3,345
Views
102
CrossRef citations to date
0
Altmetric
Articles

Nonthermal physical technologies to decontaminate and extend the shelf-life of fruits and vegetables: Trends aiming at quality and safety

& ORCID Icon

References

  • Abadias, M., Alegre, I., Usall, J., Torres, R. and Vinas, I. (2011). Evaluation of alternative sanitizers to chlorine disinfection for reducing foodborne pathogens in fresh-cut apple. Postharvest Biol. Tec. 59:289–297.
  • Aday, M. S., Temizkan, R., Büyükcan, M. B. and Caner, C. (2013). An innovative technique for extending shelf life of strawberry: Ultrasound. LWT – Food Sci. Technol. 52:93–101.
  • Aguiló-Aguayo, I., Charles, F., Renard, C. M. G. C., Page, D. and Carlin, F. (2013). Pulsed light effects on surface decontamination, physical qualities and nutritional composition of tomato fruit. Postharvest Biol. Tec. 86:29–36.
  • Andrade, R. D., Skurtys, O. and Osorio, F. A. (2012). Atomizing spray systems for application of edible coatings. Compr. Rev. Food Sci. F. 11:323–337.
  • Antonio, A. L., Carocho, M., Bento, A., Quintana, B., Botelho, M. L. and Ferreira, I..C..F..R. (2012). Effects of gamma radiation on the biological, physico-chemical, nutritional and antioxidant parameters of chestnuts—A review. Food Chem. Toxicol. 50:3234–3242.
  • Awad, T. S., Moharram, H. A., Shaltout, O. E., Asker, D. and Youssef, M. M. (2012). Applications of ultrasound in analysis, processing and quality control of food: A review. Food Res. Int. 48:410–427.
  • Baier, M., Ehlbeck, J., Knorr, D., Herppich, W. B. and Schlüter, O. (2015). Impact of plasma processed air (PPA) on quality parameters of fresh produce. Postharvest Biol. Tec. 100:120–126.
  • Baier, M., Görgen, M., Ehlbeck, J., Knorr, D., Herppich, W. B. and Schlüter, O. (2014). Non-thermal atmospheric pressure plasma: Screening for gentle process conditions and antibacterial efficiency on perishable fresh produce. Innov. Food Sci. Emerg. 22:147–157.
  • Bermúdez-Aguirre, D., Mobbs, T. and Barbosa-Cánovas, G. V. (2011). Ultrasound applications in food processing. In: Ultrasound Technologies for Food and Bioprocessing, pp. 64–105. Feng, H., Barbosa-Cánovas, G. V. and Weiss, J., Eds., Springer, New York.
  • Bermúdez-Aguirre, D., Wemlinger, E., Pedrow, P., Barbosa-Cánovas, G. and Garcia-Perez, M. (2013). Effect of atmospheric pressure cold plasma (APCP) on the inactivation of Escherichia coli in fresh produce. Food Control 34:149–157.
  • Bi, X., Wu, J., Zhang, Y., Xu, Z. and Liao, X. (2011). High pressure carbon dioxide treatment for fresh-cut carrot slices. Innov. Food Sci. Emerg. 12:298–304.
  • Bilek, S. E. and Turantaş, F. (2013). Decontamination efficiency of high power ultrasound in the fruit and vegetable industry, a review. Int. J. Food Microbiol. 166:155–162.
  • Brandenburg, R., Ehlbeck, J., Stieber, M., Woedtke, Tv, Zeymer, J., Schlüter, O. and Weltmann, K.-D. (2007). Antimicrobial treatment of heat sensitive materials by means of atmospheric pressure rf-driven plasma jet. Contrib. Plasm. Phys. 47:72–79.
  • Bravo, S., García-Alonso, J., Martín-Pozuelo, G., Gómez, V., Santaella, M., Navarro-González, I. and Periago, M. J. (2012). The influence of post-harvest UV-C hormesis on lycopene, β-carotene, and phenolic content and antioxidant activity of breaker tomatoes. Food Res. Int. 49:296–302.
  • Briones-Labarca, V., Venegas-Cubillos, G., Ortiz-Portilla, S., Chacana-Ojeda, M. and Maureira, H. (2011). Effects of high hydrostatic pressure (HHP) on bioaccessibility, as well as antioxidant activity, mineral and starch contents in Granny Smith apple. Food Chem. 128:520–529.
  • Bu, J., Yu, Y., Aisikaer, G. and Ying, T. (2013). Postharvest UV-C irradiation inhibits the production of ethylene and the activity of cell wall-degrading enzymes during softening of tomato (Lycopersicon esculentum L.) fruit. Postharvest Biol. Tec. 86:337–345.
  • Cacace, D. and Palmieri, L. (2014). High-intensity pulsed light technology. In: Emerging Technologies for Food Processing, pp. 239–258. Sun, D.-W., Ed., Elsevier, San Diego, CA.
  • Calvo, L. and Torres, E. (2010). Microbial inactivation of paprika using high-pressure CO2. J. Supercrit. Fluid. 52:134–141.
  • Cao, S., Hu, Z. and Pang, B. (2010b). Optimization of postharvest ultrasonic treatment of strawberry fruit. Postharvest Biol. Tec. 55:150–153.
  • Cao, S., Hu, Z., Pang, B., Wang, H., Xie, H. and Wu, F. (2010a). Effect of ultrasound treatment on fruit decay and quality maintenance in strawberry after harvest. Food Control 21:529–532.
  • Carocho, M., Barreiro, M. F., Morales, P. and Ferreira, I. C. F. R. (2014). Adding molecules to food, pros and cons: A review on synthetic and natural food additives. Compr. Rev. Food Sci. F. 13:377–399.
  • Castro, S. M. and Saraiva, J. A. (2014a). High-pressure processing of fruits and fruit products. In: Emerging Technologies for Food Processing, pp. 65–76. Sun, D.-W., Ed., Elsevier, San Diego, CA.
  • Castro, S. M. and Saraiva, J. A. (2014b). High-pressure processing of fruits and fruit products. In: Emerging Technologies for Food Processing, pp. 65–76. Sun, D.-W., Ed., Elsevier, San Diego, CA.
  • Char, C., Silveira, A. C., Inestroza-Lizardo, C., Hinojosa, A., Machuca, A. and Escalona, V. H. (2012). Effect of noble gas-enriched atmospheres on the overall quality of ready-to-eat arugula salads. Postharvest Biol. Tec. 73:50–55.
  • Charles, F., Vidal, V., Olive, F., Filgueiras, H. and Sallanon, H. (2013). Pulsed light treatment as new method to maintain physical and nutritional quality of fresh-cut mangoes. Innov. Food Sci. Emerg. 18:190–195.
  • Chemat, F., Zill-e-huma and Khan, M. K. (2011). Applications of ultrasound in food technology: Processing, preservation and extraction. Ultrason. Sonochem. 18:813–835.
  • Choi, Y. M., Ryu, Y. C., Lee, S. H., Go, G. W., Shin, H. G., Kim, K. H., Rhee, M. S. and Kim, B. C. (2008). Effects of supercritical carbon dioxide treatment for sterilization purpose on meat quality of porcinelongissimus dorsi muscle. LWT – Food Sci. Technol. 41:317–322.
  • Ciolacu, L. and Nicolau, A. I. (2014). Edible coatings for fresh and minimally processed fruits and vegetables. In: Global Safety of Fresh Produce: A Handbook of Best Practice, Innovative Commercial Solutions and Case Studies. Hoorfar, J., Ed., Woodhead Publishing Limited, Cambridge, UK.
  • Clemmons, H. E., Clemmons, E. J. and Brown, E. J. (2015). Electron beam processing technology for food processing. In: Electron Bean Pasteurization and Complementary Food Processing Technologies, pp. 11–25. Pillai, S. D., and Shayanfar, S., Eds., Woodhead Publishing, UK.
  • Considine, K. M., Kelly, A. L., Fitzgerald, G. F., Hill, C. and Sleator, R. D. (2008). High-pressure processing—Effects on microbial food safety and food quality. FEMS Microbiol. Lett. 281:1–9.
  • Cruz, R. M. S., Vieira, M. C. and Silva, C. L. M. (2006). Effect of heat and thermosonication treatments on peroxidase inactivation kinetics in watercress (Nasturtium officinale). J. Food Eng. 72:8–15.
  • Damar, S. and Balaban, M. O. (2005). Cold pasteurization of coconut water with a dense phase CO2 system, p. 27. In: IFT Annual Meeting Book of Abstracts. Institute of Food Technologists, New Orleans, LA.
  • Damodaran, S., Parkin, K. L. and Fennema, O. R. (Eds.) (2007). Fennema's Food Chemistry, 4thed. CRC Press, Boca Raton, FL.
  • Deepa, G. T., Chetti, M. B., Khetagoudar, M. C. and Adavirao, G. M. (2013). Influence of vacuum packaging on seed quality and mineral contents in chilli (Capsicum annuum L.). J. Food Sci. Tech. 50:153–158.
  • Dey, P. M. and Harborne, J. B. (1997). Plant Biochemistry. Academic Press, London, UK.
  • Drissner, D. and Zuercher, U. (2014). Safety of food and beverages: Fruits and vegetables. In: Encyclopedia of Food Safety, pp. 253–259. Motarjemi, Y., Ed., Academic Press, San Diego, CA.
  • Du, W.-X., Avena-Bustillos, R. J., Breksa, III, A. P. and McHugh, T. H. (2014). UV-B light as a factor affecting total soluble phenolic contents of various whole and fresh-cut specialty crops. Postharvest Biol. Tec. 93:72–82.
  • Elmnasser, N., Guillou, S., Leroi, F., Orange, N., Bakhrouf, A. and Federighi, M. (2007). Pulsed-light system as a novel food decontamination technology: A review. Can. J. Microbiol. 53:813–821.
  • Escalona, V. H., Hinojosa, A., Char, C., Villena, P., Bustamante, A. and Saenz, C. (2014). Use of alternative sanitizers on minimally processed watercress harvested in two different seasons. J. Food Process. Pres. DOI: 10.1111/jfpp.12347
  • Falguera, V., Quintero, J. P., Jiménez, A., Muñoz, J. A. and Ibarz, A. (2011). Edible films and coatings: Structures, active functions and trends in their use. Trends Food Sci. Technol. 22:292–303.
  • Fan, X., Sommers, C. H. and Marshall, R. C. (2012). Advances in electron beam and X-ray technologies for food irradiation. In: Food Irradiation Research and Technology, 2nd ed., chap. 2. Fan, X. and Sommers, C. H., Eds., John Wiley, Hoboken, NJ.
  • Fernandes, Â., Antonio, A. L., Oliveira, M. B. P. P., Martins, A. and Ferreira, I. C. F. R. (2012). Effect of gamma and electron beam irradiation on the physico-chemical and nutritional properties of mushrooms: A review. Food Chem, 135:641–650.
  • Galić, K., Ščetar, M. and Kurek, M. (2011). The benefits of processing and packaging. Trends Food Sci. Technol. 22:127–137.
  • Gao, S., Lewis, G. D., Ashokkumar, M. and Hemar, Y. (2014). Inactivation of microorganisms by low-frequency high-power ultrasound: 1. Effect of growth phase and capsule properties of the bacteria. Ultrason. Sonochem. 21:446–453.
  • Garcia-Gonzalez, L., Geeraerd, A. H., Spilimbergo, S., Elst, K., Van Ginneken, L., Debevere, J., Van Impe, J. F. and Devlieghere, F. (2007). High pressure carbon dioxide inactivation of microorganisms in foods: The past, the present and the future. Int. J. Food Microbiol. 117:1–28.
  • Gómez, P. L., Welti-Chanes, J. and Alzamora, S. M. (2011). Hurdle technology in fruit processing. Annu. Rev. Food Sci. Technol. 2:447–465.
  • Gómez-Estaca, J., López-de-Dicastillo, C., Hernández-Muñoz, P., Catalá, R. and Gavara, R. (2014). Advances in antioxidant active food packaging. Trends Food Sci. Technol. 35:42–51.
  • Gómez-López, V. M., Devlieghere, F., Bonduelle, V. and Debevere, J. (2005a). Factors affecting the inactivation of micro-organisms by intense light pulses. J. Appl. Microbiol. 99:460–470.
  • Gómez-López, V. M., Devlieghere, F., Bonduelle, V. and Debevere, J. (2005b). Intense light pulses decontamination of minimally processed vegetables and their shelf-life. Int. J. Food Microbiol. 103:79–89.
  • Gómez-López, V. M., Ragaert, P., Debevere, J. and Devlieghere, F. (2007). Pulsed light for food decontamination: A review. Trends Food Sci. Technol. 18:464–473.
  • González-Cebrino, F., Durán, R., Delgado-Adámez, J., Contador, R. and Ramírez, R. (2013). Changes after high-pressure processing on physicochemical parameters, bioactive compounds, and polyphenol oxidase activity of red flesh and peel plum purée. Innov. Food Sci. Emerg. 20:34–41.
  • Han, J. (2013). Innovations in Food Packaging, 2nd ed. Academic Press, London, UK.
  • Hannon, J. C., Kerry, J., Cruz-Romero, M., Morris, M. and Cummins, E. (2015). Advances and challenges for the use of engineered nanoparticles in food contact materials. Trends Food Sci. Technol. 43:43–62.
  • Hodges, D. M. and Toivonen, P. M. A. (2008). Quality of fresh-cut fruits and vegetables as affected by exposure to abiotic stress. Postharvest Biol. Tech. 48:155–162.
  • Huang, Y. and Chen, H. (2014). A novel water-assisted pulsed light processing for decontamination of blueberries. Food Microbiol. 40:1–8.
  • Huang, Y. and Chen, H. (2015). Inactivation of Escherichia coli O157:H7, Salmonella and human norovirus surrogate on artificially contaminated strawberries and raspberries by water-assisted pulsed light treatment. Food Res. Int. 72:1–7.
  • Huang, H.-W., Lung, H.-M., Yang, B. B. and Wang, C.-Y. (2014). Responses of microorganisms to high hydrostatic pressure processing. Food Control 40:250–259.
  • ICGFI. (1999). Facts about Food Irradiation: A Series of Fact Sheets from the International Consultative Group on Food Irradiation. International Consultative Group on Food Irradiation, Vienna, Austria.
  • Izquier, A. and Gómez-López, V. M. (2011). Modeling the pulsed light inactivation of microorganisms naturally occurring on vegetable substrates. Food Microbiol. 28:1170–1174.
  • Jahid, I. K., Han, N., Zhang, C.-Y., and Ha, S.-D. (2015). Mixed culture biofilms of Salmonella Typhimurium and cultivable indigenous microorganisms on lettuce show enhanced resistance of their sessile cells to cold oxygen plasma. Food Microbiol. 46:383–394.
  • Jamie, P. and Saltveit, M. E. (2002). Postharvest changes in broccoli and lettuce during storage in argon, helium, and nitrogen atmospheres containing 2% oxygen. Postharvest Biol. Technol. 26:113–116.
  • Kentish, S. and Ashokkumar, M. (2011). The physical and chemical effects of ultrasound. In: Ultrasound Technologies for Food and Bioprocessing, pp. 1–12. Feng, H., Barbosa-Cánovas, G. V. and Weiss, J., Eds., Springer, New York.
  • Kim, K. W., Kim, Y.-T., Kim, M., Noh, B.-S. and Choi, W.-S. (2014). Effect of high hydrostatic pressure (HHP) treatment on flavor, physicochemical properties and biological functionalities of garlic. LWT – Food Sci. Technol. 55:347–354.
  • Knorr, D., Froehling, A., Jaeger, H., Reineke, K., Schlueter, O. and Schoessler, K. (2011). Emerging technologies in food processing. Annu. Rev. Food Sci. Technol. 2:203–235.
  • Krishnamurthy, K., Tewari, J. C., Irudayaraj, J. and Demirci, A. (2010). Microscopic and spectroscopy evaluation of inactivation of Staphylococcus aureus by pulsed UV light and infrared heating. Food Bioprocess Tech. 3:93–104.
  • Kuan, Y.-H., Bhat, R., Patras, A. and Karim, A. A. (2013). Radiation processing of food proteins—A review on the recent developments. Trends Food Sci. Technol. 30:105–120.
  • Lacombe, A., Niemira, B.A., Gurtler, J. B., Fan, X., Sites, J., Boyd, G. and Chen, H. (2015). Atmospheric cold plasma inactivation of aerobic microorganisms on blueberries and effects on quality attributes. Food Microbiol. 46:479–484.
  • Lacroix, M. (2014). Irradiation. In: Emerging Technologies for Food Processing, pp. 293–312. Sun, D.-W., Ed., Elsevier, San Diego, CA.
  • Lagunas-Solar, M. C., Piña, C., MacDonald, J. D. and Bolkan, L. (2006). Development of pulsed UV light processes for surface fungal disinfection of fresh fruits. J. Food Protect. 69:376–384.
  • Laroussi, M. and Lu, X. (2005). Room-temperature atmospheric pressure plasma plume for biomedical applications. Appl. Phys. Lett. 87:113902.
  • Leonelli, C. and Masonb, T. J. (2010). Microwave and ultrasonic processing: Now a realistic option for industry. Chem. Eng. Process. 49:885–900.
  • Linsberger-Martin, G., Weiglhofer, K., Phuong, T. P. T. and Berghofer, E. (2013). High hydrostatic pressure influences antinutritional factors and in vitro protein digestibility of split peas and whole white beans. LWT – Food Sci. Technol. 51:331–336.
  • Liu, C., Zhao, M., Sun, W. and Ren, J. (2013). Effects of high hydrostatic pressure treatments on haemagglutination activity and structural conformations of phytohemagglutinin from red kidney bean (Phaseolus vulgaris). Food Chem. 136:1358–1363.
  • Luengwilai, K., Beckles, D. M., Pluemjit, O. and Siriphanich, J. (2014). Postharvest quality and storage life of “Makapuno” coconut (Cocos nucifera L.). Sci. Hortic. - Amsterdam. 175:105–110.
  • Luksiene, Z., Buchovec, I., Kairyte, K., Paskeviciute, E. and Viskelis, P. (2012). High-power pulsed light for microbial decontamination of some fruits and vegetables with different surfaces. J. Food, Agric. Environ. 10:162–167.
  • Lung, H.-M., Cheng, Y.-C., Chang, Y.-H., Huang, H.-W., Yang, B. B. and Wang, Dr. C.-Y. (2015). Microbial decontamination of food by electron beam irradiation. Trends Food Sci. Technol. 44:66–78.
  • Manzocco, L., Da Pieve, S. and Maifreni, M. (2011). Impact of UV-C light on safety and quality of fresh-cut melon. Innov. Food Sci. Emerg. 12:13–17.
  • Martínez-Lüscher, J., Torres, N., Hilbert, G., Richard, T., Sánchez-Díaz, M., Delrot, S., Aguirreolea, J., Pascual, I. and Gomès, E. (2014). Ultraviolet-B radiation modifies the quantitative and qualitative profile of flavonoids and amino acids in grape berries. Phytochemistry 102:106–114.
  • Martínez-Sánchez, A., Tudela, J. A., Luna, C., Allende, A. and Gil, M. I. (2011). Low oxygen levels and light exposure affect quality of fresh-cut Romaine lettuce. Postharvest Biol. Tec. 59:34–42.
  • Medina-Meza, I. G., Barnaba, C. and Barbosa-Cánovas, G. V. (2013). Effects of high pressure processing on lipid oxidation: A review. Innov. Food Sci. Emerg. 22:1–10.
  • Mehyar, G. F. and Han, J. H. (2010). Active packaging for fresh-cut fruits and vegetables. In: Modified Atmosphere Packaging for Fresh-cut Fruits and Vegetables, pp. 267–283. Brody, A. L., Zhuang, H. and Han, J. H., Eds., Wiley-Blackwell, Chichester.
  • Mihindukulasuriya, S. D. F. and Lim, L.-T. (2014). Nanotechnology development in food packaging: A review. Trends Food Sci. Technol. 40:149–167.
  • Misra, N. N., Keener, K. M., Bourke, P., Mosnier, J.-P. and Cullen, P. J. (2014b). In-package atmospheric pressure cold plasma treatment of cherry tomatoes. J. Biosci. Bioeng. 118:177–182.
  • Misra, N. N., Patil, S., Moiseev, T., Bourke, P., Mosnier, J. P., Keener, K. M. and Cullen, P. J. (2014a). In-package atmospheric pressure cold plasma treatment of strawberries. J. Food Eng. 125:131–138.
  • Montie, T. C., Kelly-Wintenberg, K. and Roth, J. R. (2000). An overview of research using the one atmosphere uniform glowdischarge plasma (OAUGDP) for sterilization of surfaces and materials. IEEE T. Plasma Sci. 28:41–50.
  • Moosekian, S. R., Jeong, S., Marks, B. P. and Ryser, E. T. (2012). X-ray irradiation as a microbial intervention strategy for food. Annu. Rev. Food Sci. Technol. 3:493–510.
  • Moreau, M., Orange, N. and Feuilloley, M. G. J. (2008). Non-thermal plasma technologies: New tools for bio-decontamination. Biotechnol. Adv. 26:610–617.
  • Mor-Mur, M., Escriu, R. and Yuste, J. (2014). Microbiological aspects of high-pressure processing. In: Emerging Technologies for Food Processing, pp. 77–90. Sun, D.-W., Ed., Elsevier, San Diego, CA.
  • Mota, M. J., Lopes, R. P., Delgadillo, I. and Saraiva, J. A. (2013). Microorganisms under high pressure—Adaptation, growth and biotechnological potential. Biotechnol. Adv. 31:1426–1434.
  • Mújica-Paz, H., Valdez-Fragoso, A., Samson, C. T., Welti-Chanes, J. and Torres, J..A. (2011). High-pressure processing technologies for the pasteurization and sterilization of foods. Food Bioprocess. Tech. 4:969–985.
  • Mukhopadhyay, S. and Gorris, L..G..M. (2014). Hurdle technology. In: Encyclopedia of Food Microbiology, pp. 221–227. Batt, C. A. and Tortorello, M. L., Eds., Academic Press, San Diego, CA.
  • Munné-Bosch, S. (2005). The role of α-tocopherol in plant stress tolerance. J. Plant Physiol. 162:743–748.
  • Niemira, B. A. (2012). Cold plasma decontamination of foods. Annu. Rev. Food Sci. Technol. 3:125–142.
  • Niemira, B. A. and Fan, X. (2014). Fruits and vegetables: Advances in processing technologies to preserve and enhance the safety of fresh and fresh-cut fruits and vegetables. In: Encyclopedia of Food Microbiology, pp. 983–991. Batt, C. A. and Tortorello, M. L., Eds., Academic Press, San Diego, CA.
  • Oey, I., Plancken, I. V., Loey, A. V. and Hendrickx, M. (2008). Does high pressure processing influence nutritional aspects of plant based food systems? Trends Food Sci. Technol. 19:300–308.
  • Olivas, G. I. and Barbosa-Cánovas, G. (2009). Edible films and coatings for fruits and vegetables. In: Edible Films and Coatings for Food Applications, pp. 211–224. Huber, K. C. and Embuscado, M. E., Eds., Springer, New York.
  • Palgan, I., Caminiti, I. M., Muñoz, A., Noci, F., Whyte, P., Morgan, D. J., Cronin, D. A. and Lyng, J. G. (2011). Effectiveness of high intensity light pulses (HILP) treatments for the control of Escherichia coli and Listeria innocua in apple juice, orange juice and milk. Food Microbiol. 28:14–20.
  • Pankaj, S. K., Bueno-Ferrer, C., Misra, N. N., Milosavljević, V., O'Donnell, C. P., Bourke, P., Keener, K. M. and Cullen, P. J. (2014). Applications of cold plasma technology in food packaging. Trends Food Sci. Technol. 35:5–17.
  • Patrignani, F., Siroli, L., Serrazanetti, D. I., Gardini, F. and Lanciotti, R. (2015). Innovative strategies based on the use of essential oils and their components to improve safety, shelf-life and quality of minimally processed fruits and vegetables. Trends Food Sci. Technol. 46:311–319.
  • Patterson, M. F. (2005). Microbiology of pressure-treated foods. J. Appl. Microbiol. 98:1400–1409.
  • Pereira, C., Barros, L., Carvalho, A. M. and Ferreira, I. C. F. R. (2011). Nutritional composition and bioactive properties of commonly consumed wild greens: Potential sources for new trends in modern diets. Food Res. Int. 44:2634–2640.
  • Pérez-Gregorio, M. R., Garcia-Falcon, M. S. and Simal-Gandara, J. (2011). Flavonoids changes in fresh-cut onions during storage in different packaging systems. Food Chem. 124:652–658.
  • Pinela, J., Barros, L., Carvalho, A. M. and Ferreira, I. C. F. R. (2012). Nutritional composition and antioxidant activity of four tomato (Lycopersicon esculentum L.) farmer' varieties in Northeastern Portugal homegardens. Food Chem. Toxicol. 50:829–834.
  • Queirós, R. P., Santos, M. D., Fidalgo, L. G., Mota, M. J., Lopes, R. P., Inácio, R. S., Delgadillo, I. and Saraiva, J..A. (2014). Hyperbaric storage of melon juice at and above room temperature and comparison with storage at atmospheric pressure and refrigeration. Food Chem. 147:209–214.
  • Rajkovic, A., Tomasevic, I., Smigic, N., Uyttendaele, M., Radovanovic, R. and Devlieghere, F. (2010). Pulsed UV light as an intervention strategy against Listeria monocytogenes and Escherichia coli 0157:H7 on the surface of a meat slicing knife. J. Food Eng. 100:446–451.
  • Ramos, B., Miller, F. A., Brandão, T. R. S., Teixeira, P. and Silva, C. L. M. (2013). Fresh fruits and vegetables-–An overview on applied methodologies to improve its quality and safety. Innov. Food Sci. Emerg. 20:1–15.
  • Ramos-Villarroel, A. Y., Aron-Maftei, N., Martín-Belloso, O. and Soliva-Fortuny, R. (2012). Influence of spectral distribution on bacterial inactivation and quality changes of fresh-cut watermelon treated with intense light pulses. Postharvest Biol. Tech. 69:32–39.
  • Raso, J. and Barbosa-Cnovas, G. V. (2003). Nonthermal preservation of foods using combined processing techniques. Crit. Rev. Food Sci. Nutr. 43:265–285.
  • Rawson, A., Patras, A., Tiwari, B. K., Noci, F., Koutchma, T. and Brunton, N. (2011). Effect of thermal and non thermal processing technologies on the bioactive content of exotic fruits and their products: Review of recent advances. Food Res. Int. 44:1875–1887.
  • Rawson, A., Tiwari, B. K., Brunton, N., Brennan, C., Cullen, P. J. and O'Donnell, C. P. (2014). Application of supercritical carbon dioxide to fruit and vegetables: Extraction, processing, and preservation. Food Rev. Int. 28:253–276.
  • Rendueles, E., Omer, M. K., Alvseike, O., Alonso-Calleja, C., Capita, R. and Prieto, M. (2011). Microbiological food safety assessment of high hydrostatic pressure processing: A review. LWT – Food Sci. Technol. 44:1251–1260.
  • Rivalain, N., Roquain, J. and Demazeau, G. (2010). Development of high hydrostatic pressure in biosciences: Pressure effect on biological structures and potential applications in Biotechnologies. Biotechnol. Adv. 28:659–672.
  • Rodov, V., Vinokur, Y. and Horev, B. (2012). Brief postharvest exposure to pulsed light stimulates coloration and anthocyanin accumulation in fig fruit (Ficus carica L.). Postharvest Biol. Tec. 68:43–46.
  • Roeck, A. D., Mols, J., Duvetter, T., Loey, A. V. and Hendrickx, M. (2010). Carrot texture degradation kinetics and pectin changes during thermal versus high-pressure/high-temperature processing: A comparative study. Food Chem. 120:1104–1112.
  • Rowan, N. J., Valdramidis, V. P. and Gómez-López, V. M. (2015). A review of quantitative methods to describe efficacy of pulsed light generated inactivation data that embraces the occurrence of viable but non culturable state microorganisms. Trends Food Sci. Technol. 44:79–92.
  • Russell, N. J. (2002). Bacterial membranes: The effects of chill storage and food processing. An overview. International Journal of Food Microbiology. 79:27–34.
  • Sandhya. (2010). Modified atmosphere packaging of fresh produce: Current status and future needs. LWT – Food Sci. Technol. 43:381–392.
  • São José, J. F. B., Andrade, N. J., Ramos, A. M., Vanetti, M. C. D., Stringheta, P. C. and Chaves, J. B. P. (2014). Decontamination by ultrasound application in fresh fruits and vegetables. Food Control 45:36–50.
  • Severo, J., Tiecher, A., Pirrello, J., Regad, F., Latché, A., Pech, J.-C., Bouzayen, M. and Rombaldi, C..V. (2015). UV-C radiation modifies the ripening and accumulation of ethylene response factor (ERF) transcripts in tomato fruit. Postharvest Biol. Tec. 102:9–16.
  • Silveira, A. C., Araneda, C., Hinojosa, A. and Escalona, V. H. (2014). Effect of non-conventional modified atmosphere packaging on fresh cut watercress (Nasturtium officinale R. Br.) quality. Postharvest Biol. Tec. 92:114–120.
  • Syamaladevi, R. M., Adhikari, A., Lupien, S. L., Dugan, F., Bhunia, K., Dhingra, A. and Sablani, S. S. (2015). Ultraviolet-C light inactivation of Penicillium expansum on fruit surfaces. Food Control 50:297–303.
  • Tiwari, U. and Cummins, E. (2013). Factors influencing levels of phytochemicals in selected fruit and vegetables during pre- and post-harvest food processing operations. Food Res. Int. 50:497–506.
  • US-FDA. (2002). United States Food and Drug Administration, Ultraviolet Radiation for the Processing and Treatment of Food, Code of Federal Regulations, 21 Part 179.39. U.S. FDA, Silver Spring, MD.
  • Valverde, M. T., Marín-Iniesta, F. and Calvo, L. (2010). Inactivation of Saccharomyces cerevisiae in conference pear with high pressure carbon dioxide and effects on pear quality. J. Food Eng. 98:421–428.
  • Vanderroost, M., Ragaert, P., Devlieghere, F. and De Meulenaer, B. (2014). Intelligent food packaging: The next generation. Trends Food Sci. Technol. 39:47–62.
  • Vleugels, M., Shama, G., Deng, X. T., Greenacre, E., Brocklehurst, T. and Kong, M. G. (2005). Atmospheric plasma inactivation of biofilm-forming bacteria for food safety control. IEEE T. Plasma Sci. 33:824–328.
  • Wen, H.-W., Hsieh, M.-F., Wang, Y.-T., Chung, H.-P., Hsieh, P.-C., Lin, I-H. and Chou, F.-I. (2010). Application of gamma irradiation in ginseng for both photodegradation of pesticide pentachloronitrobenzene and microbial decontamination. J. Hazard. Mater. 176:280–287.
  • WHO. (1999). High-Dose Irradiation: Wholesomeness of Food Irradiated with Doses above 10 kGy, Report of a Joint FAO/IAEA/WHO study group. World Health Organization, Geneva, Switzerland.
  • Xu, W., Chen, H., Huang, H. and Wu, C. (2013). Decontamination of Escherichia coli O157:H7 on green onions using pulsed light (PL) and PL–surfactant–sanitizer combinations. Int. J. Food Microbiol. 166:102–108.
  • Yun, J., Yan, R., Fan, X., Gurtler, J. and Phillips, J. (2013). Fate of E. coli O157:H7, Salmonella spp. and potential surrogate bacteria on apricot fruit, following exposure to UV-C light. Int. J. Food Microbiol. 166:356–363.
  • Yusuf, M. A., Kumar, D., Rajwanshi, R., Strasser, R. J., Tsimilli-Michael, M., Govindjee and Sarin, N. B. (2010). Overexpression of γ-tocopherol methyl transferase gene in transgenic Brassica juncea plants alleviates abiotic stress: Physiological and chlorophyll a fluorescence measurements. Biochim. Biophys. Acta 1797:1428–1438.
  • Zhou, L., Bi, X., Xu, Z., Yang, Y. and Liao, X. (2015). Effects of high-pressure CO2 processing on flavor, texture, and color of foods. Crit. Rev. Food Sci. Nutr. 55:750–768.
  • Ziuzina, D., Patil, S., Cullen, P. J., Keener, K. M. and Bourke, P. (2014). Atmospheric cold plasma inactivation of Escherichia coli, Salmonella enterica serovar Typhimurium and Listeria monocytogenes inoculated on fresh produce. Food Microbiol. 42:109–116.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.