4,821
Views
183
CrossRef citations to date
0
Altmetric
Original Articles

Dietary flavonoid aglycones and their glycosides: Which show better biological significance?

References

  • Agnolet, S., Jaroszewski, J.W., Verpoorte, R. and Staerk, D. (2010). 1H NMR-based metabolomics combined with HPLC-PDA-MS-SPE-NMR for investigation of standardized Ginkgo biloba preparations. Metabolomics. 6:292–302.
  • Afifi, F.U. and Abu-Dahab, R. (2012). Phytochemical screening and biological activities of Eminium spiculatum (Blume) Kuntze (family Araceae). Nat. Prod. Res. 26:878–882.
  • Akao, T., Sakashita, Y., Hanada, M., Goto, H., Shimada, Y. and Terasawa, K. (2004). Enteric excretion of baicalein, a flavone of Scutellariae Radix, via glucuronidation in rat: Involvement of multidrug resistance-associated protein 2. Pharm. Res. 21:2120–2126.
  • Akao, T., Kawabata, K. and Yanagisawa, E. (2000). Baicalin, the predominant flavone glucuronide of Scutellariae radix, is absorbed from the rat gastrointestinal tract as the aglycone and restored to its original form. J. Pharm. Pharmacol. 52:1563–1568.
  • Akbay, P., Basaran, A.A., Undeger, U. and Basaran, N. (2003). In vitro immunomodulatory activity of flavonoid glycosides from Urtica dioica L. Phytother. Res. 17:34–37.
  • Al-Yahya, M.A., El-Sayed, A.M., Mossa, J.S., Kozlowski, J.F., Antoun, M.D., Ferin, M., et al. (1988). Potential cancer chemopreventive and cytotoxic agents from Pulicaria crispa. J. Nat. Prod. 51:621–624.
  • Andrae-Marobela, K., Ghislain, F.W., Okatch, H., Majinda, R. (2013). Polyphenols: A diverse class of multi-target anti-HIV-1 agents. Curr. Drug Metab. 7:392–413.
  • Angelino, D., Berhow, M., Ninfali, P. and Jeffery, E.H. (2013). Caecal absorption of vitexin-2-O-xyloside and its aglycone apigenin, in the rat. Food Funct. 4:1339–1345.
  • Antunes-Ricardo, M., Moreno-García, B.E., Gutiérrez-Uribe, J.A., Aráiz-Hernández, D., Alvarez, M.M. and Serna-Saldivar, S.O. (2014). Induction of apoptosis in colon cancer cells treated with isorhamnetin glycosides from Opuntia Ficus-indica Pads. Plant Foods Human Nutr. 69:331–336.
  • Arung, E.T., Kusuma, I.W., Shimizu, K. and Kondo, R. (2011). Tyrosinase inhibitory effect of quercetin 4′-O-β-D-glucopyranoside from dried skin of red onion (Allium cepa). Nat. Prod. Res. 25:256–263.
  • Assini, J.M., Mulvihill, E.E. and Huff, M.W. (2013). Citrus flavonoids and lipid metabolism. Curr. Opin. Lipidol. 24:34–40.
  • Bae, E.A., Han, M.J., Lee, M. and Kim, D.H. (2000). In vitro inhibitory effect of aome flavonoids on rotavirus infectivity. Biol. Pharmaceut. Bull. 23:1122–1124.
  • Bai, N.S., He, K., Roller, M., Lai, C.S., Shao, X., Pan, MH., et al. (2011). Flavonoid glycosides from Microtea debilis and their cytotoxic and anti-inflammatory effects. Fitoterapia. 82:168–172.
  • Bansal, P., Paul, P., Mudgal, J., Nayak, P., Thomas, P.S., Priyadarsini, K.I., et al. (2012). Antidiabetic, antihyperlipidemic and antioxidant effects of the flavonoid rich fraction of Pilea microphylla (L.) in high fat diet/streptozotocin-induced diabetes in mice. Experiment Toxicol. Pathol. 64:651–658.
  • Bello, I., Ndukwe, G., Audu, O. and Habila, J. A. (2011). Bioactive flavonoid from Pavetta crassipes K. Schum. Org. Med. Chem. Lett. 1:14.
  • Bernard, F.X., Sablé, S., Cameron, B., Provost, J., Desnottes, J.F., Crouzet, J., and Blanche, F. (1997). Glycosylated flavones as selective inhibitors of topoisomerase IV. Antimicrob. Agents Chemother. 41:992–998.
  • Bi, S.Y., Ding, L., Tian, Y., Song, D.Q., Zhou, X. and Liu, X. (2004). Investigation of the interaction between flavonoids and human serum albumin. J. Mol. Struct. 703:37–45.
  • Biesaga, M. (2011). Influence of extraction methods on stability of flavonoids. J. Chromatogr. A. 1218:2505–2512.
  • Bokkenheuser, V.D., Shackleton, C.H. and Winter, J. (1987). Hydrolysis of dietary flavonoid glycosides by strains of intestinal Bacteroides from humans. Biochem. J. 248:953–956.
  • Braune, A., Gutschow, M., Engst, W. and Blaut, M. (2001). Degradation of quercetin and luteolin by Eubacterium ramulus. Appl. Environ. Microbio. 67:5558–5567.
  • Brownlee, M. (2001). Biochemistry and molecular cell biology of diabetic complications. Nature. 414:813–820.
  • Burda, S. and Oleszek, W. (2001). Antioxidant and antiradical activities of flavonoids. J. Agric. Food Chem. 49:2774–2779.
  • Cai, Y.Z., Sun, M., Xing, J., Luo, Q. and Corke, H. (2006). Structure–radical scavenging activity relationships of phenolic compounds from traditional Chinese medicinal plants. Life Sci. 78:2872–2878.
  • Cai, S., Wu, Z., Wu, J., Wang, Q. and Shan, Y. (2012). Synthesis and biological activities of natural flavonoid diosmetin and its derivatives. Chin. J. Org. Chem. 32:560–566.
  • Calderon-Montano, J.M., Burgos-Moron, E., Perez-Guerrero, C. and López-Lázaro, M. A. (2011). review on the dietary flavonoid kaempferol. Mini. Rev. Med. Chem. 11:298–344.
  • Cao, H., Chen, T.T. and Shi, Y.J. (2015). Glycation of human serum albumin in diabetes: Impacts on the structure and function. Curr. Med. Chem. 22:4–13.
  • Carazzone, C., Mascherpa, D., Gazzani, G. and Papetti, A. (2013). Identification of phenolic constituents in red chicory salads (Cichorium intybus) by high-performance liquid chromatography with diode array detection and electrospray ionisation tandem mass spectrometry. Food Chem. 138:1062–1071.
  • Cavia-Saiz, M., Busto, M.D., Pilar-Izquierdo, M.C., Ortega, N., Perez-Mateos, M. and Muñiz, P. (2010). Antioxidant properties, radical scavenging activity and biomolecule protection capacity of flavonoid naringenin and its glycoside naringin: A comparative study. J. Sci. Food Agric. 90:1238–1244.
  • Cerella, C., Teiten, M.H., Radogna, F., Dicato, M. and Diederich, M. (2014). From nature to bedside: Pro-survival and cell death mechanisms as targets in cancer treatment. Biotechnol. Adv. 32:1111–1122.
  • Chen, X.Y., Cui, L., Duan, X.T. and Zhong, D.F. (2006). Pharmacokinetics and metabolism of the flavonoid scutellarin in humans after a single oral administration. Drug Metab. Dispos. 34:1345–1352.
  • Chen, P.Y., Kuo, Y.C., Chen, CH., Kuo, Y.H. and Lee, C.K. (2009). Isolation and immunomodulatory effect of homoisoflavones and flavones from Agave sisalana Perrine ex Engelm. Molecules. 14:1789–1795.
  • Chen, Y.G., Li, P., Li, P., Yan, R., Zhang, X.Q., Wang, Y., et al. (2013). α-Glucosidase inhibitory effect and simultaneous quantification of three major flavonoid glycosides in Microctis folium. Molecules. 18:4221–4232.
  • Chen, Y., Xie, S., Chen, S. and Zeng, S. (2008). Glucuronidation of flavonoids by recombinant UGT1A3 and UGT1A9. Biochem. Pharmacol. 76:416–425.
  • Chen, Y., Wang, J., Jia, X., Tan, X. and Hu, M. (2011). Role of intestinal hydrolase in the absorption of prenylated flavonoids present in Yinyanghuo. Molecules. 16:1336–1348.
  • Choi, J.S., Chung, H.Y., Kang, S.S., Jung, M.J., Kim, J.W., No, J.K. and Jung, H.A. (2002). The structure-activity relationship of flavonoids as scavengers of peroxynitrite. Phytother Res. 16:232–235.
  • Choi, J.S., Islam, M.N., Ali, M.Y., Kim, E.J., Kim, Y.M. and Jung, H.A. (2014a). Effects of C-glycosylation on anti-diabetic, anti-Alzheimer's disease and anti-inflammatory potential of apigenin. Food Chem. Toxicol. 64:27–33.
  • Choi, J.S., Islam, N., Ali, Y., Kim, Y.M., Park, H.J., Sohn, H.S. and Jung, H.A. (2014b). The effects of C-glycosylation of luteolin on its antioxidant, anti-Alzheimer's disease, anti-diabetic, and anti-inflammatory activities. Arch. Pharm. Res. 37:1354–1363.
  • Choi, J.S., Tai, B.H., Cuong, N.M., Kim, Y.H. and Jang, H.D. (2012). Antioxidative and anti- inflammatory effect of quercetin and its glycosides isolated from mampat (Cratoxylum formosum). Food Sci. Biotechnol. 21:587–595.
  • Courts, F.L. and Williamson, G. (2009). The C-glycosyl flavonoid, aspalathin, is absorbed, methylated and glucuronidated intact in humans. Mol. Nutr. Food Res. 53:1104–1111.
  • Crespy, V., Morand, C., Besson, C., Manach, C., Démigné, C. and Rémésy, C. (2001). Comparison of the intestinal absorption of quercetin, phloretin and their glucosides in rats. J. Nutr. 131:2109–2114.
  • Crozier, A., Del-Rio, D. and Clifford, M.N. (2010). Bioavailability of dietary flavonoids and phenolic compounds. Mol. Aspects Med. 31:446–467.
  • Cushnie, T.P.T., and Lamb, A.J. (2011). Recent advances in understanding the antibacterial properties of flavonoids. Int. J. Antimicro. Agents. 38:99–107.
  • da Silva, C.M.G., Contesini, F.J., Sawaya, A.C.H.F., Cabral, E.C., Cunha, I.B.D., Eberlin, M.N., et al. (2013). Enhancement of the antioxidant activity of orange and lime juices by flavonoid enzymatic de-glycosylation. Food Res. Int. 52:1308–1314.
  • D'Archivio, M., Filesi, C., Di Benedetto, R., Gargiulo, R., Giovannini, C. and Masella, R. (2007). Polyphenols, dietary sources and bioavailability. Ann. Ist. Super Sanità. 43:348–361.
  • de Araújo, M.E.M.B., Franco, Y.E.M., Alberto, T.G., Sobreiro, M.A., Conrado, M.A., Priolli, D.G., et al. (2013). Enzymatic de-glycosylation of rutin improves its antioxidant and antiproliferative activities. Food Chem. 141:266–273.
  • Daayf, F. and Lattanzio, V. (2008). Recent Advances in Polyphenol Research, vol. 1. Wiley-Blackwell, Oxford.
  • Dai, J.Y., Yang, J.L. and Li, C. (2008). Transport and metabolism of flavonoids from Chinese herbal remedy Xiaochaihutang across human intestinal Caco-2 cell monolayers. Acta. Pharmacol. Sin. 29:1086–1093.
  • Dangles, O., Dufour, C. and Bret, S. (1999). Flavonol-serum albumin complexation. Two-electron oxidation of flavonols and their complexes with serum albumin. J. Chem. Soc. Perkin Trans. 2:737–744.
  • Davis, B.D. and Brodbelt, J.S. (2004). Determination of the glycosylation site of flavonoid monoglucosides by metal complexation and tandem mass spectrometry. J. Am. Soc. Mass Spectr. 15:1287–1299.
  • Day, A.J., Cañada, F.J., Dı́az, J.C., Kroon, P.A., Mclauchlan, R., Faulds, C.B., et al. (2000). Dietary flavonoid and isoflavone glycosides are hydrolysed by the lactase site of lactase phlorizin hydrolase. FEBS. Lett. 468:166–170.
  • Day, A.J., Gee, J.M., DuPont, M.S., Johnson, I.T. and Williamson, G. (2003). Absorption of quercetin-3-glucoside and quercetin-4′-glucoside in the rat small intestine: The role of lactase phlorizin hydrolase and the sodium-dependent glucose transporter. Biochem. Pharmacol. 65:1199–1206.
  • Day, A.J., Mellon, F., Barron, D., Sarrazin, G., Morgan, M.R. and Williamson, G. (2001). Human metabolism of dietary flavonoids: Identification of plasma metabolites of quercetin. Free Rad. Res. 35:941–952.
  • Delmas, D. and Xiao, J.B. (2012). Natural polyphenols properties: Chemopreventive and chemosensitizing activities. Anti-Cancer. Agents. Med. Chem. 12:835.
  • Deng, G.F., Xu, X.R., Zhang, Y., Li, D., Gan, R.Y. and Li, H.B. (2013). Phenolic compounds and bioactivities of pigmented rice. Crit. Rev. Food Sci. Nutr. 53:296–306.
  • Ding, X., Ouyang, M.A., Liu, X. and Wang, R.Z. (2013). Acetylcholinesterase inhibitory activities of flavonoids from the leaves of Ginkgo biloba against brown planthopper. J. Chem. ID 645086.
  • Diniz, A., Escuder-Gilabert, L., Lopes, N.P., Villanueva-Camᾶnas, R.M., Sagrado, S. and Medina-Herńandez, M.J. (2008). Characterization of interactions between polyphenolic compounds and human serum proteins by capillary electrophoresis. Anal. Bioanal. Chem. 391:625–632.
  • Duenas, M., Surco-Laos, F., Gonzalez-Manzano, S., Gonzalez-Paramas, A.M., Gomez-Orte, E., Cabello, J., et al. (2013). Deglycosylation is a key step in biotransformation and lifespan effects of quercetin-3-O-glucoside in Caenorhabditis elegans. Pharmacol. Res. 76:41–48.
  • Dufour, C. and Dangles, O. (2005). Flavonoid-serum albumin complexation: Determination of binding constants and binding sites by fluorescence spectroscopy. BBA. Gen. Subjects. 1721:164–173.
  • Ercil, D., Kaloga, M., Radtke, O.A., Sakar, M.K., Kiderlen, A.F. and Kolodziej, H. (2005). O-Galloyl flavonoids from Geranium pyrenaicum and their in vitro antileishmanial activity. Turk J. Chem. 29:437–443.
  • Fan, P., Hay, A.E., Marston, A. and Hostettmann, K. (2008). Acetylcholinesterase-inhibitory activity of linarin from Buddleja davidii, structure-activity relationships of related flavonoids, and chemical investigation of Buddleja nitida. Pharmaceut. Biol. 46:596–601.
  • Fan, P., Terrier, L., Hay, A.E., Marston, A. and Hostettmann, K. (2010). Antioxidant and enzyme inhibition activities and chemical profiles of Polygonum sachalinensis F. Schmidt ex Maxim (Polygonaceae). Fitoterapia. 81:124–131.
  • Fawzy, G.A., Al-Taweel, A.M., Baky, N.A.A. and Marzouk, M.S. (2012). Cytotoxic and renoprotective flavonoid glycosides from Horwoodia dicksoniae. Afr. J. Pharm. Pharmacol. 6:1166–1175.
  • Franco, J.L., Posser, T., Missau, F., Pizzolatti, M.G., Santos, A.R.S., Souzaf, D.O., et al. (2010). Structure–activity relationship of flavonoids derived from medicinal plants in preventing methylmercury-induced mitochondrial dysfunction. Environment Toxicol. Pharmacol. 30:272–278.
  • Fujiwara, M., Yagi, N. and Miyazawa, M. (2011). Tyrosinase inhibitory constituents from the bark of Peltophorum dasyrachis (yellow batai). Nat. Prod. Res. 25:1540–1548.
  • Furie, B. and Furie, B.C. (2005). Thrombus formation in vivo. J.Clin. Invest. 115:3355–3362.
  • Furusawa, M., Tsuchiya, H., Nagayama, M., Tanaka, T., Nakaya, K. and Iinuma, M. (2003). Anti-platelet and membrane-rigidifying flavonoids in brownish scale of onion. J. Health Sci. 49:475–480.
  • Gechev, T.S., Hille, J., Woerdenbag, H.J., Benina, M., Mehterov, N., Toneva, V., et al. (2014). Natural products from resurrection plants: Potential for medical applications. Biotechnol. Adv. 32:1091–1101.
  • Georgiev, M.I. (2014). From plants to pharmacy shelf. Biotechnol Adv. 32:1051–1052.
  • Ghanadian, S.M., Ayatollahi, A.M., Afsharypourc, S., Hareem, S., Abdalla, O.M. and Bankeu, J.J.K. (2012). Flavonol glycosides from Euphorbia microsciadia Bioss. with their immunomodulatory activities. Iran. J. Pharmaceut. Res. 11:925–930.
  • Gonzalez, R., Ballester, I., Lopez-Posadas, R., Suarez, M.D., Zarzuelo, A., Martinez-Augustin, O., et al. (2011). Effects of flavonoids and other polyphenols on inflammation. Crit. Rev. Food Sci. Nutr. 51:331–362.
  • Grimm, T., Schäfer, A. and Högger, P. (2004). Antioxidant activity and inhibition of matrix metalloproteinases by metabolites of maritime pine bark extract (Pycnogenol). Free Rad. Biol. Med. 36:811–822.
  • Gu, J.Q., Wag, Y., Granzblau, S.G., Montenegro, G., Yang, D. and Timmermann, B.N. (2004). Antitubercular constituents of Valeriana laxiflora. Planta. Med. 70:509–514.
  • Guerrero, L., Castillo, J., Quiñones, M., Garcia-Vallvé, S., Arola, L., Pujadas, G., et al. (2012). Inhibition of angiotensin-converting enzyme activity by flavonoids: Structure-activity relationship studies. PLoS One. 7:e49493.
  • Guerrero, J.A., Lozano, M.L., Castillo, J., Benavent-garcía, O., Vicente, V. and Rivera, J. (2005). Flavonoids inhibit platelet function through binding to the thromboxane A2 receptor. J. Thromb Haemost. 3:369–376.
  • Gupta, P., Sharma, U., Gupta, P., Siripurapu, K.B. and Maurya, R. (2013). Evolvosides C-E, flavonol-4-O-triglycosides from Evolvulus alsinoides and their anti-stress activity. Bioorg. Med. Chem. 21:1116–1122.
  • Hamzeh-Mivehroud, M., Rahmani, S., Rashidi, M.R., Feizi, M.A.H. and Dastmalchi, S. (2013). Structure-based investigation of rat aldehyde oxidase inhibition by flavonoids. Xenobiotica. 43:661–670.
  • Hanske, L., Loh, G., Sczesny, S., Blaut, M. and Braune, A. (2009). The bioavailability of apigenin 7-glucoside is influenced by human intestinal microbiota in rats. J. Nutr. 139:1095–1102.
  • Heinonen, S.M., Wahala, K., Liukkonen, K.H., Aura, A.M., Poutanen, K. and Adlercreutz, H. (2004). Studies of the in vitro intestinal metabolism of isoflavones aid in the identification of their urinary metabolites. J. Agric. Food Chem. 52:2640–2246.
  • Hostetler, G., Riedl, K., Cardenas, H., Diosa-Toro, M., Arango, D., Schwartz, S., et al. (2012). Flavone deglycosylation increases their anti-inflammatory activity and absorption. Mol. Nutr. Food Res. 56:558–569.
  • Hoyweghen, L.V., Karali, C. I, Calenbergh, S.V., Deforce, D. and Heyerick, A. (2010). Antioxidant flavone glycosides from the leaves of Fargesia robusta. J. Nat. Prod. 73:1573–1577.
  • Hsieh, C.L., Peng, C.C., Chen, K.C. and Peng, R.Y. (2013). Rutin (quercetin rutinoside) induced protein-energy malnutrition in chronic kidney disease, but quercetin acted beneficially. J. Agric. Food Chem. 61:7258–7267.
  • Huber, G.M., Rupasinghe, H.P.V. and Shahidi, F. (2009). Inhibition of oxidation of omega-3 polyunsaturated fatty acids and fish oil by quercetin glycosides. Food Chem. 117:290–295.
  • Hur, H.G., Lay, J.O., Jr., Beger, R.D., Freeman, J.P. and Rafii, F. (2000). Isolation of human intestinal bacteria metabolizing the natural isoflavone glycosides daidzin and genistin. Arch. Microbiol. 174:422–428.
  • Hwang, S.L, Shih, P.H. and Yen, G.C. (2012). Neuroprotective effects of citrus flavonoids. J. Agric. Food Chem. 60:877–885.
  • Islam, M.N., Jung, H.A., Sohn, H.S., Kim, H.M. and Choi, J.S. (2013). Potent α-glucosidase and protein tyrosine phosphatase 1B inhibitors from Artemisia capillaris. Arch. Pharm. Res. 36:542–552.
  • Jang, D.S., Lee, Y.M., Jeong, I.H. and Kim, J.S. (2010). Constituents of the flowers of Platycodon grandiflorum with inhibitory activity on advanced glycation end products and rat lens aldose reductase in vitro. Arch. Pharm. Res. 33:875–880.
  • Jeong, H.J., Ryu, Y.B., Park, S.J., Kim, J.H., Kwon, H.J., Kim, J.H., et al. (2009). Neuraminidase inhibitory activities of flavonols isolated from Rhodiola rosea roots and their in vitro anti-influenza viral activities. Bioorg. Med. Chem. 17:6816–6823.
  • Jiang, J.R., Yuan, S., Ding, J.F., Zhu, S.C., Xu, H.D., Chen, T., et al. (2008). Conversion of puerarin into its 7-O-glycoside derivatives by Microbacterium oxydans (CGMCC 1788) to improve its water solubility and pharmacokinetic properties. Appl. Microbiol. Biotechnol. 81:647–657.
  • Jin, Y.R., Li, A.X. and Deng, L.B. (2012). Progress in the research of inhibitory activities and structure-activity relationship of flavonoids on neuraminidases. Chin. J. New Drugs. 21:2272–2278.
  • Johnson, M.H., De-Mejia, E.G., Fan, J., Lila, M.A. and Yousef, G.G. (2013). Anthocyanins and proanthocyanidins from blueberry-blackberry fermented beverages inhibit markers of inflammation in macrophages and carbohydrate-utilizing enzymes in vitro. Mol. Nutr. Food Res. 57:1182–1197.
  • Jung, M. and Park, M. (2007). Acetylcholinesterase inhibition by flavonoids from Agrimonia pilosa. Molecules. 12:2130–2139.
  • Jung, S.H., Lee, J.M., Lee, H.J., Kim, C.Y., Lee, E.H. and Um, LH. (2007). Aldose reductase and advanced glycation endproducts inhibitory effect of Phyllostachys nigra. Biol. Pharm. Bull. 30:1569–1572.
  • Jung, H.A., Islam, N., Kwon, Y.S., Jin, S.E., Son, Y.K., Park, J.J., et al. (2011). Extraction and identification of three major aldose reductase inhibitors from Artemisia Montana. Food Chem. Toxicol. 49:376–384.
  • Jung, S.H., Kang, S.S., Shin, K.H. and Kim, Y.S. (2004). Inhibitory effects of naturally occurring flavonoids on rat lens aldose reductase. Nat. Prod. Sci. 10:35–39.
  • Kachlicki, P., Einhorn, J., Muth, D., Kerhoas, L. and Stobiecki, M. (2008). Evaluation of glycosylation and malonylation patterns in flavonoid glycosides during LC/MS/MS metabolite profiling. J. Mass Spectrom. 43:572–586.
  • Kanwal, Q., Hussain, I., Siddiqu, H.L. and Javaid, A. (2009). Flavonoids from mango leaves with antibacterial activity. J. Serb. Chem. Soc. 74:1389–1399.
  • Kashiwada, Y., Aoshima, A., Ikeshiro, Y., Chen, Y.P., Furukawa, H., Itoigawa, M., et al. (2005). Anti-HIV benzylisoquinoline alkaloids and flavonoids from the leaves of Nelumbo nucifera, and structure–activity correlations with related alkaloids. Bioorg. Med. Chem. 13:443–448.
  • Kato, A., Nasu, N., Takebayashi, K., Adachi, I., Minami, Y., Sanae, F., et al. (2008). Structure-activity relationships of flavonoids as potential inhibitors of glycogen phosphorylase. J. Agric. Food Chem. 56:4469–4473.
  • Kawabata, J., Mizuhata, K., Sato, E., Nishioka, T., Aoyama, Y. and Kasai, T. (2003). 6-Hydroxyflavonoids as α-glucosidase inhibitors from Marjoram (Origanum majorana) leaves. Biosci. Biotechnol. Biochem. 67:445–447.
  • Kawai, M., Hirano, T., Higa, S., Arimitsu, J., Maruta, M., Kuwahara, Y., et al. (2007). Flavonoids and related compounds as anti-allergic substances. Allergol. Int. 56:113–123.
  • Keller, R.B. (ed.). (2009). Flavonoids: Biosynthesis, Biological Effects and Dietary Sources. Nova Science Publishers, New York.
  • Kim, H.K, Cheon, B.S., Kim, Y.H., Kim, S.Y. and Kim, H.P. (1999). Effects of naturally occurring flavonoids on nitric oxide production in the macrophage cell line RAW 264.7 and their structure–activity relationships. Biochem. Pharmacol. 58:759–765.
  • Kim, D.H., Jung, E.A., Sohng, I.S., Han, J.A., Kim, T.H. and Han, M.J. (1998). Intestinal bacterial metabolism of flavonoids and its relation to some biological activities. Arch. Pharm. Res. 21:17–23.
  • Kim, G.E., Kang, H.K., Seo, E.S., Jung, S.H., Park, J.S., Kim, D.H., et al. (2012). Glucosylation of the flavonoid, astragalin by Leuconostoc mesenteroides B-512FMCM dextransucrase acceptor reactions and characterization of the products. Enzyme Microb. Technol. 50:50–56.
  • Kim, S.K., Kim, H.J., Choi, S.E., Park, K.H., Choi, H.K. and Lee, M.W. (2008). Anti-oxidative and inhibitory activities on nitric oxide (NO) and prostaglandin E2 (COX-2) production of flavonoids from seeds of Prunus tomentosa Thunberg. Arch. Pharm. Res. 31:424–428.
  • Kim, H.H., Kim, D.H., Kim, M.H., Oh, M.H., Kim, S.R., Park, K.J., et al. (2013). Flavonoid constituents in the leaves of Myrica rubra sieb. et zucc. with anti-inflammatory activity. Arch. Pharm. Res. 36:1533–1540.
  • Kim, T.H., Kim, J.K., Kang, Y.H., Lee, J.Y., Kang, I.J. and Lim, S.S. (2013). Aldose reductase inhibitory activity of compounds from Zea mays L. Bio. Med. Res. Int. Article ID 727143.
  • Kim, J.S., Kwon, Y.S., Sa, Y.J. and Kim, M.J. (2011a). Isolation and identification of sea buckthorn (Hippophae rhamnoides) phenolics with antioxidant activity and α-glucosidase inhibitory effect. J. Agric. Food Chem. 59:138–144.
  • Kim, J., Kwon, C. and Son, K. (2000). Inhibition of alpha-glucosidase and amylase by luteolin, a fiavonoid. Biosci. Biotechnol. Biochem. 64:2458–2461.
  • Kim, H.J., Lee, B.H., Choi, S.H., Jung, S.W., Kim, H.S., Lee, J.H., et al. (2014). Differential effects of quercetin glycosides on GABAC receptor channel activity. Arch. Pharm. Res. 38:108–114.
  • Kim, H.Y., Lee, J.M., Yokozawa, T., Sakata, K. and Lee, S. (2011b). Protective activity of flavonoid and flavonoid glycosides against glucose-mediated protein damage. Food Chem. 126:892–895.
  • Kim, H.Y., Moon, B.H., Lee, H.J. and Choi, D.H. (2004). Flavonol glycosides from the leaves of Eucommia ulmoides O. with glycation inhibitory activity. J. Ethnopharmacol. 93:227–230.
  • Kim, H.J., Woo, E.R., Shin, C.G. and Park, H. (1998). A new flavonol glycoside gallate ester from Acer okamotoanum and its inhibitory activity against HIV-1 integrase. J. Nat. Prod. 61:145–148.
  • Kim, J.M. and Yun-Choi, H.S. (2008). Anti-platelet effects of flavonoids and flavonoid-glycosides from Sophora japonica. Arch. Pharm. Res. 31:886–890.
  • Komaki, E., Yamaguchi, S., Maru, I., Kinnoshita, M., Kakehi, K., Ohta, Y., et al. (2003). Identification of anti-amylase components from olive leaf extracts. Food Sci. Technol. Res. 9:35–39.
  • Kong, C.S., Lee, J.I., Kim, Y.A., Kim, J.A., Bak, S.S., Hong, J.W., et al. (2012). Evaluation on anti-adipogenic activity of flavonoid glucopyranosides from Salicornia herbacea. Process Biochem. 47:1073–1078.
  • Kong, D.Y. (2012). In: Introduction to Natural Products Chemistry. Xu, R., Ye, Y. and Zhao, W., Eds., Taylor & Francis CRC Press, NY.
  • Kottra, G. and Daniel, H. (2007). Flavonoid glycosides are not transported by the human Na+/glucose transporter when expressed in Xenopus laevis oocytes, but effectively inhibit electrogenic glucose uptake. J. Pharmacol. Exp. Ther. 322:829–835.
  • Kwon, Y.S., Kim, S.S., Sohn, S.J., Kong, P.J., Cheong, I.Y., Kim, C.M., et al. (2004). Modulation of suppressive activity of lipopolysaccharide-induced nitric oxide production by glycosidation of flavonoids. Arch. Pharm. Res. 27:751–756.
  • Ku, S.K., Kim, T.H., Lee, S., Kim, S.M. and Bae, J.S. (2013). Antithrombotic and profibrinolytic activities of isorhamnetin-3-O-galactoside and hyperoside. Food Chem. Toxicol. 53:197–204.
  • Lee, S., Chung, S.C., Lee, S.H., Park, W., Oh, I., Mar, W., et al. (2012). Acylated kaempferol glycosides from Laurus nobilis leaves and their inhibitory effects on Na+/K+-adenosine triphosphatase. Biol. Pharm. Bull. 35:428–432.
  • Lee, I.S., Kim, I.S., Lee, Y.M., Lee, Y., Kim, J.H. and Kim, J.S. (2013a). 2″,4′’-O-Diacetylquercitrin, a novel advanced glycation end-product formation and aldose reductase inhibitor from Melastoma sanguineum. Chem. Pharmceut. Bull. 61:662–665.
  • Lee, J.E., Lee, S., Sung, J. and Ko, G. (2011). Analysis of human and animal fecal microbiota for microbial source tracking. ISME. J. 5:362–365.
  • Lee, M.K., Park, H.J., Kwon, S.H., Jung, Y.J., Lyu, H.N., Lee, D.G., et al. (2013b). Tellimoside, a flavonol glycoside from Brasenia schreberi, inhibits the growth of cyanobacterium (Microcystis aeruginosa LB 2385). J. Korean. Soc. Appl. Biol. Chem. 56:117–121.
  • Lee, S.J., Son, K.H., Chang, H.W., Do, J.C., Jung, K.Y., Kang, S.S., et al. (1993). Antiinflammatory activity of naturally occurring flavone and flavonol glycosides. Arch. Pharm. Res. 16:25–28.
  • Lee, E., Song, D.G., Lee, J., Pan, C.H., Um, B. and Jung, S. (2009). Flavonoids from the leaves of Thuja orientalis inhibit the aldose reductase and the formation of advanced glycation endproducts. J. Korean. Soc. Applied Biol. Chem. 52:448–455.
  • Lespade, L. and Bercion, S. (2012). Theoretical investigation of the effect of sugar substitution on the antioxidant properties of flavonoids. Free Rad. Res. 46:346–58.
  • Li, M. and Hagerman, A.E. (2013). Interactions between plasma proteins and naturally occurring polyphenols. Curr. Drug Metab. 14:432–445.
  • Li, X.L., Li, D., Park, S.H., Gao, C.C., Park, K.H. and Gu, L.W. (2011). Identification and antioxidative properties of transglycosylated puerarins synthesised by an archaeal maltogenic amylase. Food Chem. 124:603–608.
  • Li, D.X., Mitsuhashi, S. and Ubukata, M. (2012). Protective effects of hesperidin derivatives and their stereoisomers against advanced glycation end-products formation. Pharmaceut. Biol. 50:1531–1535.
  • Li, H., Song, F., Xing, J., Tsao, R., Liu, Z. and Liu, S. (2009b). Screening and structural characterization of α-glucosidase inhibitors from hawthorn leaf flavonoids extract by ultrafiltration LC-DAD-MSn and SORI-CID FTICR MS. J. Am. Soc. Mass Spectrom. 20:1496–1503.
  • Li, Y.Q., Zhou, F.C., Gao, F., Bian, J.S. and Shan, F. (2009a). Comparative evaluation of quercetin, isoquercetin and rutin as inhibitors of α-glucosidase. J. Agric. Food Chem. 57:11463–11468.
  • Lim, S.S., Jung, Y.J., Hyun, S.K., Lee, Y.S. and Choi, J.S. (2006). Rat lens aldose reductase inhibitory constituents of Nelumbo nucifera stamens. Phytother. Res. 20:825–830.
  • Lin, Y.L., Lu, C.K., Huang, Y.J. and Chen, H.J. (2011). Antioxidative caffeoylquinic acids and flavonoids from Hemerocallis fulva Flowers. J. Agric. Food Chem. 59:8789–8795.
  • Lin, Y.M., Zhou, Y., Flavin, M.T., Zhou, L.M., Niea, W. and Chen, F.C. (2002). Chalcones and flavonoids as anti-tuberculosis agents. Bioorg. Med. Chem. 10:2795–2802.
  • Liu, P.F., Deng, T.S., Hou, X.L. and Wang, J.G. (2009). Antioxidant properties of isolated isorhamnetin from the sea buckthorn marc. Plant Foods Hum. Nutr. 64:141–145.
  • Liu, T.M. and Jiang, X.H. (2006). Studies on the absorption kinetics of baicalin and baicalein in rats' stomachs and intestines. Zhongguo Zhong Yao Za Zhi. 31:999–1001.
  • Liu, A.L., Wang, H.D., Lee, S.M.Y., Wang, Y.T. and Du, G.H. (2008). Structure-activity relationship of flavonoids as influenza virus neuraminidase inhibitors and their in vitro anti-viral activities. Bioorg. Med. Chem. 16:7141–7147.
  • Liu, H.B., Wang, Z.L., Qiao, Y.X. and Zhou, J.J. (2007). Flavonoids with aldose reductase inhibiting activity: Pharmacophore modeling and implications for mechanism. Acta. Phys. Chim. Sin. 23:1059–1064.
  • Lou, S.N., Yu, M.W. and Ho, C.T. (2012). Tyrosinase inhibitory components of immature calamondin peel. Food Chem. 135:1091–1096.
  • Lourenço, R.M.D.C., Melo, P.S. and de Almeida, A.B.A. (2013). Flavonoids as antifungal agents. In M. Razzaghi-Abyaneh and M. Rai (eds.), Antifungal Metabolites from Plants, Springer-Verlag, Berlin, Heidelberg.
  • Lu, H., Meng, X.F., Li, C., Sang, S.M., Patten, C., Sheng, S.Q., et al. (2003). Glucuronides of tea catechins: Enzymology of biosynthesis and biological activities. Drug Metab. Dispos. 31:452–461.
  • Luyen, N.T., Tram, L.H., Hanh, T.T.H., Binh, P.T., Dang, N.H., Minh, C.V., et al. (2013). Inhibitors of α-glucosidase, α-amylase and lipase from Chrysanthemum morifolium. Phytochem. Lett. 6:322–325.
  • Makino, T., Kanemaru, M., Okuyama, S., Shimizu, R., Tanaka, H. and Mizukami, H. (2013). Anti-allergic effects of enzymatically modified isoquercitrin (α-oligoglucosyl quercetin 3-O-glucoside), quercetin 3-O-glucoside, α-oligoglucosyl rutin, and quercetin, when administered orally to mice. J. Nat. Med. 67:881–886.
  • Makino, T., Shimizu, R., Kanemaru, M., Suzuki, Y., Moriwaki, M. and Mizukami, H. (2009). Enzymatically modified isoquercitrin, alpha-oligoglucosyl quercetin 3-O-glucoside, is absorbed more easily than other quercetin glycosides or aglycone after oral administration in rats. Biol. Pharm. Bull. 32:2034–2040.
  • Maiti, T.K., Ghosh, K.S. and Dasgupta, S. (2006). Interaction of (−)-epigallocatechin- 3-gallate with human serum albumin: Fluorescence, fourier transform infrared, circular dichroism, and docking studies. Proteins. 64:355–362.
  • Majo, D.D., Giammanco, M., Guardia, M.L., Tripoli, E., Giammanco, S. and Finotti, E. (2005). Flavanones in Citrus fruit: Structure–antioxidant activity relationships. Food Res. Int. 38:1161–1166.
  • Manaharan, T., Appleton, D., Cheng, H.M. and Palanisamy, U.D. (2012). Flavonoids isolated from Syzygium aqueum leaf extract as potential antihyperglycaemic agents. Food Chem. 132:1802–1807.
  • Mamadalieva, N.Z.F., El-Readi, M.Z., Tahrani, A., Hamoud, R., Egamberdieva, D.R., Azimova, S.S. and Wink, M. (2011). Flavonoids in Scutellaria immaculata and S. ramosissima (Lamiaceae) and their biological activity. J. Pharm. Pharmacol. 63:1346–1357.
  • Mao, Y.W., Tseng, H.W., Liang, W.L., Chen, I.S., Chen, S.T. and Lee, M.H. (2011). Anti-inflammatory and free radial scavenging activities of the constituents isolated from Machilus zuihoensis. Molecules. 16:9451–9466.
  • De Martino, L., Mencherini, T., Mancini, E., Aquino, R.P., De Almeida, L.F.R. and De Feo, V. (2012). In vitro phytotoxicity and antioxidant activity of selected flavonoids. Int. J. Mol Sci. 13:5406–5419.
  • Martini, S., Bonechi, C. and Rossi, C. (2008). Interaction of quercetin and its conjugate quercetin 3-O-β-D-glucopyranoside with albumin as determined by NMR relaxation data. J. Nat. Prod. 71:175–178.
  • Materska, M., Konopacka, M., Rogoliński, J. and Ślosarek, K. (2015). Antioxidant activity and protective effects against oxidative damage of human cells induced by X-radiation of phenolic glycosides isolated from pepper fruits Capsicum annuum L. Food Chem. 168:546–553.
  • Matsuda, H., Morikawa, T., Toguchida, I. and Yoshikawa, M. (2002). Structural requirements of flavonoids and related compounds for aldose reductase inhibitory activity. Chem. Pharm. Bull. 50:788–795.
  • Matsuda, H., Wang, T., Managi, H. and Yoshikawa, M. (2003). Structural requirements of flavonoids for inhibition of protein glycation and radical scavenging activities. Bioorg. Med. Chem. 11:5317–5323.
  • Merlino, G.T., Xu, Y.H., Ishii, S., Clark, A.J., Semba, K., Toyoshima, K., Yamamoto, T. and Pastan, I. (1984). Amplification and enhanced expression of the epidermal growth factor receptor gene in A431 human carcinoma cells. Science. 224:417–419.
  • Michael, H.N., Salib, J.Y. and Eskander, E.F. (2013). Bioactivity of diosmetin glycosides isolated from the epicarp of date fruits, Phoenix dactylifera, on the biochemical profile of alloxan diabetic male rats. Phytotherapy Res. 27:699–704.
  • Mikkelson, T.J., Chrai, S.S. and Robinson, J.R. (2006). Altered bioavailability of drugs in the eye due to drug-protein interaction. J. Pharmaceut. Sci. 62:1648–1653.
  • Mishra, B., Priyadarsini, K.I., Kumar, M.S., Unnikrishnan, M.K. and Mohan, H. (2003). Effect of O-glycosilation on the antioxidant activity and free radical reactions of a plant flavonoid, chrysoeriol. Bioorg. Med. Chem. 11:2677–2685.
  • Mok, S.Y. and Lee, S. (2013). Identification of flavonoids and flavonoid rhamnosides from Rhododendron mucronulatum for albiflorum and their inhibitory activities against aldose reductase. Food Chem. 136:969–974.
  • Moradi-Afrapoli, F, Asghari, B, Saeidnia, S, Ajani, Y, Mirjani, M, Malmir, M., et al. (2012). In vitro α-glucosidase inhibitory activity of phenolic constituents from aerial parts of Polygonum hyrcanicum. DARU. J. Pharmaceut. Sci. 20:37.
  • Morikawa, T., Imura, K., Miyake, S., Yoshikawa, M., Pongpiriyadacha, Y., Hayakawa, T., et al. (2012). Promoting the effect of chemical constituents from the flowers of Poacynum hendersonii on adipogenesis in 3T3-L1 cells. J. Nat. Med. 66:39–48.
  • Morikawa, T., Ninomiya, K., Miyake, S., Miki, Y., Okamoto, M., Yoshikawa, M. and Muraoka, O. (2013). Flavonol glycosides with lipid accumulation inhibitory activity and simultaneous quantitative analysis of 15 polyphenols and caffeine in the flower buds of Camellia sinensis from different regions by LCMS. Food Chem. 140:353–360.
  • Morikawa, T., Ninomiya, K., Zhang, Y., Yamada, T., Nakamura, S., Matsuda, H., et al. (2012b). Flavonol glycosides with lipid accumulation inhibitory activity from Sedum sarmentosum. Phytochem. Lett. 5:53–58.
  • Mullen, W., Edwards, C.A. and Crozier, A. (2006). Absorption, excretion and metabolite profiling of methyl-, glucuronyl-, glucosyl- and sulpho-conjugates of quercetin in human plasma and urine after ingestion of onions. Br. J. Nutr. 96:107–116.
  • Mulvihill, E.E. and Huff, M.W. (2012). Protection from metabolic dysregulation, obesity, and atherosclerosis by Citrus flavonoids: Activation of hepatic PGC1α-mediated fatty acid oxidation. PPAR. Res. Article ID 857142.
  • Murata, K., Takano, S., Masuda, M., Iinuma, M. and Matsuda, H. (2013). Anti-degranulating activity in rat basophil leukemia RBL-2H3 cells of flavanone glycosides and their aglycones in Citrus fruits. J. Nat. Med. 67:643–646.
  • Mussadiq, S., Riaz, N., Saleem, M., Ashraf, M., Ismail, T. and Jabbar, A. (2013). New acylated flavonoid glycosides from flowers of Aerva javanica. J. Asian. Nat. Prod. Res. 15:7081–7086.
  • Muzitano, M.F., Tinoco, L.W., Guette, C., Kaiser, C.R., Rossi-Bergmann, B. and Costa, S.S. (2006). The antileishmanial activity assessment of unusual flavonoids from Kalanchoe pinnata. Phytochemistry. 67:2071–2077.
  • Nenaah, G. (2013). Antimicrobial activity o Calotropis f procera Ait. (Asclepiadaceae) and isolation of four flavonoid glycosides as the active constituents. World. J. Microb. Biotechnol. 29:1255–1262.
  • Nugroho, A., Choi, J.K., Park, J.H., Lee, K.T., Cha, B.C. and Park, H.J. (2009). Two new flavonol glycosides from Lamium amplexicaule L. and their in vitro free radical scavenging and tyrosinase inhibitory activities. Planta. Med. 75:364–366.
  • Oh, M.H., Choe, K.I., Cho, S.H., Jeong, M.S., Myung, S.C., Seo, S.J., et al. (2013). Anti-oxidative and anti-inflammatory effects of flavonoids from the silk of Zea mays Linn. Asian. J. Chem. 25:4293–4297.
  • Okoth, D.A., Chenia, H.Y. and Koorbanally, N.A. (2013). Antibacterial and antioxidant activities of flavonoids from Lannea alata (Engl.) Engl. (Anacardiaceae). Phytochemistry Lett. 6:476–481.
  • Okuda, J., Miwa, I., Inagaki, K., Horie, T. and Nakayama, M. (1982). Inhibition of aldose reductases from rat and bovine lenses by flavonoids. Biochem. Pharmacol. 31:3807–3822.
  • Olivero-Verbel, J. and Pacheco-Londoño, L. (2002). Structure-activity relationships for the anti-HIV activity of flavonoids. J. Chem. Inf. Comput. Sci. 42:1241–1246.
  • Om, A.S., Ryu, J.C. and Kim, J.H. (2008). Quantitative structure-activity relationships for radical scavenging activities of flavonoid compounds by GA-MLR technique. Mol. Cell Toxicol. 4:170–176.
  • Omar, M.H., Mullen, W. and Crozier, A. (2011). Identification of proanthocyanidin dimers and trimers, flavone C-glycosides, and antioxidants in Ficus deltoidea, a Malaysian herbal tea. J. Agric. Food Chem. 59:1363–1369.
  • Orhan, D.D., Özcelik, B., Ózgen, S. and Ergum, F. (2010). Antibacterial, antifungal and antiviral activities of some flavonoids. Micro.biol. Res. 165:496–504.
  • Oualid, T. and Artur, M.S.S. (2012). Advances in C-glycosylflavonoid research. Curr. Org. Chem. 16:859–896.
  • Pan, Y.Z., Guan, Y., Wei, Z.F., Peng, X., Li, T.T., Qi, X.L. and Fu, Y.J. (2014). Flavonoid C-glycosides from pigeon pea leaves as color and anthocyanin stabilizing agent in blueberry juice. Indust. Crops Prod. 58:142–147.
  • Panickar, K.S. (2013). Effects of dietary polyphenols on neuroregulatory factors and pathways that mediate food intake and energy regulation in obesity. Mol. Nutr. Food Res. 57:34–47.
  • Park, C.H., Lim, S.S. and Lee, D.U. (2007). Structure-activity relationships of components from the roots of Pueraria thunbergiana having aldose reductase inhibitory and antioxidative activity. Bull. Korean. Chem. Soc. 28:493–495.
  • Park, H.Y., Kim, S.H., Kim, G.B., Sim, J.Y., Lim, S.S., Kim, M.J., et al. (2010). A new isoflavone glycoside from the stem bark of Sophora japonica. Arch. Pharm. Res. 33:1165–1168.
  • Park, S.H., Kim, H.J., Yim, S.H., Kim, A.R., Tyagi, N., Shen, H.H., et al. (2014). Delineation of the role of glycosylation in the cytotoxic properties of quercetin using novel assays in living vertebrates. J. Nat. Prod. 77:2389–2396.
  • Petrussa, E., Braidot, E., Zancani, M., Peresson, C., Bertolini, A., Patui, S., et al. (2013). Plant flavonoids-biosynthesis, transport and involvement in stress responses. Int. J. Mol. Sci. 14:14950–14973.
  • Phuwapraisirisan, P., Puksasook, T., Kokpol, U. and Suwanborirux, K. (2009). Corchorusides A and B, new flavonol glycosides as α-glucosidase inhibitors from the leaves of Corchorus olitorius. Tetrahedron. Lett. 50:5864–5867.
  • Pick, A., Müller, H., Mayer, R., Haenisch, B., Pajeva, I.K., Weigt, M., et al. (2011). Structure–activity relationships of flavonoids as inhibitors of breast cancer resistance protein (BCRP). Bioorg. Med. Chem. 19:2090–2102.
  • Plaza, M., Pozzo, T., Liu, J., Ara, K.Z.G., Turner, C. and Karlsson, E.N. (2014). Substituent effects on in vitro antioxidizing properties, stability, and solubility in flavonoids. J. Agric. Food Chem. 62:3321–3333.
  • Praveena, R., Sadasivam, K., Kumaresan, R., Deepha, V. and Sivakumar, R. (2013). Experimental and DFT studies on the antioxidant activity of a C-glycoside from Rhynchosia capitata. Spectrochim Acta A: Mol. Biomol. Spectr. 103:442–452.
  • Rashed, K., Zhang, X.J., Luo, M.T. and Zheng, Y.T. (2012). Anti-HIV-1 activity of phenolic compounds isolated from Diospyros lotus fruits. Phytopharmacol. 3:199–207.
  • Rawat, P., Kumar, M., Sharan, K., Chattopadhyay, N. and Maurya, R. (2009). Ulmoside A and B: Flavanoids 6-C glucosides from Ulmus wallichiana, stimulating osteoblast differentiation assessed by alkaline phosphitage. Bioorganic. Med. Chem. Lett. 19:4684–4686.
  • Ren, S.C., Qiao, Q.Q. and Ding, X.L. (2013a). Antioxidative activity of five flavones glycosides from corn silk (Stigma maydis). Czech. J. Food Sci. 31:148–155.
  • Ren, S., Xu, D.D., Gao, Y., Ma, Y.T. and Gao, Q.P. (2013b). Flavonoids from litchi (Litchi chinensis Sonn.) seeds and their inhibitory activities on α-glucosidase. Chem. Res. Chin. Univ. 29:682–685.
  • Rice-Evans, C.A., Miller, N.J. and Paganga, G. (1996). Structure–antioxidant activity relationships of flavonoids and phenolic acids. Free Rad. Biol. Med. 20:933–956.
  • Rigano, D., Formisano, C., Basile, A., Lavitola, A., Senatore, F., Rosselli, S., et al. (2007). Antibacterial activity of flavonoids and phenylpropanoids from Marrubium globosum ssp. libanoticum. Phytother. Res. 21:395–397.
  • Ryu, Y.B., Kim, J.H., Park, S.J., Chang, J.S., Rho, Bae, K.H., et al. (2010). Inhibition of neuraminidase activity by polyphenol compounds isolated from the roots of Glycyrrhiza uralensis. Bioorg. Med. Chem. Lett. 20:971–974.
  • dos Santos, A.E., Kuster, R.M., Yamamoto, K.A., Salles, T.S., Campos, R., de Meneses, M.D.F., et al. (2014). Quercetin and quercetin 3-O-glycosides from Bauhinia longifolia (Bong.) Steud. Show anti-Mayaro virus activity. Parasites & Vectors. 7:130.
  • Sarkar, A., Middya, T.R. and Jana, A.D. (2012). A QSAR study of radical scavenging antioxidant activity of a series of flavonoids using DFT based quantum chemical descriptors-the importance of group frontier electron density. J. Mol. Model. 18:2621–2631.
  • Schnekenburger, M., Dicato, M. and Diederich, M. (2014). Plant-derived epigenetic modulators for cancer treatment and prevention. Biotechnol. Adv. 32:1123–1132.
  • Seal, A., Aykkal, R., Babu, R.O. and Ghosh, M. (2011). Docking study of HIV-1 reverse transcriptase with phytochemicals. Bioinformation. 5:430–444.
  • Sesink, A.L.A., O'Leary, K.A. and Hollman, P.C.H. (2001). Quercetin glucuronides but not glucosides are present in human plasma after consumption of quercetin-3-glucoside or quercetin-4′-Glucoside. J. Nutr. 131:1938–1941.
  • Seyoum, A., Asres, K. and El-Fiky, F.K. (2006). Structure–radical scavenging activity relationships of flavonoids. Phytochemistry. 67:2058–2070.
  • Shimoda, K. and Hamada, H. (2010). Production of hesperetin glycosides by xanthomonas campestris and cyclodextrin glucanotransferase and their anti-allergic activities. Nutrients. 2:171–180.
  • Shafek, R.E., Shafik, N.H. and Michael, H.N. (2012). Antibacterial and antioxidant activities of two new kaempferol glycosides isolated from Solenostemma argel stem extract. Asian. J. Plant Sci. 11:143–147.
  • Shahat, A.A., Ismai, S.I., Hammouda, F.M., Azzam, S.A., Lerniere, G., de Bruyne, T., et al. (1998). Anti-HIV activity of flavonoids and proanthocyanidins from Crataegus sinaica. Phytomedicine. 5:133–136.
  • Shen, W., Xu, Y. and Lu, Y.H. (2012). Inhibitory effects of citrus flavonoids on starch digestion and antihyperglycemic effects in HepG2 cells. J Agric Food Chem. 60:9609–19.
  • Shibano, M., Kakutani, K., Taniguchi, M., Yasuda, M. and Baba, K. (2008). Antioxidant constituents in the dayflower (Commelina communis L.) and their α-glucosidase-inhibitory activity. J. Nat. Med. 62:349–353.
  • Shimoda, H., Nakamura, S., Morioka, M., Tanaka, J., Matsuda, H. and Yoshikawa, M. (2011). Effect of cinnamoyl and flavonol glucosides derived from cherry blossom flowers on the production of advanced glycation end products (AGEs) and AGE-induced fibroblast apoptosis. Phytother. Res. 25:1328–1335.
  • Shin, K.H., Kang, S.S., Seo, E.A. and Shin, S.W. (1995). Isolation of aldose reductase inhibitors from the flowers of Chrysanthemum boreale. Arch. Pharm. Res. 18:65–68.
  • Simons, A.L., Renouf, M., Hendrich, S. and Murphy, P.A. (2005). Metabolism of glycitein (7,4′-dihydroxy-6-methoxy-isoflavone) by human gut microflora. J. Agric. Food Chem. 53:8519–8525.
  • Sivakumar, P.M., Geetha, B.S.K. and Mukesh, D. (2007). QSAR studies on chalcones and flavonoids as anti-tuberculosis agents using genetic function approximation (GFA) method. Chem. Pharm. Bull. 55:44–49.
  • Suedee, A., Tewtrakul, S. and Panichayupakaranant, P. (2013). Anti-HIV-1 integrase compound from Pometia pinnata leaves. Pharm. Biol. 51:1256–1261.
  • Tanaka, R., Tsuji, H., Yamada, T., Kajimoto, T., Amano, F., Hasegawa, J., et al. (2009). Novel 3α-methoxyserrat-14-en-21β-ol (PJ1) and 3β-methoxyserrat-14-en-21β-ol (PJ2)-curcumin, kojic acid, quercetin, and baicalein conjugates as HIV agents. Bioorg. Med. Chem. 17:5238–5246.
  • Tao, J., Hu, Q., Yang, J., Li, R., Li, X., Lu, C., et al. (2007). In vitro anti-HIV and -HSV activity and safety of sodium rutin sulfate as a microbicide candidate. Antiviral. Res. 75:227–233.
  • Tasdemir, D., Kaiser, M., Brun, R., Yardley, V., Schmidt, T.J., Tosun, F., et al. (2006). Antitrypanosomal and antileishmanial activities of flavonoids and their analogues: In vitro, in vivo, structure--activity relationship, and quantitative structure--activity relationship studies. Antimicrob. Agents Chemother. 50:1352–1364.
  • Tewtrakul, S., Nakamura, N., Hattori, M., Fujiwara, T. and Suparita, T. (2002). Flavanone and flavonol glycosides from the leaves of Thevetia peruviana and their HIV-1 reverse transcriptase and HIV-1 integrase inhibitory activities. Chem. Pharm. Bull. 50:630–635.
  • Tronina, T., Bartmańska, A., Milczarek, M., Wietrzyk, J., Popłoński, J., Roj, E., et al. (2013). Antioxidant and antiproliferative activity of glycosides obtained by biotransformation of xanthohumol. Bioorg. Med. Chem. Lett. 23:1957–1960.
  • Uriarte-Pueyo, I. and Calvo, M.I. (2011). Flavonoids as acetylcholinesterase inhibitors. Curr. Med. Chem. 18:5289–5302.
  • van de Waterbeemd, H. (1998). The fundamental variables of the biopharmaceutics classification system (BCS): A commentary. Eur. J. Pharm. Sci. 7:1–3.
  • Veitch, N.C. and Grayer, R.J. (2011). Flavonoids and their glycosides, including anthocyanins. Nat. Prod. Rep. 28:1626–1695.
  • Wahajuddin, Taneja I., Arora, S., Raju, K.S.R. and Siddiqui, N. (2013). Disposition of pharmacologically active dietary isoflavones in biological systems. Curr. Drug Metab. 14:369–380.
  • Walle, T. (2004). Absorption and metabolism of flavonoids. Free Radical. Bio. Med. 36:829–837.
  • Walle, T., Browning, A.M., Steed, L.L., Reed, S.G. and Walle, U.K. (2005). Flavonoid glucosides are hydrolyzed and thus activated in the oral cavity in humans. J. Nutr. 135:48–52.
  • Wang, H., Du, Y.J. and Song, H.C. (2010). α-Glucosidase andα-amylase inhibitory activities of guava leaves. Food Chem. 123:6–13.
  • Wang, J.H., Lou, J.F., Luo, C., Zhou, L,G., Wang, M.G. and Wang, L. (2012b). Phenolic compounds from Halimodendron halodendron (Pall.) Voss and their antimicrobial and antioxidant activities. Int. J. Mol. Sci. 13:11349–11364.
  • Wang, X.J., Wang, S. and Huang, S. (2011). Study on anti-HIV of quercetin derivants in natural products. Chin. J. Experiment. Tradition. Med. Form. 17:274–278.
  • Wang, K., Zhang, X.J., Luo, M.T. and Zheng, Y.T. (2012c). Anti-HIV-1 activity of phenolic compounds isolated from Diospyroslotus fruits. Phytopharmacol. 3:199–207.
  • Wang, Y.L., Zhao, Y., Yang, F., Yuan, Y.M., Wang, H. and Xiao, J.B. (2012a). Influences of glucose on the dietary hydroxyflavonoids-plasma proteins interaction. J. Agric. Food Chem. 60:12116–12121.
  • Wang, S.Q., Zhu, X.F., Wang, X.N., Shen, T., Xiang, F. and Lou, H.X. (2013). Flavonoids from Malus hupehensis and their cardioprotective effects against doxorubicin-induced toxicity in H9c2 cells. Phytochemistry. 87:119–125.
  • Watanabe, M. and Ayugase, J. (2008). Anti-stress effects of flavonoids from buckwheat sprouts in mice subjected to restraint stress. Food Sci. Technol. Res. 14:253–260.
  • Williamson, G., Dionisi, F. and Renouf, M. (2011). Flavanols from green tea and phenolic acids from coffee: Critical quantitative evaluation of the pharmacokinetic data in humans after consumption of single doses of beverages. Mol. Nutr. Food Res. 55:864–873.
  • Wong, Y.C., Zhang, L., Lin, G. and Zuo, Z. (2009). Structure–activity relationships of the glucuronidation of flavonoids by human glucuronosyltransferases. Expert Opin. Drug Metab. Toxicol. 5:1399–1419.
  • Woo, H.J., Kang, H.K., Nguyen, T.T.H., Kim, G.E., Kim, Y.M., Park, J.S., et al. (2012b). Synthesis and characterization of ampelopsin glucosides using dextransucrase from Leuconostoc mesenteroides B-1299CB4:Glucosylation enhancing physicochemical properties. Enzyme Microb. Technol. 51:311–318.
  • Woo, K.W., Moon, E., Park, S.Y., Kim, S.Y. and Lee, K.R. (2012a). Flavonoid glycosides from the leaves of Allium victorialis var. platyphyllum and their anti-neuroinflammatory effects. Bioorg. Med. Chem. Lett. 22:7465–7470.
  • Wu, B.J., Basu, S., Meng, S.N., Wang, X.Q. and Hu, M. (2011). Regioselective sulfation and glucuronidation of phenolics: Insights into the structural basis. Curr. Drug Metab. 12:900–916.
  • Xiao, J.B., Capanoglu, E., Jassbi, A.R., and Miron, A. (2016). Advance on the flavonoid C-glycosides and health benefits. Crit. Rev. Food Sci. Nutr., 56(S1):S29–S45.
  • Xiao, J.B. and Högger, P. (2014). Advance on the pharmacokinetics of natural bioactive polyphenols. Curr. Drug Metab. 15:1–2.
  • Xiao, J.B. and Högger, P. (2015a). Dietary polyphenols and type 2 diabetes: Current insights and future perspectives. Curr. Med. Chem. 22:23–38.
  • Xiao, J.B. and Högger, P. (2015b). Structure-stability of dietary polyphenols under the cell culture condition: Avoiding erroneous conclusions. J. Agric. Food Chem. 63:1547–1557.
  • Xiao, J.B., Chen, X.Q., Zhang, L., Talbot, S.G., Li, G.C. and Xu, M. (2008). Investigation the mechanism of enhanced effect of EGCG on huperzine A inhibiting acetylcholinesterase activity in rats by multi-spectroscopic method. J. Agric. Food Chem. 56:910–915.
  • Xiao, J.B., Cao, H., Wang, Y.F., Zhao, J.Y. and Wei, X.L. (2009). Glycosylation of dietary flavonoids decreases the affinities for plasma protein. J. Agric. Food Chem. 57:6642–6648.
  • Xiao, J.B., Chen, T.T., Cao, H., Chen, L.S. and Yang, F. (2011c). Molecular property-affinity relationship of flavanoids and flavonoids for human serum albumin in vitro. Mol. Nutr. Food Res. 55:310–317.
  • Xiao, J.B. and Kai, G.Y. (2012a). A review of dietary polyphenol-plasma protein interactions: Characterization, influence on the bioactivity, and structure-affinity relationship. Crit. Rev. Food Sci. Nutr. 52:85–101.
  • Xiao, J.B. and Högger, P. (2013). Metabolism of dietary flavonoids in liver microsomes. Curr. Drug Metab. 14:381–391.
  • Xiao, J.B., Huo, J.L., Yang, F. and Chen, X.Q. (2011e). Non-covalent interaction of dietary polyphenols with bovine hemoglobin in vitro: Molecular structure/property-affinity relationship aspects. J. Agric. Food Chem. 59:8484–8490.
  • Xiao, J.B., Kai, G.Y., Ni, X.L., Yang, F. and Chen, X.Q. (2011d). Interaction of natural polyphenols with human α-amylase in vitro: Molecular property-affinity relationship aspect. Mol. Bio.Syst. 7:1883–1890.
  • Xiao, J.B., Kai, G.Y., Yamamoto, K. and Chen, X.Q. (2013b). Advance in dietary polyphenols as α-glucosidases inhibitors: A review on structure-activity relationship aspect. Crit. Rev. Food Sci. Nutr. 53:818–836.
  • Xiao, J.B., Kai, G.Y., Yang, F., Liu, C.X., Xu, X.C. and Yamamoto, K. (2011b). Molecular structure-affinity relationship of natural polyphenols for bovine γ-globulin. Mol. Nutr. Food Res. 55:S86–92.
  • Xiao, J.B., Mao, F.F., Yang, F., Zhao, Y.R., Zhang, C. and Yamamoto, K. (2011a). Interaction of dietary polyphenols with bovine milk proteins: Molecular structure-affinity relationship and influencing bioactivity aspects. Mol. Nutr. Food Res. 55:1637–1645.
  • Xiao, J.B., Muzashvili, T.S. and Georgiev, M.I. (2014). Advance on biotechnology for glycosylation of high-value flavonoids. Biotechnol. Adv. 32:1145–1156.
  • Xiao, J.B., Ni, X.L., Kai, G.Y. and Chen, X.Q. (2013a). A review on structure-activity relationship of dietary polyphenols inhibiting α-amylase. Crit. Rev. Food Sci. Nutr. 53:497–506.
  • Xiao, J.B., Ni, X.L., Kai, G.Y. and Chen, X.Q. (2015). Advance in dietary polyphenols as aldose reductases inhibitors: Structure-activity relationship aspect. Crit. Rev. Food Sci. Nutr 55:16–31.
  • Xiao, J.B. and Shao, R. (2013). Natural products for treatment of Alzheimer's disease and related diseases: Understanding their mechanism of action. Curr. Neuropharmacol. 11:337.
  • Xiao, J.B. and Tundis, R. (2013). Natural products for Alzheimer's disease therapy: Basic and application. J. Pharm. Pharmacol. 65:1679–1680.
  • Xiao, J.B., Zhao, Y.R., Wang, H., Yuan, Y.M., Yang, F., Zhang, C., et al. (2011f). Non-covalent interaction of dietary polyphenols with total plasma proteins of type II diabetes: Molecular structure/property-affinity relationships. Integr. Biol. 3:1087–1094.
  • Xiao, J.B., Zhao, Y.R., Wang, H., Yuan, Y.M., Yang, F., Zhang, C. and Yamamoto, K. (2011g). Non-covalent interaction of dietary polyphenols with common human plasma proteins. J. Agric. Food Chem. 59:10747–10754.
  • Xie, Y.X. and Chen, X.Q. (2013). Structures required of polyphenols for inhibiting advanced glycation end products formation. Curr. Drug Metab. 14:414–431.
  • Xie, H.H., Wang, T., Matsuda, H., Morikawa, T., Yoshikawa, M. and Tani, T. (2005). Bioactive constituents from Chinese natural medicines. XV.1) Inhibitory effect on aldose reductase and structures of sussureosides A and B from Saussurea medusa. Chem. Pharm. Bull. 53:1416–1422.
  • Xie, Y.X., Xiao, J.B., Kai, G.Y. and Chen, X.Q. (2012). Glycation of plasma proteins in type II diabetes lowers the non-covalent interaction affinities for dietary polyphenols. Integr. Biol. 4:502–507.
  • Xin, G.Z., Qi, L.W., Shi, Z.Q., Li, P., Hao, H.P., Wang, G.J., et al. (2011). Strategies for integral metabolism profile of multiple compounds in herbal medicines: Pharmacokinetics, metabolites characterization and metabolic interactions. Curr. Drug Metab. 12:809–817.
  • Xing, J. (2005). Study on the Absorption and metabolism of baicalin in animals. Graduation Thesis for the Doctorate for Shenyang Pharmaceutieal University, 33–39.
  • Yadav, A.K., Thakur, J., Prakash, O., Khan, F., Saikia, D. and Gupta, M.M. (2013). Screening of flavonoids for antitubercular activity and their structure–activity relationships. Med. Chem. Res. 22:2706–2716.
  • Yahagi, T., Daikonya, A. and Kitanaka, S. (2012). Flavonol acylglycosides from flower of Albizia julibrissin and their inhibitory effects on lipid accumulation in 3T3-L1 cells. Chem. Pharmaceut. Bull. 60:129–136.
  • Yang, J.G., Liu, B.G., Liang, G.Z. and Ning, Z.X. (2009). Structure-activity relationship of flavonoids active against lard oil oxidation based on quantum chemical analysis. Molecules. 14:46–52.
  • Yang, X.W., Huang, M,Z., Jin, Y.S., Sun, L.N., Song, Y. and Chen, H.S. (2012). Phenolics from Bidens bipinnata and their amylase inhibitory properties. Fitoterapia. 83:1169–1175.
  • Yao, Y., Cheng, X.Z., Wang, L.X., Wang, S.H. and Ren, G.X. (2012). Mushroom tyrosinase inhibitors from mung bean (Vigna radiatae L.) extracts. Int. J. Food Sci. Nutr. 63:358–361.
  • Yarmolinsky, L., Huleihel, M., Zaccai, M. and Ben-Shabat, S. (2012). Potent antiviral flavone glycosides from Ficus benjamina leaves. Fitoterapia. 83:362–367.
  • Ye, X.P., Song, C.Q., Yuan, P. and Mao, R.G. (2010). α-Glucosidase and α-amylase inhibitory activity of common constituents from traditional Chinese medicine used for diabetes mellitus. Chin. J. Nat. Med. 8:349–352.
  • Yenjai, C., Prasanphen, K., Daodee, S., Wongpanich, V. and Kittakoop, P. (2004). Bioactive flavonoids from Kaempferia parviflora. Fitoterapia. 75:89–92.
  • Yoshida, K., Hishida, A., Iida, O., Hosokawa, K. and Kawabata, J. (2008). Flavonol caffeoylglycosides as α-glucosidase inhibitors from Spiraea cantoniensis flower. J. Agric. Food Chem. 56:4367–4371.
  • Yoshikawa, M., Morikawa, T., Murakami, T., Toguchida, I., Harima, S. and Matsuda, H. (1999). Medicinal flowers. I. Aldose reductase inhibitors and three new eudesmane-type sesquiterpenes, kikkanols A, B, and C, from the flowers of Chrysanthemum indicum L. Chem. Pharm. Bull. 47:340–345.
  • Yu, L., Chen, C., Wang, L.F., Kuang, X., Liu, K., Zhang, H., et al. (2013a). Neuroprotective effect of kaempferol glycosides against brain injury and neuroinflammation by inhibiting the activation of NF-kappa B and STAT3 in transient focal stroke. Plos. ONE. 8:e55839.
  • Yu, Y.B., Myashiro, H., Nakamura, N., Hattori, M. and Park, J.C. (2007). Effcets of triterpenoids and flavonoids isolated from Alnus firma on HIV-1 viral enzymes. Arch. Pharm. Res. 30:820–826.
  • Yu, C.H., Zhang, Z.Y., Zhang, H.J., Zhen, Z., Calway, T., Wang, Y.W., et al. (2013b). Pretreatment of baicalin and wogonoside with glycoside hydrolase: A promising approach to enhance anticancer potential. Oncol. Rep. 30:2411–2418.
  • Yuan, L., Wei, S.P., Wang, J. and Liu, X.B. (2014). Isoorientin induces apoptosis and autophagy simultaneously by reactive oxygen species (ROS)-related p53, PI3K/Akt, JNK, and p38 signaling pathways in HepG2 cancer cells. J. Agric. Food Chem. 62:5390–5400.
  • Zhang, Y., He, W., Li, C.M., Chen, Q., Han, L.F. and Liu, E.W., et al. (2013). Antioxidative flavonol glycosides from the flowers of Abelmouschus manihot. J. Nat. Med. 67:78–85.
  • Zhang, L., Lin, G., Chang, Q. and Zuo, Z. (2005). Role of intestinal first-pass metabolism of baicalein in its absorption process. Pharm. Res. 22:1050–1058.
  • Zhang, L., Lin, G. and Zuo, Z. (2007). Involvement of UDP-glucuronosyltransferases in the extensive liver and intestinal first-pass metabolism of flavonoid baicalein. Pharmaceut. Res. 24:81–89.
  • Zhang, Z.Q., Liu, W., Zhuang, L., Wang, J. and Zhang, S. (2013). Comparative pharmacokinetics of baicalin, wogonoside, baicalein and wogonin in plasma after oral administration of pure baicalin, Radix scutellariae and Scutellariae-paeoniae couple extracts in normal and ulcerative colitis rats. Iran. J. Pharmaceut. Res. 12:399–409.
  • Zhang, L.Q., Yang, X.W., Zhang, Y.B., Zhai, Y.Y., Xu, W., Zhao, B., et al. (2012). Biotransformation of phlorizin by human intestinal flora and inhibition of biotransformation products on tyrosinase activity. Food Chem. 132:936–942.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.