1,046
Views
28
CrossRef citations to date
0
Altmetric
Articles

New perspectives on the regulation of iron absorption via cellular zinc concentrations in humans

, , &

References

  • Abboud, S. and Haile, D. J. (2000). A novel mammalian iron-regulated protein involved in intracellular iron metabolism. J. Biol. Chem. 275(26):19906–19912.
  • Alarcon, K., Kolsteren, W. P., Prada, M. A., Chian, M. A. et al. (2004). Effects of separate delivery of zinc or zinc and vitamin A on hemoglobin response, growth, and diarrhea in young Peruvian children receiving iron therapy for anemia. Am. J. Clin. Nutr. 80:1276–1282.
  • Allen, H. L., Rosado, L. J., Casterline, E. J., Lo´pez, P., Muñoz, E., Garcia, P. O. and Martinez, H. (2000). Lack of hemoglobin response to iron supplementation in anemic Mexican preschoolers with multiple micronutrient deficiencies. Am. J. Clin. Nutr. 71:1485–1494.
  • Andrews, K. (2008). Regulation and function of Zip4, the acrodermatitis enteropathica gene. Biochem. Soc. Trans. 6(36):1242–1246.
  • Aydemir, T. B., Chang, S. M., Guthrie, G. J., Maki, A. B., Ryu, M. S., Karabiyik, A. and Cousins, R. J. (2012). Zinc transporter ZIP14 functions in hepatic Zinc, Iron and Glucose homeostasis during the innate immune response (Endotoxemia). Plos One. 7(10).
  • Aydemir, F., Jenkitkasemwong, S., Gulec, S. and Knutson, M. D. (2009). Iron loading increases ferroportin heterogeneous nuclear RNA and mRNA levels in murine J774 macrophages. J. Nutr. 139(3):434–438.
  • Balesaria, S., Ramesh, B., McArdle, H., Bayele, H. K. and Srai, S. K. S. (2010). Divalent metal-dependent regulation of hepcidin expression by MTF-1. Febs. Lett. 584(4):719–725.
  • Bannon, D. I., Bressler, J. P., Abounader, R. and Lees, P. S. (2003). Effect of DMT1 knockdown on iron, cadmium, and lead uptake in Caco-2 cells. Toxicol. Sci. 72:402–402.
  • Bao, B., Prasad, A. S., Beck, F. W. and Sarkar, F. H. (2007). Zinc up-regulates NF-kappaB activation via phosphorylation of IkappaB in HUT-78 (Th0) cells. FEBS Lett. 581(23):4507–4511.
  • Beaton, G. H. and McCabe, G. P. (1999). Efficacy of intermittent iron supplements in the control of iron deficiency anaemia in developing countries: an analysis of experience. The Micronutrient Initiative, Toronto.
  • Begum, N. A., Kobayashi, M., Moriwaki, Y., Matsumoto, M., Toyoshima, K. and Seya, T. (2002). Mycobacterium bovis BCG cell wall and lipopoly-saccharide induce a novel gene, BIGM103, encoding a 7-TM protein. Identification of a new protein family having Zn-transporter and Zn-met- alloprotease signatures. Genomics. 80:630–645.
  • Bishop, G. M., Shreiber, I. A., Dringen, R. and Robinson, S. R. (2010). Synergistic accumulation of iron and zinc by cultured astrocytes. J. Neural. Transm. 117(7):809–817.
  • Brown, N. M., Anderson, S. A., Steffen, D. W., Carpenter, T. B., Kennedy, M. C., Walden, W. E. and Eisenstein, R. S. (1998). Novel role of phosphorylation in Fe-S cluster stability revealed by phosphomimetic mutations at Ser 138 of IRP 1. Proc. Natl. Acad. Sci. 95:15235–15240.
  • Butcher, H., Kennette, W. A., Collins, O., Zalups, R. K. and Koropatnick, J. (2004). Metallothionein mediates the level and activity of nuclear factor kappa B in murine fibroblasts. J. Pharmacol. Exp. Ther. 2589–2598.
  • Butt, J., Armstrong, F. A., Breton, J., George, S. J., Thomson, A. J. and Hatchikian, E. C. (1991). Investigation of metal ion uptake reactivities of 3 iron 4 sulfur clusters in proteins voltammetry of co adsorbed ferredoxin aminocyclitol films at graphite electrodes and spectroscopic identification of transformed clusters. J. Am. Chem. Soc. 113(17):6663–6670.
  • Chang, S., El Arifeen, S., Bari, S., Wahed, M. A., Rahman, K. M., Rahman, M. T., Mahmud, A. B., Begum, N., Zaman, K., Baqui, A. H. and Black, R. E. (2010). Supplementing iron and zinc: Double blind, randomized evaluation of separate or combined delivery. Eur. J. Clin. Nutr. 64:153–160.
  • Chiabrando, D., Fiorito, V., Marro, S., Silengo, L., Altruda, F. and Tolosano, E. (2013). Cell-specific regulation of Ferroportin transcription following experimentally-induced acute anemia in mice. Blood Cells Mol. Dis. 50(1):25–30.
  • Chung, B., Chaston, T., Marks, J., et al. (2009). Hepcidin decreases iron transporter expression in vivo in mouse duodenum and spleen and in vitro in THP-1 macrophages and intestinal Caco-2 cells. J. Nutr. Rev. 139:1457–1462.
  • Cousins, R. J. (2010). Gastrointestinal factors influencing zinc absorption and homeostasis. Int. J. Vitam. Nutr. Res. 80(4–5):243–248.
  • Cousins, R. J. and McMahon, R. J. (2000). Integrative aspects of zinc transporters. J. Nutr. 130(5):1384–1387.
  • Dada, G. L., Van der Westhuizen, J., Vulpe, Anderson, J., Simpson, R. and McKie, A. (2008). Molecular and functional roles of duodenal cytochrome B (Dcytb) in iron metabolism. Blood Cells Mol. Dis. 29:356–360.
  • Dufner-Beattie, J., Kuo, Y. M., Gitschier, J. and Andrews, G. K. (2004). The adaptive response to dietary zinc in mice involves the differential cellular localization and zinc regulation of the zinc transporters ZIP4 and ZIP5. J. Biol. Chem. 279:49082.
  • Deng, Z., Dailley, L. A., Soukup, J., Stonehuerner, J., Richards, J. D., Callaghan, K. D., Yang, F. and Ghio, A. J. (2009). Zinc transport by respiratory epithelial cells and interaction with iron homeostasis. Biometals. 22:803–815.
  • De Benoist, B., Darnton-Hill, I., Davidsson, L., Fontaine, O. and Hotz, C. (2007). Conclusions of the joint WHO/UNICEF/IAEA/IZiNCG interagency meeting on zinc status indicators. Food. Nutr. Bull. 28:S480–S484.
  • Donovan, A., Lima, C. A., Pinkus, J. L., Pinkus, G. S., Zon, L. I., Robine, S. and Andrews, N. C. (2005). The iron exporter ferroportin/Slc40a1 is essential for iron homeostasis. Cell Metabolism. 1(3):191–200.
  • Ece, A., Uyamik, B. S., Iscan, A., Ertan, P. and Yigitolu, M. R. (1997). Increased serum copper and decreased serum zinc levels in children with iron deficiency anemia. Biol. Trace Elem. Res. 59:31–39.
  • Eide, D. J. (2004). The SLC39 family of metal ion transporters. Pflugers Arch. –Eur. J. Phys. 447(5):796–800.
  • Eide, D. J. (2006). Zinc transporters and the cellular trafficking of zinc. Bioch. Et Biophys. Acta Mol Cell Res. 1763(7):711–722.
  • Eisenstein, R. S. and Blemings, K. P. (1998). Iron regulatory proteins, iron responsive elements and iron homeostasis. J. Nutr. 128(12):2295–2298.
  • Esamai, F., Liechty, E., Ikemeri, J. et al. (2014). Zinc absorption from micronutrient powder is low but is not affected by iron in Kenyan infants. Nutrients. 6(12):5636–5651.
  • Espinoza, A., Le Blanc, S., Olivares, M., Pizarro, F., Ruz, M. and Arredondo, M. (2012). Iron, copper, and zinc transport: Inhibition of divalent metal transporter 1 (DMT1) and human copper transporter 1 (hCTR1) by shRNA. Biol. Trace Elem. Res. 146(2):281–286.
  • Fernandes, A. P. G., Phung, Y., De Domenico, I., Kaplan, J., Ganz, T. and Nemeth, E. (2009). The molecular basis of hepcidin-resistant hereditary hemochromatosis. Blood. (114):437–443.
  • Fischer-Walker, C., Kordas, K., Stoltzfus, R. J. and Black, R. E. (2005). Interactive effects of iron and zinc on biochemical and functional outcomes in supplementation trials. Am. J. Clin. Nutr. 82:5–12.
  • Folgueras, A., Martin, de L. F., Pendas, A. M., Garabaya, C., Rodriguez, F., Astudillo, A., Bernal, T., Cabanillas, R., Lopez-Otin, C., et al. (2008). The membrane-bound serine protease matriptase-2 (Tmprss6) is an essential regulator of iron homeostasis. Blood. 112(112):2539–2545.
  • Frazer, D. M., Wilkins, S. J., Becker, E. M., Murphy, T. L., Vulpe, C. D., McKie, A. T. and Anderson, G. J. (2003). A rapid decrease in the expression of DMT1 and Dcytb but not Ireg1 or hephaestin explains the mucosal block phenomenon of iron absorption. Gut. 52:340–346.
  • Fuqua, B. K., Vulpe, C. D. and Anderson, G. J. (2012). Intestinal iron absorption. J. Trace Elem. Med. Biol. 26(2–3):115–119.
  • Galvez-Peralta, M., He, L., Jorge-Nebert, L. F., Wang, B., Miller, M. L., Eppert, B. L., Afton, S. and Nebert, D. W. (2012). ZIP8 zinc transporter: Indispensable role for both multiple-organ organogenesis and hematopoiesis in utero. Plos One. 7(5).
  • Ganz, T. (2011). Hepcidin and iron regulation, 10 years later. Blood. 117:4425–4433.
  • Ganz, T. and Nemeth, E. (2006). Regulation of iron acquisition and iron distribution in mammals. Biochim. Biophys. Acta. 1763:690–699.
  • Gao, J., Zhao, N., Knutson, M. D. and Enns, C. A. (2008). The hereditary hemochromatosis protein, HFE, inhibits iron uptake via down-regulation of Zip14 in HepG2 cells. J. Biol. Chem. 283(31):21462–21468.
  • Garrick, M. D., Singleton, S. T., Vargas, F., Kuo, H. C., Zhao, L., Knopfel, M., Davidson, T., Costa, M., Paradkar, P., Roth, J. A. and Garrick, L. M. (2006). DMTI: Which metals does it transport? Biol. Res. 39(1):79–85.
  • Gebremedhin, S., Enquselassie, F. and Umet, a. M. (2014). Prevalence and correlates of maternal anemia in rural Sidama, southern Ethiopia. Afr. J. Reprod. Health. 18(1):44–53.
  • Gleeson, F., Ryan, E., Barrett, S., Russell, J., Kelleher, B. and Crowe, J. (2005). Duodenal Dcytb and hephaestin mRNA expression are not significantly modulated by variations in body iron homeostasis. Blood Cells, Mol. Dis. 35:303–308.
  • Gibson, R. S., Abebe, Y., Stabler, S., Allen, H. R., Westcott, J. E., Stoecker, J. B., Krebs, F. N. and Hambidge, M. K. (2008). Zinc, gravida, infection and iron, but not vit.B12 or folate status predict hemoglobin during pregnancy in Southern Ethiopia. J. Nutr. 138:581–586.
  • Gifford, C. A., Holland, B. P., Mills, R. L., Maxwell, C. L. and Farney, J. K. (2012). Growth and development symposium: Impacts of inflammation on cattle growth and carcass merit. J. Anim. Sci. 90:1438–1451.
  • Girijashanker, K., He, L., Soleimani, M., Reed, J. M., Li, H., et al. (2008). Slc39a14 gene encodes ZIP14, a metal/bicarbonate symporter: similarities to the ZIP8 transporter. Mol. Pharmacol. 73(5):1413–1423.
  • Gonçalves, A. S., Muzeau, F., Blaybel, R., Hetet, G., Driss, F., Delaby, C., Canonne-Hergaux, F. and Beaumont, C. (2006). Wild-type and mutant ferroportins do not form oligomers in transfected cells. Biochem. J. 396:265–275.
  • Gunshin, H., Fujiwara, Y., Custodio, A. O., Direnzo, C., Robine, S. and Andrews, N. C. (2005a). Slc11a2 is required for intestinal iron absorption and erythropoiesis but dispensable in placenta and liver. J. Clin. Invest. 115:1258–1266.
  • Gunshin, H., Starr, C. N., Direnzo, C., Fleming, M. D., Jin, J., Greer, E. L., Sellers, V. M., Galica, S. M. and Andrews, N. C. (2005b). Cybrd1 (duodenal cytochrome b) is not necessary for dietary iron absorption in mice. Blood. 106:2879–2883.
  • Haase, V. H. (2010). Hypoxic regulation of erythropoiesis and iron metabolism. Am. J. Physiol. Renal Physiol. 299(1):F1–F13.
  • Hambidge, K. M., Miller, L. V., Westcott, J. E., Sheng, X. and Krebs, N. F. (2010). Zinc bioavailability and homeostasis. Am. J. Clin. Nutr. 91:S1478–S1483.
  • Harrison, P. M. (1996). The ferritins: Molecular properties, iron storage functions and cellular regulation. Biochim. Biophys. Acta. 1275:161–203.
  • Harvey, J. L., Dainty, R. J., Hollands, J. W., Bull, J. V., Hoogewerff, A. J., Foxal, J. R., McAnena, L., Strain, J. J. and Fairweather-Tait, J. S. (2007). Effect of high-dose iron supplements on fractional zinc absorption and status in pregnant women. Am. J. Clin. Nutr. 85:131–136.
  • Hininger-Favier, I., Andriollo-Sanchez, M., Arnaud, J., et al. (2007). Age- and sex-dependent effects of long-term zinc supplementation on essential trace element status and lipid metabolism in European subjects: The Zenith Study. Br. J. Nutr. 97:569–578.
  • Ho, E. and Ames, B. N. (2002). Low intracellular zinc induces oxidative DNA damage, disrupts p53, NFkappa B, and AP1 DNA binding and affects DNA repair in a rat glioma cell line. Proc. Natl. Acad. Sci. USA. 99:16770–16775.
  • Hossain, M. B., Kelleher, S. L. and Loennerdal, B. (2011). Maternal iron and zinc supplementation during pregnancy affects body weight and iron status in rat pups at weaning. J. Nutr. 141(5):798–804.
  • Illing, A. C., Shawki, A., Cunningham, C. L. and Mackenzie, B. (2012). Substrate profile and metal-ion selectivity of human divalent metal-ion transporter-1. J. Biol. Chem. 287(36):30485–30496.
  • Iyengar, V., Pullakhandam, R. and Nair, K. M. (2009). Iron–zinc interaction during uptake in human intestinal Caco-2 cell line: Kinetic analyses and possible mechanism. Ind. J. Biochem. Biophys. 46:299–306.
  • Iyengar, V., Pullakhandam, R. and Nair, K. M. (2012). Coordinate expression and localization of iron and zinc transporters explain iron-zinc interactions during uptake in Caco-2 cells: Implications for iron uptake at the enterocyte. J. Nutr. Biochem. 23(9):1146–1154.
  • Jenkitkasemwong, S., Wang, C. Y., Mackenzie, B. and Knutson, M. D. (2012). Physiologic implications of metal-ion transport by ZIP14 and ZIP8. Biometals. 25:643–655.
  • Jou, M. Y., Philipps, A. F., Kelleher, S. L. and Lonnerdal, B. (2010). Effects of zinc exposure on zinc transporter expression in human intestinal cells of varying maturity. J. Pediatr. Gastroenterol. Nutr. 50(6):587–595.
  • Kaluza, J., Madej, D., Rusaczonek, A. et al. (2014). Plasma zinc, vitamin B-12 and alpha-tocopherol are positively and plasma gamma-tocopherol is negatively associated with Hb concentration in early pregnancy in north-west Bangladesh. Eur. J. Nutr. 53(4):1083–1092.
  • Kelleher, S. L. and Lonnerdal, B. (2006). Zinc supplementation reduces iron absorption through age-dependent changes in small intestine iron transporter expression in suckling rat pups. J. Nutr. 136:1185–1191.
  • Kim, B. E., Wang, F. D., Dufner-Beattie, J., Andrews, G. K., Eide, D. J. and Petris, M. J. (2004). Zn2+-stimulated endocytosis of the mZIP4 zinc transporter regulates its location at the plasma membrane. J. Biol. Chem. 279:4523–4530.
  • King, J. C. (2010). Does zinc absorption reflect zinc status? Int. J. Vitam. Nutr. Res. 80(4–5):300–306.
  • King, J. C. and Cousins, R. J. (2006). Zinc. Modern Nutrition in Health and Disease 10th. Lippincott Williams & Wilkins, Baltimore.
  • Knutson, M. D. (2009). Into the matrix: Regulation of the iron regulatory hormone hepcidin by matriptase-2. Nutr. Rev. 67(5):284–288.
  • Knutson, M. D., Vafa, M. R., Haile, D. J. and Wessling-Resnick, M. (2003). Iron loading and erythrophagocytosis increase ferroportin 1 (FPN1) expression in J774 macrophages. Blood. 102:4191–4197.
  • Kolsteren, P., Rahman, S. R., Hilderbrand, K. and Diniz, A. (1999). Treatment for iron deficiency anemia with a combined supplementation of iron, vitamin A and zinc in women of Dinajpur, Bangladesh. Eur. J. Clin. Nutr. 53:102–107.
  • Kordas, K. and Stolzfus, J. R. (2004). Evidence of iron and zinc interplay at the enterocyte and neural tissues. J. Nutr. 134:1295–1298.
  • Lagnel, B., Karim, Z., Letteron, P., Bekri, S., Bado, A. and Beaumont, C. (2011). Intestinal DMT1 cotransporter is down-regulated by hepcidin via proteasome internalization and degradation. Gastroenterology. 140(4):1261–1265.
  • Langmade, S. J., Ravindra, R., Daniels, P. J. and Andrews, G. K. (2010). The transcription factor MTF-1 mediates metal regulation of the mouse ZnT1 gene. J. Biol. Chem. 275:34803.
  • Lasocki, S., Millot, S., Andrieu, V., et al. (2008). Phlebotomies or erythropoietin injections allow mobilization of iron stores in a mouse model mimicking intensive care anemia. Crit. Care Med. 36:2388–2394.
  • Lee, P. L. and Beutler, E. (2009). Regulation of hepcidin and iron-overload disease. Ann. Rev. Pathol. Mech. Dis. 489–515.
  • Leong, W. I., Bowlus, L. C., Tallkvist, J. and Lonnerdal, B. (2003). Iron supplementation during infancy—Effects on expression of iron transporters, iron absorption and iron utilization in rat pups. Am. J. Clin. Nutr. 78:1203–1211.
  • Leong, W. and Lonnerdal, B. (2004). Hepcidin, the recently identified peptide that appears to regulate iron absorption. Br. J. Nutr. 134:1–4.
  • Liang, G., Louis, A., Lichten,  , […] and Cousins, R. J. (2010). STAT5-glucocorticoid receptor interaction and MTF-1 regulate the expression of ZnT2 (Slc30a2) in pancreatic acinar cells. PNAS. 107(7):2818–2823.
  • Lichten, L. A. and Cousins, R. J. (2009). Mammalian zinc transporters: Nutritional and physiologic regulation. Ann. Rev. Nutr. 153–176.
  • Liu, S., Chen Z. J. (2011). Expanding role of ubiquitination in NF-κB signaling. Cell Res. 21(1):6–21.
  • Liu, X. B., Yang, F. and Haile, D. J. (2005). Functional consequences of ferroportin 1 mutations. Blood Cells Mol. Dis. 35:33–46.
  • Liuzzi, J. P., Aydemir, F., Nam, H., Knutson, M. D. and Cousins, R. J. (2006). Zip14 (Slc39a14) mediates non-transferrin-bound iron uptake into cells. Proc. Natl. Acad. Sci. 103:13612–13617.
  • Liuzzi, J. P., Bobo J. A., Cui, L., McMahon. R. J. and Cousins, R. J. (2003). Zinc transporters 1, 2 and 4 are differentially expressed and localized in rats during pregnancy and lactation. J Nutr. 133:342–351.
  • Liuzzi, J. P., Bobo, J. A., Lichten, L. A., Samuelson, D. A. and Cousins, R. J. (2004). Responsive transporter genes within the murine intestinal-pancreatic axis form a basis of zinc homeostasis. Proc. Natl. Acad. Sci. USA. 101:14355.
  • Liuzzi, J. P., Lichten, L. A., Rivera, S., Blanchard, R. K., Aydemir, T. B., Knutson, M. D., Ganz, T. and Cousins, R. J. (2005). Interleukin-6 regulates the zinc transporter Zip14 in liver and contributes to the hypozincemia of the acute-phase response. Proc. Natl. Acad. Sci. USA. 102(19):6843–6848.
  • Lonnerdal, B. (2000). Dietary factors influencing zinc absorption. J. Nutr. 130:S1378–S1383.
  • Lopez de Romana, D., Lonnerdal, B. and Brown, H. K. (2003). Absorption of zinc from wheat products fortified with iron and either zinc sulfate or zinc oxide. Am. J. Clin. Nutr. 78:279–283.
  • Lopez deRomana, D., Lonnerdal, B. and Brown, H. K. (2005). Longitudinal measurements of zinc absorption in Peruvian children consuming wheat products fortified with iron only or iron an 1 of 2 amounts of zinc. Am. J. Clin. Nutr. 81:637–647.
  • Lymboussaki, A., Pignatti, E., Montosi, G., Garuti, G., Haile, D. J. and Pietrangelo, A. (2003). The role of the iron responsive element in the control of ferroportin1/IREG1/MTP1 gene expression. J. Hepatol. 39:710–715.
  • Ma, A. G., Chen, X. C., Xu, R. X., Zheng, M. C., Wang, Y. and Li, J. S. (2004). Comparison of serum levels of iron, zinc and copper in anaemic and non-anaemic pregnant women in China. Asia Pac. J. Clin. Nutr. 13:348–352.
  • Mello-Neto , Rondó, P. H., Oshiiwa, M., Morgano, M. A. et al. (2003). Duodenal cytochrome and hephaestin expression in patients with iron deficiency and hemochromatosis. Gastroenterology. 125(3):746–754.
  • Mackenzie, B., Takanaga, H., Hubert, N., Rolfs, A. and Hediger, M. A. (2007). Functional properties of multiple isoforms of human divalent metal-ion transporter 1 (DMT1). Biochem. J. 403:59–69.
  • Mastrogiannaki, M., Matak, P., Keith, B., Simon, M. C., Vaulont, S. and Peyssonnaux, C. (2009). HIF-2alpha, but not HIF-1alpha, promotes iron absorption in mice. J. Clin. Invest. 119:1159–1166.
  • McArdle, H. J., Lang, C., Hayes, H. and Gambling, L. (2011). Role of the placenta in regulation of fetal iron status. Nutr. Rev. 69(1):S17–S22.
  • McKie, A. T. (2008). The role of Dcytb in iron metabolism: an update. Biochem. Soc. Trans. 36:1239–1241.
  • McKie, A. T., Marciani, P., Rolfs, A., Brennan, K., Wehr, K., Barrow, D., Miret, S., Bomford, A., Peters, T. J., Farzaneh, F., Hediger, M. A., Hentze, M. W. and Simpson, R. J. (2000). A novel duodenal iron-regulated transporter, IREG1, implicated in the basolateral transfer of iron to the circulation. Mol. Cell. 5(2):299–309.
  • McMahon, R. J. and Cousins, R. J. (1998). Regulation of the zinc transporter ZnT-1 by dietary zinc. Proc. Natl. Acad. Sci. 95(9):4841–4846.
  • Meerarani, P., Reiterer, G., Toborek, M. and Hennig, B. (2003). Zinc modulates PPAR signaling and activation of porcine endothelial cells. J. Nutr. 133:3058–3064.
  • Mena, N. P., Esparza, A. and Tapia, V. (2008). Hepcidin inhibits apical iron uptake in intestinal cells. Am. J. Physiol. Gastrointest. Liver Physiol. 294:G192–G198.
  • Mocchegiani, E., Costarelli, L., Giacconi, R., Piacenza, F., Basso, A. and Malavolta, M. (2012). Micronutrient (Zn, Cu, Fe)-gene interactions in ageing and inflammatory age-related diseases: Implications for treatments. Ageing Res. Rev. 11(2):297–319.
  • Morgan, E. H., Smith, G. D. and Peters, T. J. (1986). Uptake and subcellular processing of 59Fe-125I labelled transferrin by rat liver. Biochem. J. 237(1):163–173.
  • Muckenthaler, M., Roy, C. N., Custodio, A. O., Minana, B., deGraaf, J., Montross, L. K., Andrews, N. C. and Hentze, M. W. (2003). Regulatory defects in liver and intestine implicate abnormal hepcidin and Cybrd1 expression in mouse hemochromatosis. Nat. Genet. 34:102–107.
  • Myers, S. A., Nield, A. and Myers, M. (2012). Zinc Transporters, Mechanisms of Action and Therapeutic Utility: Implications for Type 2 Diabetes Mellitus. Journal of Nutrition and Metabolism. 2012:173712.
  • Nam, H. and Knutson, M. D. (2012). Effect of dietary iron deficiency and overload on the expression of ZIP metal-ion transporters in rat liver. Biometals. 25(1):115–124.
  • Nemeth, E., Preza, G. C., Jung, C. L., Kaplan, J., Waring, A. J. and Ganz, T. (2006). The N-terminus of hepcidin is essential for its interaction with ferroportin: structure-function study. Blood. 107(1):328–333.
  • Nemeth, E., Tuttle, M. S., Powelson, J., Vaughn, M. B., Donovan, A., Ward, D. M., Ganz, T. and Kaplan, J. (2004). Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization. Science. 306:2090–2093.
  • Niereder, W. (1990). Ferritin: Iron incorporation and release. Experientia. 26:218–220.
  • Nishiyama, S., Inomoto, T., Nakamura, T., Higashi, A. and Matsuda, I. (1996). Normocytic anemia with low level of TIBC, as a marker of zinc deficiency. Biomed. Res. Trace Elem. 7:175–176.
  • Nishiyama, S. (1999). Zinc and IGF-I concentrations in pregnant women with anemia before and after supplementation with iron and/or zinc. J. Am. Coll. Nutr. 18:261–267.
  • Nittis, T. and Gitlin, J. D. (2004). Role of copper in the proteosome-mediated degradation of the multicopper oxidase hephaestin. J. Biol. Chem. 279(25):696–702.
  • Olivares, M., Pizarro, F., Ruz, M. and de Romana, D. L. (2012). Acute inhibition of iron bioavailability by zinc: Studies in humans. Biometals. 25(4):657–664.
  • Oteiza, P. I., Clegg, M. S. and Keen, C. L. (2001). Short-term zinc deficiency affects nuclear factor-kappa B nuclear binding activity in rat testes. J. Nutr. 131(1):21–26.
  • Ou, O., Allen-Redpath, K., Urgast, D., Gordon, M. J., Campbell, G., Feldmann, J., Nixon, G. F., Mayer, C. D., Kwun, I. S. and Beattie, J. H. (2013). Plasma zinc's alter ego is a low-molecular.
  • Palupi, L., Schultink, W., Achad, E. and Gross, R. (1997). Effective community intervention to improve hemoglobin status in preschoolers receiving once-weekly iron supplementation. Am. J. Clin. Nutr. 65:1057–1061. weight humoral factor. The FASEB Journal. 27:3672--3682.
  • Penny, M. E., Marin, R. M., Duran, A., Peerson, J. M., Lanata, C. F., Lonnerdal, B., Black, R. E. and Brown, K. H. (2004). Randomized controlled trial of the effect of daily supplementation with zinc or multiple micronutrients on the morbidity, growth, and micronutrient status of young Peruvian children. Am. J. Clin. Nutr. 79:457–465.
  • Pietrangelo, A. (2004). The ferroportin disease. Blood Cells Mol. Dis. 32(1):131–138.
  • Pinilla-Tenas, J. J., Sparkman, B. K., Shawki, A., Illing, A. C., Mitchell, C. J., Zhao, N., Liuzzi, J. P., Cousins, R. J., Knutson, M. D. and Mackenzie, B. (2011). Zip14 is a complex broad-scope metalion transporter whose functional properties support roles in the cellular uptake of zinc and nontransferrin-bound iron. Am. J. Physiol. Cell Physiol. 25:115–124.
  • Prasad, A. S. (2009). Zinc: Role in immunity, oxidative stress and chronic inflammation. Curr. Opin. Clin. Nutr. Metab. Care. 12(6):646–652.
  • Prasad, A. S., Bao, B., Beck, F. W. and Sarkar, F. H. (2001). Zinc activates NF-kappaB in HUT-78 cells. J. Lab. Clin. Med. 138(4):250–256.
  • Ramakrishnan, U., Cossı´o, G. T., Neufeld, M. L., Rivera, J. and Martorel, l. R. (2004). Multimicronutrient interventions but not vitamin A or iron interventions alone improve child growth: Results of 3 meta-analyses. J. Nutr. 134:2592–2602.
  • Ramsay, A. J., Hooper, J. D., Folgueras, A. R., Velasco, G. and López-Otín, C. (2009). Matriptase-2 (TMPRSS6): A proteolytic regulator of iron homeostasis. Haematol. Hematol. J. 94(6):840–849.
  • Rashed, A. A. (2011). In vitro study to determine the effect of zinc on non-heme iron absorption. Int. J. Collab. Res. Int. Med. Public Health. 3(5):354–368.
  • Richardson, D. R., Chua, A. C. and Baker, E. (1999). Activation of an iron uptake mechanism from transferrin in hepatocytes by small-molecularweight iron complexes. Implications for the pathogenesis of iron-overload disease. J. Lab. Clin. Med. 133:144–151.
  • Rivera, S., Nemeth, E., Gabayan, V., Lopez, M., Farshidi, D. and Ganz, T. (2005). Synthetic hepcidin causes rapid dose-dependent hypoferremia and is concentrated in ferroportin-containing organs. Blood. 106:2196–2199.
  • Sacher, A., Cohen, A. and Nelson, N. (2001). Properties of the mammalian and yeast metal-ion transporters DCT1 and Smf1p expressed in Xenopus laevis oocytes. J. Exp. Biol. 204(6):1053–1061.
  • Sacher, A., Cohen, A. and Nelson, N. (2004). Properties of the mammalian and yeast metalion transporters DCT1 and Smf1p expressed in Xenopus laevis oocytes. J. Exp. Biol. 204:1053–1061.
  • Sanchez, M., Galy, B., Schwanhaeusser, B., Blake, J, Ivacevic, T. M., Benes, V., Selbach, M., Muckenthaler, M. U. and Hentze, W. M. (2011). Iron regulatory protein-1 and -2: transcriptome-wide definition of binding mRNAs and shaping of the cellular proteome by iron regulatory proteins. Blood. 118(22):168–179.
  • Scheiber-Mojdehkar, B., Sturm, B., Plank, L., Kryzer, I. and Goldenberg, H. (2003). Influence of parenteral iron preparations on non-transferrin bound iron uptake, the iron regulatory protein and the expression of ferritin and the divalent metal transporter DMT-1 in HepG2 human hepatoma cells. Biochem. Pharmacol. 65:1973–1978.
  • Shah, Y. M., Matsubara, T., Ito S, Yim, S. H., and Gonzalez, F. J. (2009). Intestinal hypoxia-inducible transcription factors are essential for iron absorption following iron deficiency. Cell Metab. 9:152–164.
  • Shamim, A. A., Kabir, A., Merrill, R. D. et al. (2013). The effect of iron and zinc supplementation and its discontinuation on liver antioxidant status in rats fed deficient diets. Public Health Nutr. 16(8):1354–1361.
  • Sharp, P., Tandy, S., Yamaji, S., Tennant, J., Williams, M. and Singh Srai, S. K. (2002). Rapid regulation of divalent metal transporter (DMT1) protein but not mRNA expression by non-haem iron innhuman intestinal Caco-2 cells. Febs Lett. 510(1):71–76.
  • Shoham, S. and Youdim, M. B. (2002). The effects of iron deficiency and iron and zinc supplementation on rat hippocampus ferritin. J. Neural Transm. 109:1241–1256.
  • Smith, C. J., Makdani, D., Hegar, A., Rao, D. and Douglass, W. L. (1999). Vitamin A and zinc supplementation of preschool children. J. Am. Coll. Nutr. 18:213–222.
  • Silvestri, L., Pagani, A., Nai, A., De Domenico, I., Kaplan, J. and Camaschella, C. (2008). The serine protease matriptase-2 (TMPRSS6) inhibits hepcidin activation by cleaving membrane hemojuvelin. Cell Metabolism. 8(6):502–511.
  • Solomons, N. W. (1986). Competitive interaction of iron and zinc in the diet: Consequences for human nutrition. J. Nutr. 116:927–935.
  • Sreedhar, B. and Nair, K. M. (2005). Modulation of aconitase, metallothionein, and oxidative stress in zinc deficient rat intestine during zinc and iron repletion. Free Radic. Biol. Med. 39(8):999–1008.
  • Sreedhar, B., Subramaniyan, R. and Nair, K. M. (2004). A protective role for zinc on intestinal peroxidative damage during oral iron repletion. Biochem. Biophys. Res. Commun. 318:992–997.
  • Stuart, G. Anderson, Frazer, D., Powell, L., McCullen, M., Fletcher, L., et al. (2003). Duodenal expression of iron transport molecules in untreated haemochromatosis subjects. Gut. 52:953–959.
  • Tallkvist, J., Bowlus, C. L. and Lonnerdal, B. (2000). Functional and molecular responses of human intestinal Caco-2 cells to iron treatment. Am. J. Clin. Nutr. 72:770–775.
  • Tandy, S., Williams, M., Leggett, A., Lopez-Jimenez, M., Dedes, M., Ramesh, B., Srai, S. K. and Sharp, P. (2000). Nramp2 expression is associated with pH-dependent iron uptake across the apical membrane of human intestinal Caco-2 cells. J. Biol. Chem. 275:1023–1029.
  • Taylor, M. Qu, Anderson, E. R., Anderson, T., Matsubara, A., Martin, F. J., Gonzalez, Y. M. and Shah, Y. M. (2011). Hypoxia-inducible factor-2alpha mediates the adaptive increase of intestinal ferroportin during iron deficiency inmice. Gastroenterology. 140:2044–2055.
  • Thambiayya, K., Kaynar, A., Claudette, M., Croix, M. and Pitt, B. (2012). Functional role of intracellular labile zinc in pulmonary endothelium. Pulmonary Circulation. 2(4):443–451.
  • Troadec, M. B., Ward, D. M., Lo, E., Kaplan, J. and De Domenico, I. (2010). Induction of FPN1 transcription by MTF-1 reveals a role for ferroportin in transition metal efflux. Blood. 116(22):4657–4664.
  • Van Uden, P., Kenneth, N. S., Webster, R., Müller, H. A., Mudie, S. and Rocha, S. (2011). Evolutionary conserved regulation of HIF-1β by NF-κB. Plos. Genet. 27(7):1.
  • Vehik, K. and Dabelea, D. (2011). The changing epidemiology of type 1 diabetes: Why is it going through the roof? Diabetes. Metab. Res. Rev. 27:3–13.
  • Wang X., Zhou B. (2010). Dietary zinc absorption: A play of Zips and ZnTs in the gut. IUBMB Life. 62(3):176–182.
  • Wang, X., Garrick, M. D., Yang, F., Dailey, L. A., Piantadosi, C. A., and Ghio, A. J. (2005). TNF, IFN-d, and endotoxin increase expression of DMT1 in bronchial epithelial cells. Am. J. Physiol. 289:L24–L33.
  • Wang, C. Y., Jenkitkasemwong, S., Duarte, S., Sparkman, B. K., Shawki, A., Mackenzie, B. and Knutson, M. D. (2012). ZIP8 Is an Iron and Zinc transporter whose cell-surface expression is up-regulated by cellular Iron loading. J. Biol. Chem. 287(41):34032–34043.
  • Wang, C. Y. and Knutson, M. (2012). Role of the iron-import protein DMT1 (Divalent Metal Transporter 1) in liver iron uptake. Faseb. J. 26.
  • Wang, J. and Pantopoulos, K. (2011). Regulation of cellular iron metabolism. Biochem. J. 434:365–381.
  • Ward, D. and Kaplan, J. (2012). Ferroportin-mediated iron transport: Expression and regulation. Biochim. Biophys. Acta. 1823(9):1426–1433.
  • Weaver, B., Beattie, J. D., Kambe, T. and Andrews, K. G. (2007). Novel zinc-responsive post-transcriptional mechanisms reciprocally regulate expression of the mouse Slc39a4 and Slc39a5 zinc transporters (Zip4 and Zip5). Biol. Chem. 388(12):1301–1312.
  • Westin, G. and Shaffner, W. (1988). A zinc-responsive factor interacts with a metal-regulated enhancer element (MRE) of the mouse metallothionein-I gene. EMBO J. 7:3763–3770.
  • Weston, B. F., Brenot, A. and Caparon, M. G. (2009). The metal homeostasis protein, Lsp, of Streptococcus pyogenes is necessary for acquisition of zinc and virulence. Infect. Immun. 77:2840–2848.
  • Willam, C. (2014). HIF meets NF-κB signaling. Kidney Int. 85:232–234.
  • Wu, W., Wang, X., Zhang, W. et al. (2003). Zinc induced PTEN protein degradation through the proteasome pathway in human airway epithelial cells. J. Biol. Chem. 278:28258–28263.
  • Yamaji, S., Sharp, P., Ramesh, B. and Srai, S. K. (2004). Inhibition of iron transport across human intestinal epithelial cells by hepcidin. Blood. 104:2178–2180.
  • Yamaji, S., Tennant, J., Tandy, S., Williams, M., Srai, S. K. and Sharp, P. (2001). Zinc regulates the function and expression of the iron transporters DMT1 and IREG1 in human intestinal Caco-2 cells. FEBS Lett. 507:137–141.
  • Yeh, K., Yeh, M. and Glass, J. (2004). Hepcidin regulation of ferroportin 1 expression in the liver and intestine of the rat. Am. J. Physiol. Gastrointest. Liver Physiol. 286:G385–G394.
  • Yeh, K.-Y., Yeh, M. and Glass, J. (2011). Interactions Between Ferroportin and Hephaestin in Rat Enterocytes Are Reduced After Iron Ingestion. Gastroenterology. 141(1):292–U391.
  • Zangger, K., Shen, G., Oz, G., Otvos, J. D. and Armitage, I. M. (2001). Oxidative dimerization in metallothionein is a result of intermolecular disulphide bonds between cysteines in the alpha-domain. Biochem. J. 359:353–360.
  • Zhang, A. S. and Enns, C. A. (2009a). Iron homeostasis: recently identified proteins provide insight into novel control mechanisms. J. Biol. Chem. 284:711–715.
  • Zhang, A. S. and Enns, C. A. (2009b). Molecular mechanisms of normal iron homeostasis. Hematology. 207:14.
  • Zhang, D. L., Hughes, R. M., Ollivierre-Wilson, H., Ghosh, M. C. and Rouault, T. A. (2009). A ferroportin transcript that lacks an iron-responsive element enables duodenal and erythroid precursor cells to evade translational repression. Cell Metab. 9:461–473.
  • Zoller, H., Koch, R. O., Theurl, I., Obrist, P., Pietrangelo, A., Montosi, G., Haile, D. J., Vogel, W., and Weiss, G. (2001). Expression of the duodenal iron transporters divalent-metal transporter 1 and ferroportin 1 in iron deficiency and iron overload. Gastroenterology. 120(6):1412–1419.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.