954
Views
46
CrossRef citations to date
0
Altmetric
Original Articles

Dietary antioxidant synergy in chemical and biological systems

&

References

  • Ajuwon, O. R., Katengua-Thamahane, E., Van Rooyen, J., Oguntibeju, O. O., Marnewick, J. L. Q. and Cassandra, L. (2013). Protective effects of rooibos (Aspalathus linearis) and/or red palm oil (Elaeis guineensis) supplementation on tert-butyl hydroperoxide-induced oxidative hepatotoxicity in Wistar rats. J. Evid. Based Complement. Alternat. Med. 2013:1–19.
  • Almeida, I. M. C., Barreira, J. C. M., Oliveira, M. B. P. P. and Ferreira, I. C. F. R. (2011). Dietary antioxidant supplements: Benefits of their combined use. Food Chem. Toxicol. 49:3232–3237.
  • Asdaq, S. M. B. and Inamdar, M. N. (2010). Effect of chronic therapy of garlic on biochemical and antioxidant changes in presence of hydrochlorothiazide and captopril in rats. J. Pharm. Res. 3:522–527.
  • Asokkumar, K., Sen, S., Umamaheswari, M., Sivashanmugam, A. T. and Subhadradevi, V. (2014). Synergistic effect of the combination of gallic acid and famotidine in protection of rat gastric mucosa. Pharmacol. Rep. 66:594–599.
  • Bai, H., Liu, R., Chen, H. L., Zhang, W., Wang, X., Zhang, X. D., Li, W. L. and Hai, C. X. (2014). Enhanced antioxidant effect of caffeic acid phenethyl ester and trolox in combination against radiation induced-oxidative stress. Chem-Biol. Interact. 207:7–15.
  • Baldarinath, A. V., Mallikarjuna, R. A., Madhu Sudhana, C., Ramkanth, S., Rajan, T. V. S. and Gnanaprakash, K. (2010). A Review on in-vitro antioxidant methods: Comparisons, correlations and considerations. Int. J. Pharm. Tech. Res. 2:1276–1285.
  • Becker, E. M., Ntouma, G. and Skibsted, L. H. (2007). Synergism and antagonism between quercetin and other chain-breaking antioxidants in lipid systems of increasing structural organisation. Food Chem. 103:1288–1296.
  • Bruno, R. S., Leonard, S. W., Atkinson, J., Montine, T. J., Ramakrishnan, R., Bray, T. M. and Traber, M. G. (2006). Faster plasma vitamin E disappearance in smokers is normalized by vitamin C supplementation. Free Radic. Biol. Med. 40:689–697.
  • Calligaris, S., Manzocco, L., Anese, M. and Nicoli, M. C. (2015). Shelf life assessment of food undergoing oxidation–A review. Crit. Rev. Food Sci. Nutr. DOI:10.1080/10408398.2013.807222.
  • Celik, E. E., Go¨kmen, V. and Skibsted, L. H. (2015). Synergism between soluble and dietary fiber bound antioxidants. J. Agric. Food Chem. 63:2338–2343.
  • Celik, S. E., Ozyurek, M., Güçlü, K. and Apak, R. (2010). Solvent effects on the antioxidant capacity of lipophilic and hydrophilic antioxidants measured by CUPRAC, ABTS/persulphate and FRAP methods. Talanta 81:1300–1309.
  • Çelik, E. E., Gökmen, V. and Fogliano, V. (2013). Soluble Antioxidant Compounds Regenerate the Antioxidants Bound to Insoluble Parts of Foods. J. Agric. Food Chem. 61:10329–10334.
  • Chen, C.Y. and Blumberg, J. B. (2008). In vitro activity of almond skin polyphenols for scavenging free radicals and inducing quinone reductase. J. Agric. Food Chem. 56:4427–4434.
  • Chen, C. Y., Milbury, P. E., Chung, S. K., and Blumberg, J. (2007). Effect of almond skin polyphenolics and quercetin on human LDL and apolipoprotein B-100 oxidation and conformation. J. Nutr. Biochem. 18:785–794.
  • Cuvelier, V., Bondet, C. and Berset, C. (2000). Behavior of phenolic antioxidants in a partitioned medium: Structure–activity relationship. J. Am. Oil Chem. Soc. 77:819–823.
  • Dai, F., Chen, W. F. and Zhou, B. (2008). Antioxidant synergism of green tea polyphenols with α-tocopherol and L-ascorbic acid in SDS micelles. Biochimie. 90:1499–1505.
  • De Maria, S., Scognamiglio, I., Lombardi, A., Amodio, N., Caraglia, M., Carteni, M., Ravagnan, G. and Stiuso, P. (2013). Polydatin, a natural precursor of resveratrol, induces cell cycle arrest and differentiation of human colorectal Caco-2 cell. J. Transl. Med. 11:264.
  • Fernández-Álvarez, L., del Valle, P., de Arriaga, D., García-Armesto, M. R. and Rúa, J. (2014). Binary combinations of BHA and other natural and synthetic phenolics: Antimicrobial activity against staphylococcus aureus and antioxidant capacity. Food Control 42:303–309.
  • Floegel, A., Kim, D.O., Chung, S. J., Koo, S. I. and Chun, O. K. (2011). Comparison of ABTS/DPPH assays to measure antioxidant capacity in popular antioxidant-rich US foods. J. Food Compos. Anal. 24:1043–1048.
  • Frankel, E. N. and Finley, J. W. (2008). How to standardize the multiplicity of methods to evaluate natural antioxidants. J. Agric. Food Chem. 56:4901–4908.
  • Fujisawa, S., Ishihara, M., Atsumi, T. and Kadoma, Y. (2006). A quantitative approach to the free radical interaction between alpha-tocopherol or ascorbate and flavonoids. In Vivo. 20:445–452.
  • González, E. A. and Nazareno, M. A. (2011). Antiradical action of flavonoid-ascorbate mixtures. LWT−Food Sci. Technol. 44:558–564.
  • Guimaraes, R., Barros, L., Barreira, J. C. M., Sousa, M. J., Carvalho, A. M. and Ferreira, I.C.F.R. (2010). Targeting excessive free radicals with peels and juices of citrus fruits: grapefruit, lemon, lime and orange. Food Chem. Toxicol. 48:99–106.
  • Guimaraes, R., Barros, L., Carvalho, A. M. and Ferreira, I. C. F. R. (2011). Infusions and decoctions of mixed herbs used in folk medicine: Synergism in antioxidant potential. Phytother. Res. 25:1209–1214.
  • Hazewindus, M., Haenen, G. R. M. M., Weseler, A. R. and Bast, A. (2012). The anti-inflammatory effect of lycopene complements the antioxidant action of ascorbic acid and α-tocopherol. Food Chem. 132:954–958.
  • Hidalgo, M., Sánchez-Moreno, C. and de Pascual-Teresa, S. (2010). Flavonoid–flavonoid interaction and its effect on their antioxidant activity. Food Chem. 21:691–696.
  • Huang, D., Ou, B. and Prior, R. L. (2005). The chemistry behind antioxidant capacity assays. J. Agric. Food Chem. 53:1841–1856.
  • Irondi, A. E., Oboh, G. and Akintunde, J. K. (2012). Comparative and synergistic antioxidant properties of Carica papaya and Azadarichta indica leaves. Int. J. Pharm. Sci. 3:4773–4779.
  • Kadoma, Y., Ishihara, M., Okada, N. and Fujisawa, S. (2006). Free radical interaction between vitamin E (alpha-, beta-, gamma- and delta-tocopherol), ascorbate and flavonoids. In Vivo. 20:823–827.
  • Kamal-Eldin, A. and Budilarto, E. (2014). Antioxidant activities and interactions of α- and γ-tocopherols within canola and soybean emulsions. Eur. J. Lipid Sci. Technol. 116:781–782.
  • Karabulut, I. (2010) Effects of α-tocopherol, β-carotene and ascorbyl palmitate on oxidative stability of butter oil triacylglycerols. Food Chem. 123:622–627.
  • Karpińska-Tymoszczyk, M. (2014). Effect of antioxidants, packaging type and frozen storage time on the quality of cooked turkey meatballs. Food Chem. 148:276–283.
  • Kiokias, S. Varzakas, T. and Oreopoulou, V. (2008). In Vitro Activity of Vitamins, Flavonoids, and Natural Phenolic Antioxidants Against the Oxidative Deterioration of Oil-Based Systems. Crit Rev Food Sci Nutr. 48:78–79.
  • Liang, R., Han, R. M., Fu, L. M., Ai, X. C., Zhang, J. P. and Skibsted, L. H. (2009). Baicalin in radical scavenging and its synergistic effect with beta-carotene in antilipoxidation. J. Agric. Food Chem. 57:7118–7124.
  • Macaluso, P. (1969). Hydrogen sulfide. In: Encyclopedia of Chemical Technology, pp. 199–201. Mark, H. F., McKetta, I. J. and Othinarm, D. J., Eds., John Wiley, New York.
  • Magalhães, L. M., Barreiros, L., Reis, S. and Segundo, M. A. (2014). Kinetic matching approach applied to ABTS assay for high-throughput determination of total antioxidant capacity of food products. J. Food Compos. Anal. 33:187–194.
  • Magalhaes, L. M., Segundo, M. A., Reis, S. and Lima, J. L. F. C. (2008). Methodological aspects about in vitro evaluation of antioxidant properties. Anal. Chim. Acta. 613:1–19.
  • Milczarek, R., Hallmann, A., Sokołowska, E., Kaletha, K. and Klimek, J. (2010). Melatonin enhances antioxidant action of α‐tocopherol and ascorbate against NADPH‐ and iron‐dependent lipid peroxidation in human placental mitochondria. J. Pineal Res. 49:149–155.
  • Moon, J. K. and Shibamoto, T. (2009). Antioxidant assays for plant and food components. J. Agric. Food Chem. 57:1655–1666.
  • Moser, J., Logan, A. and Bakota, E. (2014). Antioxidant activities and interactions of α‐and γ‐tocopherols within canola and soybean oil emulsions. Eur. J. Lipid Sci. Technol. 116:606–617.
  • Nalewajko-Sieliwoniuk, E., Nazaruk, J., Kotowska, J. and Kojło, A. T. (2012). Determination of the flavonoids/antioxidant levels in Cirsium oleraceum and Cirsium rivulare extracts with cerium(IV)–rhodamine 6G chemiluminescence detection. Talanta. 96:216–222.
  • Nenadids, N., Lazaridou, O. and Tsimidou, M. Z. (2007). Use of reference compounds in antioxidant activity assessment. J. Agric. Food Chem. 55:5452–5460.
  • Niki, E. (2010). Assessment of antioxidant capacity in vitro and in vivo. Free Radic. Biol. Med. 49:503–515.
  • Osada, K., Hoshina, S., Nakamura, S. and Sugano, M. (2001). Cholesterol oxidation in meat products and its regulation by supplementation of sodium nitrite and apple polyphenol before processing. J. Agric. Food Chem. 48:3823–3829.
  • Ou, B., Huang, D., Hampsch-Woodill, M., Flanagan, J. A. and Deemer, E. K. (2002). Analysis of antioxidant activities of common vegetables employing oxygen radical absorbance capacity (ORAC) and ferric reducing antioxidant power (FRAP) assays: A comparative study. J. Agric. Food Chem. 50:3122–3128.
  • Peinado, J., de Lerma, N. L. and Peinado, R. A. (2010). Synergistic antioxidant interaction between sugars and phenolics from a sweet wine. Eur. Food Res. Technol. 231:363–370.
  • Pereira, C., Calhelha, R. C., Barros, L., Queiroz, M. J. R. P. and Ferreira, I. C. F. R. (2014). Synergisms in antioxidant and anti-hepatocellular carcinoma activities of artichoke, milk thistle and borututu syrups. Ind. Crops Prod. 52:709–713.
  • Pereira, R. B., Sousa, C., Costa, A., Andrade, P. B. and Valentão, P. (2013). Glutathione and the antioxidant potential of binary mixtures with flavonoids: Synergisms and antagonisms. Molecules. 18:8858–8872.
  • Perez-Jimenez, J. and Saura-Calixto, F. (2005). Literature data may underestimate the actual antioxidant capacity of cereals. J. Agric. Food Chem. 53:5036–5040.
  • Peyrat-Maillard, M. N., Cuvelier, M. E. and Berset, C. (2003). Antioxidant activity of phenolic compounds in 2,2′-azobis (2-amidinopropane) dihydrochloride (AAPH) induced oxidation: synergistic and antagonistic effects. J. Am. Oil Chem. Soc. 80:1007–1012.
  • Prior, R. L., Wu, X. and Schaich, K. (2005). Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. J. Agric. Food Chem. 53:4290–4302.
  • Romano, C. S., Abadi, K., Repetto, V., Vojnov, A. and Moreno, S. (2009). Synergistic antioxidant and antibacterial activity of rosemary plus butylated derivatives. Food Chem. 115:456–461.
  • Santandreu, F. M., Valle, A., Oliver, J. and Roca, P. (2011). Resveratrol potentiates the cytotoxic oxidative stress induced by chemotherapy in human colon cancer cells. Cell Physiol. Biochem. 28:219–228.
  • Schaich, K. M. (2006). Developing a rational basis for selection of antioxidant screening and testing methods. Acta Hortic. 709:79–94.
  • Sen, S., Asokkumar, K., Umamaheswari, M., Sivashanmugam, A. T. and Subhadradevi, V. (2013). Antiulcerogenic effect of gallic acid in rats and its effect on oxidant and antioxidant parameters in stomach tissue. Indian J. Pharm. Sci. 75:149–155.
  • Sen, S. and Chakraborty, R. (2011). The role of antioxidants in human health. In: Oxidative Stress: Diagnostics, Prevention, and Therapy, pp. 1–37. Silvana, A. and Hepel, M., Eds., American Chemical Society, Washington DC.
  • Serpen, A., Gokmen, V. and Mogol, B. A. (2012). Effects of different grain mixtures on Maillard reaction products and total antioxidant capacities of breads. J. Food Compos. Anal. 26:160–169.
  • Serrano, J., Goñi, I. and Saura-Calixto, F. (2007). Food antioxidant capacity determined by chemical methods may underestimate the physiological antioxidant capacity. Food Res. Int. 40:15–21.
  • Shapoval, G. S. and Kruglyak, O. S. (2011). Electrochemical modeling of antioxidants action and determination of their activity. Russ. J. Gen. Chem. 81:1442–1448.
  • Shi, J., Qu, Q., Kakuda, Y., Xue, S.J., Jiang, Y., Koide, S. J. and Shim, Y. Y. (2007). Investigation of the antioxidant and synergistic activity of lycopene and other natural antioxidants using LAME and AMVN model systems. J. Food Compos. Anal. 20:603–608.
  • Skroza, D., Generalić, M. I., Svilović, S., Simat, V. and Katalinic, V. (2015). Investigation of the potential synergistic effect of resveratrol with other phenolic compounds: A case of binary phenolic mixtures. J. Food Compos. Anal. 38:1318–1320.
  • Takashima, M., Horie, M., Shichiri, M., Hagihara, Y., Yoshida, Y. and Niki, E. (2012). Assessment of antioxidant capacity for scavenging free radicals in vitro: A rational basis and practical application. Free Radic. Biol. Med. 52:1242–1252.
  • Thoo, Y. Y., Abas, F., Lai, O. M., Ho, C. W., Yin, J., Hedegaard, R. V., Skibsted, L. H. and Tan, C. P. (2013). Antioxidant synergism between ethanolic Centella asiatica extracts and α-tocopherol in model systems. Food Chem. 138:1215–1219.
  • Thoo, Y. Y., Ho, S. K., Liang, J. Y., Ho, C. W. and Tan, C. P. (2010). Effect of binary solvent extraction system, extraction time and extraction temperature on phenolic antioxidants and antioxidant capacity from mengkudu (Morinda citrifolia). Food Chem. 120:2290–2295.
  • Uri, N. (1961). Mechanism of antioxidation. In: Autoxidation and Antioxidants, pp. 133–169. Lundberg, W. O., Ed., John Wiley, New York.
  • Valko, M., Leibfritz, D., Moncol, J., Cronin, M. T., Mazur, M. and Telser, J. (2007). Free radicals and antioxidants in normal physiological functions and human disease. Int. J. Biochem. Cell Biol. 39:44–84.
  • Vijayalakshmi, G., Adinarayana, M. and Rao, P. J. (2014). A synergistic approach to kinetic and mechanistic studies of regeneration of β-carotene from tert-butoxyl radical induced β-carotene radical cation by chlorogenic acid. Int. J. Pharm. Sci. Res. 5:942–950.
  • Vinson, J. A., Su, X., Zubik, L. and Bose, P. (2002). Phenol antioxidant quantity and quality in foods: Fruits. J. Agric. Food Chem. 49:5315–5321.
  • Wang, S., Meckling, K. A., Marcone, M. F., Kakuda, Y. and Tsao, R. (2011). Synergistic, additive, and antagonistic effects of food mixtures on total antioxidant capacities. J. Agric. Food Chem. 59:960–968.
  • Wang, S., Meckling, K. A., Marcone, M. F., Kakuda, Y., Proulx, A. and Tsao, R. (2012). In vitro antioxidant synergism and antagonism between food extracts can lead to similar activities in H2O2-induced cell death, caspase-3 and MMP-2 activities in H9c2 cells. J. Sci. Food Agric. 92:2983–2993.
  • Wang, S., Wang, D. and Liu, Z. (2015a). Synergistic, additive and antagonistic effects of Potentilla fruticosa combined with EGb761 on antioxidant capacities and the possible mechanism. Ind. Crops Prod. 67:227–238.
  • Wang, S., Zhu, F., Meckling, K. A. and Marcone, M. F. (2013). Antioxidant capacity of food mixtures is not correlated with their antiproliferative activity against MCF-7 breast cancer cells. J. Med. Food. 16:1138–1145.
  • Wang, S., Zhu, F. and Marcone, M. F. (2015b). Synergistic interaction of sumac and raspberry mixtures in their antioxidant capacities and selective cytotoxicity against cancerous cells. J. Med. Food. 18:345–353.
  • Winkler-Moser, J. K., Logan, A. and Bakota, E. L. (2014). Antioxidant activities and interactions of α- and γ-tocopherols within canola and soybean oil emulsions. Eur. J. Lipid Sci. Technol. 116:606–612.
  • Yang, M., Koo, S. I., Song, W. O. and Chun, O. K. (2011). Food matrix affecting anthocyanin bioavailability: Review. Curr. Med. Chem. 18:291–300.
  • Yeum, K. J., Beretta, G., Krinsky, N. I., Russell, R. M. and Aldini, G. (2009). Synergistic interactions of antioxidant nutrients in a biological model system. Nutrition. 25:839–846.
  • Yin, G., Cao, L., Xu, P., Jeney, G., Nakao, M. and Lu, C. (2011). Hepatoprotective and antioxidant effects of Glycyrrhiza glabra extract against carbon tetrachloride (CCl 4 )-induced hepatocyte damage in common carp (Cyprinus carpio ). Fish Physiol. Biochem. 37:209–216.
  • Yin, J., Becker, E. M., Andersen, M. L. and Skibsted, L. H. (2012). Green tea extract as food antioxidant. Synergism and antagonism with α-tocopherol in vegetable oils and their colloidal systems. Food Chem. 135:2195–2202.
  • Zhou, B., Miao, Q., Yang, L. and Liu, Z. (2005). Antioxidative effects of flavonols and their glycosides against the free-radical-induced peroxidation of linoleic acid in solution and in micelles. Chem. Eur. J. 11:680–691.
  • Zou, L. and Akoh, C. C. (2015). Oxidative stability of structured lipid-based infant formula emulsion: Effect of antioxidants. Food Chem. 178:1–9.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.