). Development and validation of a nested-PCR-denaturing gradient gel electrophoresis method for taxonomic characterization of bifidobacterial communities. Appl. Environ. Microbiol. 69:6380–6385.
  • Temmerman, R., Scheirlinck, I., Huys, G. and Swings, J. (2003b). Culture-independent analysis of probiotic products by denaturing gradient gel electrophoresis. Appl. Environ. Microbiol. 69:220–226.
  • Thellin, O., ElMoualij, B., Heinen, E. and Zorzi, W. (2009). A decade of improvements in quantification of gene expression and internal standard selection. Biotechnol. Adv. 27:323–333.
  • Theunissen, J., Britz, T. J., Torriani, S. and Witthuhn, R. C. (2005). Identification of probiotic microorganisms in South African products using PCR-based DGGE analysis. Int. J. Food Microbiol. 98:11–21.
  • Tobin, J. M., Garland, S. M., Jacobs, S. E., Pirotta, M. and Tabrizi, S. N. (2013). Rapid assay to assess colonization patterns following in-vivo probiotic ingestion. BMC Res. Notes. 6:252.
  • Toshimitsu, T., Nakamura, M., Ikegami, S., Terahara, M. and Itou, H. (2013). Strain-specific identification of Bifidobacterium bifidum OLB6378 by PCR. Biosci. Biotechnol. Biochem. 77:572–576.
  • Tsai, C. C., Lai, C. H., Yu, B. and Tsen, H. Y. (2008). Use of specific primers based on the 16S-23S internal transcribed spacer (ITS) region for the screening Bifidobacterium adolescentis in yogurt products and human stool samples. Anaerobe. 14:219–223.
  • Tu, O., Knott, T., Marsh, M., Bechtol, K., Harris, D., Barker, D. and Bashkin, J. (1998). The influence of fluorescent dye structure on the electrophoretic mobility of end-labeled DNA. Nucleic Acids Res. 26:2797–2802.
  • Turroni, F., Foroni, E., Montanini, B., Viappiani, A., Strati, F., Duranti, S., Ferrarini, A., Delledonne, M., van Sinderen, D. and Ventura, M. (2011). Global genome transcription profiling of Bifidobacterium bifidum PRL2010 under in vitro conditions and identification of reference genes for quantitative real-time PCR. Appl. Environ. Microbiol. 77:8578–8587.
  • Turroni, F., Ventura, M., Butto, L. F., Duranti, S., O'Toole, P. W., Motherway, M. O. and van Sinderen, D. (2014). Molecular dialogue between the human gut microbiota and the host: A Lactobacillus and Bifidobacterium perspective. Cell. Mol. Life Sci. 71:183–203.
  • Tyagi, S., Bratu, D. P. and Kramer, F. R. (1998). Multicolor molecular beacons for allele discrimination. Nat. Biotechnol. 16:49–53.
  • van Belkum, A. (2007). Tracing isolates of bacterial species by multilocus variable number of tandem repeat analysis (MLVA). FEMS Immunol. Med. Microbiol. 49:22–27.
  • Venema, K. and Maathuis, A. J. (2003). A PCR-based method for identification of bifidobacteria from the human alimentary tract at the species level. FEMS Microbiol. Lett. 224:143–149.
  • Ventura, M., Canchaya, C., Del Casale, A., Dellaglio, F., Neviani, E., Fitzgerald, G. F. and van Sinderen, D. (2006). Analysis of bifidobacterial evolution using a multilocus approach. Int. J. Syst. Evol. Microbiol. 56:2783–2792.
  • Ventura, M., Canchaya, C., Meylan, V., Klaenhammer, T. R. and Zink, R. (2003a). Analysis, characterization, and loci of the tuf genes in lactobacillus and bifidobacterium species and their direct application for species identification. Appl. Environ. Microbiol. 69:6908–6922.
  • Ventura, M., Elli, M., Reniero, R. and Zink, R. (2001a). Molecular microbial analysis of Bifidobacterium isolates from different environments by the species-specific amplified ribosomal DNA restriction analysis (ARDRA). FEMS Microbiol. Ecol. 36:113–121.
  • Ventura, M., Meylan, V. and Zink, R. (2003b). Identification and tracing of Bifidobacterium species by use of enterobacterial repetitive intergenic consensus sequences. Appl. Environ. Microbiol. 69:4296–4301.
  • Ventura, M., Reniero, R. and Zink, R. (2001b). Specific identification and targeted characterization of Bifidobacterium lactis from different environmental isolates by a combined multiplex-PCR approach. Appl. Environ. Microbiol. 67:2760–2765.
  • Ventura, M., Turroni, F., Zomer, A., Foroni, E., Giubellini, V., Bottacini, F., Canchaya, C., Claesson, M. J., He, F., Mantzourani, M., Mulas, L., Ferrarini, A., Gao, B., Delledonne, M., Henrissat, B., Coutinho, P., Oggioni, M., Gupta, R. S., Zhang, Z., Beighton, D., Fitzgerald, G. F., O'Toole, P. W. and van Sinderen, D. (2009). The Bifidobacterium dentium Bd1 genome sequence reflects its genetic adaptation to the human oral cavity. PLoS Genet. 5:e1000785.
  • Ventura, M. and Zink, R. (2002). Rapid identification, differentiation, and proposed new taxonomic classification of Bifidobacterium lactis. Appl. Environ. Microbiol. 68:6429–6434.
  • Ventura, M. and Zink, R. (2003). Comparative sequence analysis of the tuf and recA genes and restriction fragment length polymorphism of the internal transcribed spacer region sequences supply additional tools for discriminating Bifidobacterium lactis from Bifidobacterium animalis. Appl. Environ. Microbiol. 69:7517–7522.
  • Versalovic, J., Schneider, M., De Bruijn, F. and Lupski, J. R. (1994). Genomic fingerprinting of bacteria using repetitive sequence-based polymerase chain reaction. Methods Molecular Cellular Biol. 5:25–40.
  • Vincent, D., Roy, D., Mondou, F. and Dery, C. (1998). Characterization of bifidobacteria by random DNA amplification. Int. J. Food Microbiol. 43:185–193.
  • Vitali, B., Candela, M., Matteuzzi, D. and Brigidi, P. (2003). Quantitative detection of probiotic Bifidobacterium strains in bacterial mixtures by using real-time PCR. Syst. Appl. Microbiol. 26:269–276.
  • Vos, P., Hogers, R., Bleeker, M., Reijans, M., van de Lee, T., Hornes, M., Frijters, A., Pot, J., Peleman, J., Kuiper, M. and Zabeau, M. (1995). AFLP: A new technique for DNA fingerprinting. Nucleic Acids Res. 23:4407–4414.
  • Voytas, D. (2001). Agarose gel electrophoresis. Curr. Protoc. Immunol. Chapter 10: Unit 10.14.
  • Walter, J., Tannock, G. W., Tilsala-Timisjarvi, A., Rodtong, S., Loach, D. M., Munro, K. and Alatossava, T. (2000). Detection and identification of gastrointestinal Lactobacillus species by using denaturing gradient gel electrophoresis and species-specific PCR primers. Appl. Environ. Microbiol. 66:297–303.
  • Wang, R. F., Beggs, M. L., Robertson, L. H. and Cerniglia, C. E. (2002a). Design and evaluation of oligonucleotide-microarray method for the detection of human intestinal bacteria in fecal samples. FEMS Microbiol. Lett. 213:175–182.
  • Wang, R. F., Cao, W. W. and Cerniglia, C. E. (1996). PCR detection and quantitation of predominant anaerobic bacteria in human and animal fecal samples. Appl. Environ. Microbiol. 62:1242–1247.
  • Wang, R. F., Kim, S. J., Robertson, L. H. and Cerniglia, C. E. (2002b). Development of a membrane-array method for the detection of human intestinal bacteria in fecal samples. Mol. Cell. Probes. 16:341–350.
  • Wang, Z. H., Gao, Q. Y. and Fang, J. Y. (2013). Meta-analysis of the efficacy and safety of Lactobacillus-containing and Bifidobacterium-containing probiotic compound preparation in Helicobacter pylori eradication therapy. J. Clin. Gastroenterol. 47:25–32.
  • Ward, P. and Roy, D. (2005). Review of molecular methods for identification, characterization and detection of bifidobacteria. Lait. 85:23–32.
  • Welsh, J. and McClelland, M. (1990). Fingerprinting genomes using PCR with arbitrary primers. Nucleic Acids Res. 18:7213–7218.
  • Williams, J. G., Kubelik, A. R., Livak, K. J., Rafalski, J. A. and Tingey, S. V. (1990). DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res. 18:6531–6535.
  • Williams, N. T. (2010). Probiotics. Am. J. Health Syst. Pharm. 67:449–458.
  • Wolk, D., Mitchell, S. and Patel, R. (2001). Principles of molecular microbiology testing methods. Infect Dis. Clin. North Am. 15:1157–1204.
  • Yamamoto, T., Morotomi, M. and Tanaka, R. (1992). Species-specific oligonucleotide probes for five Bifidobacterium species detected in human intestinal microflora. Appl. Environ. Microbiol. 58:4076–4079.
  • Yao, Y., Nellaker, C. and Karlsson, H. (2006). Evaluation of minor groove binding probe and Taqman probe PCR assays: Influence of mismatches and template complexity on quantification. Mol. Cell Probes. 20:311–316.
  • Yin, J. L., Shackel, N. A., Zekry, A., McGuinness, P. H., Richards, C., Putten, K. V., McCaughan, G. W., Eris, J. M. and Bishop, G. A. (2001). Real-time reverse transcriptase-polymerase chain reaction (RT-PCR) for measurement of cytokine and growth factor mRNA expression with fluorogenic probes or SYBR Green I. Immunol. Cell Biol. 79:213–221.
  • Youn, S. Y., Seo, J. M. and Ji, G. E. (2008). Evaluation of the PCR method for identification of Bifidobacterium species. Lett. Appl. Microbiol. 46:7–13.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.