3,077
Views
83
CrossRef citations to date
0
Altmetric
Articles

Analytical techniques for the study of polyphenol–protein interactions

References

  • Annesley, T. M. (2003). Ion suppression in mass spectrometry. Clin Chem 49:1041–4.
  • Anouar, E. H., Gierschner, J., Duroux, J. L. and Trouillas, P. (2011). UV/Visible spectra of natural polyphenols: a time-dependent density functional theory study. Food Chem 131:79–89.
  • Arnold, M. A. and Meyerhoff, M. E. (1988). Recent advances in the development and analytical applications of biosensing probes. Crit Rev Anal Chem 20:149–96.
  • Artz, W. E., Bishop, P. D., Dunker, A. K., Schanus, E. G. and Swanson, B. G. (1987). Interaction of synthetic proanthocyanidin dimer and trimer with bovine serum albumin and purified bean globulin fraction G-1. J Agric Food Chem 35:417–21.
  • Asquith, T. N. and Butler, L. G. (1986). Interactions of condensed tannins with selected proteins. Phytochemistry 25:1591–3.
  • Baxter, N. J., Lilley, T. H., Haslam, E. and Williamson, M. P. (1997). Multiple interactions between polyphenols and a salivary proline-rich protein repeat result in complexation and precipitation. Biochemistry 36:5566–77.
  • Becker, E. D., Fisk, C. L. and Khetrapal, C. L. (2007). Development of NMR: from the early beginnings to the early 1990s. In: eMagRes. Wiley, New York.
  • Benedik, E., Skrt, M., Podlipnik, C. and Ulrih N.P. (2014). Binding of flavonoids to staphylococcal enterotoxin B. Food and ChemicalToxicology 74:1–8.
  • Bewley, C. A. and Shahzad-ul-Hussan, S. (2013). Characterizing carbohydrate–protein interactions by nuclear magnetic resonance spectroscopy. Biopolymers 99:796–806.
  • Bhunia, A., Bhattacharjya, S. and Chatterjee, S. (2012). Applications of saturation transfer difference NMR in biological systems. Drug Discov Today 17:505–13.
  • Bieri, M., Kwan, A. H., Mobli, M., King, G. F., Mackay, J. P. and Gooley, P. R. (2011). Macromolecular NMR spectroscopy for the nonspectroscopist: beyond macromolecular solution structure determination. FEBS J 278:704–15.
  • Billeter, M., Wagner, G. and Wüthrich, K. (2008). Solution NMR structure determination of proteins revisited. J Biomol NMR 42:155–8.
  • Blakeley, M. P., Cianci, M., Helliwell, J. R. and Rizkallah, P. J. (2004). Synchrotron and neutron techniques in biological crystallography. Chem Soc Rev 33:548–57.
  • Blundell, T. L., Jhoti, H. and Abell, C. (2002). High-throughput crystallography for lead discovery in drug design. Nat Rev Drug Discov 1:45–54.
  • Brás, N. F., Goncalves, R., Fernandes, P. A., Mateus, N., Ramos, M. R. and de Freitas, V. (2010). Understanding the binding of procyanidins to pancreatic elastase by experimental and computational methods. Biochemistry 49:5097–108.
  • Brinks, D., Hildner, R., van Dijk,  , Stefani, F. D., Nieder, J. B., Hernando, J. and van Hulst, N. F. (2014). Ultrafast dynamics of single molecules. Chem Soc Rev 43:2476–91.
  • Brinks, D., Stefani, F. D., Kulzer, F., Hildner, R., Taminiau, T. H., Avlasevich, Y., Müllen, K. and van Hulst, N. F. (2010). Visualizing and controlling vibrational wave packets of single molecules. Nature 465:905–8.
  • Bruylants, G., Wouters, J. and Michaux, C. (2005). Differential scanning calorimetry in life science: thermodynamics, stability, molecular recognition and application in drug design. Curr Med Chem 12:2011–20.
  • Cala, O., Guillière, F. and Krimm, I. (2013). NMR-based analysis of protein–ligand interactions. Anal Bioanal Chem 8:1–14.
  • Canon, F., Pate, F., Cheynier, V., Sarni-Manchado, P., Giuliani, A., Perez, J., Durand, D., Li, J. and Cabane, B. (2013). Aggregation of the salivary proline-rich protein IB5 in the presence of the tannin EgCG. Langmuir 29:1926–37.
  • Cao, H., Shi, Y. and Chen, X. (2013). Advances on the interaction between tea catechins and plasma proteins: structure-affinity relationship, influence on antioxidant activity, and molecular docking aspects. Current Drug Metabolism 14:446–50.
  • Cavanagh, J., Fairbrother, W. J., Palmer, A. G., Skelton, N. J. and Rance, M. (2007). Protein NMR spectroscopy principles and practice, 2nd edn.Elsevier Academic Press, Amsterdam.
  • Charlton, A. J., Baxter, N. J., Khan, M. L., Moir, A. J. G., Haslam, E., Davies, A. P. and Williamson, M. P. (2002). Polyphenol/ peptide binding and precipitation. J Agric Food Chem 50:1593–601.
  • Chayen, N. E. and Saridakis, E. (2008). Protein crystallization: from purified protein to diffraction-quality crystal. Nat Methods 5:147–53.
  • Chen, D., Wan, S. B., Yang, H., Yuan, J., Chan, T. H. and Dou, Q. P. (2011). EGCG, green tea polyphenols and their synthetic analogs and prodrugs for human cancer prevention and treatment. Adv Clin Chem 53:155–77.
  • Cheng, C. I., Chang, Y. P. and Chu, Y. H. (2012). Biomolecular interactions and tools for their recognition: focus on the quartz crystal microbalance and its diverse surface chemistries and applications. Chem Soc Rev 41:1947–71.
  • Chilingaryan, Z., Yin, Z. and Oakley, A. J. (2012). Fragment-based screening by protein crystallography: successes and pitfalls. Int J Mol Sci 13:12857–79.
  • Cubrilovic, D., Haap, W., Barylyuk, K., Ruf, A., Badertscher, M., Gubler, M., Tetaz, T., Joseph, C., Benz, J. and Zenobi, R. (2014). Determination of protein-ligand binding constants of a cooperatively regulated tetrameric enzyme using electrospray mass spectrometry. ACS Chem Biol 9:218–26.
  • Davies, T. G. and Tickle, I. J. (2012). Fragment screening using X-ray crystallography. Top Curr Chem 317:33–59.
  • De Corcuera, J. R. and Cavalieri, R. P. (2003). Biosensors, in Encyclopedia of Agricultural, Food, and Biological Engineering, New York; Marcel Dekker Inc p119–23.
  • de Freitas, V. and Mateus, N. (2012). Protein/polyphenol interactions: past and present contributions. Mechanisms of astringency perception. Curr Organ Chem 16:724–46.
  • De, P., Baltasand, M. and Bedos-Belval, F. (2011). Cinnamic acid derivatives as anticancer agents—a review. Curr Med Chem 18:1672–703.
  • Doyle, M. L., Louie, G., Dal Monte, P. R., Sokoloski, T. D., and Michael, L. (1995). Johnson GKA. Tight binding affinities determined from thermodynamic linkage to protons by titration calorimetry. Meth Enzymol 259:183–94.
  • Engel, M. F. M. VanderAkker, C. C., Schleeger, M., Velikov, K. P., Koenderink, G. H. and Bonn, M. (2012). The Polyphenol EGCG Inhibits Amyloid Formation Less Efficiently at Phospholipid Interfaces than in Bulk Solution. Journal of American Chemical Society 134:14781–14788.
  • Erlanson, D. (2012). Introduction to fragment-based drug discovery. In: Fragment-based drug discovery and X-ray crystallography, Davies, T. G., Hyvönen, M. (eds). Berlin, Springer. Topics in Current Chemistry 317:1–32.
  • Falconer, R. J., and Collins, B. M. (2010). Survey of the year 2009: applications of isothermal titration calorimetry. J Mol Recognit 24:1–16.
  • Fechner, P., Bleher, O., Ewald, M., Freudenberger, K., Furin, D., Hilbig, U., Kolarov, F., Krieg, K., Leidner, L., Markovic, G., Proll, G., Proll, F., Rau, S., Riedt, J., Schwartz, B., Weber, P. and Widmaier, J. (2014). Size does matter! Label-free detection of small molecule--protein interaction. Anal Bioanal Chem 406:4033–51.
  • Feng, Y., Mitchison, T. J., Bender, A., Young, D. W. and Tallarico, J. A. (2009). Multi-parameter phenotypic profiling: using cellular effects to characterize small-molecule compounds. Nat Rev Drug Discov 8:567–78.
  • Feng, Y., Yang, S., Du, X. T., Zhang, X., Sun, X. X., Zhao, M., Sun, G. Y. and Liu, R. T. (2009). Ellagic acid promotes A beta 42 fibrillization and inhibits A beta 42-induced neurotoxicity. Biochemical and Biophysical Research Communications 390:1250–1254.
  • Fenn, J. B. (2002). Electrospray ionization mass spectrometry: how it all began. J Biomol Tech 13:101–18.
  • Fitzpatrick, P. A., Steinmetz, A. C. U., Ringe, D. and Klibanov, A. M. (1993). Enzyme crystal-structure in a neat organic-solvent. Proc Natl Acad Sci USA 90:8653–7.
  • Frazier, R. A., Deaville, E. R., Green, R. J., Stringano, E., Willoughby, I., Plant, J. and Mueller-Harvey, I. (2010). Interactions of tea tannins and condensed tannins with proteins. J Pharm Biomed Anal 51:490–5.
  • Frazier, R. A., Papadopoulou, A. and Green, R. J. (2006). Isothermal titration calorimetry study of epicatechin binding to serum albumin. J Pharm Biomed Anal 41:1602–5.
  • Frazier, R. A., Papadopoulou, A., Mueller-Harvey, I., Kissoon, D. and Green, R. J. (2003). Probing protein-tannin interactions by isothermal titration microcalorimetry. J Agric Food Chem 51:5189–95.
  • Frommer, W. B., Davidsonb, M. V., and Campbell, R. E. (2009). Genetically encoded biosensors based on engineered fluorescent proteins. Chem Soc Rev 38:2833–41.
  • Ghai, R., Falconer, R. J. and Collins, B. M. (2012). Applications of isothermal titration calorimetry in pure and applied research – survey of the literature from 2010. J Mol Recognit 25:32–52.
  • Glazer, A. N. and Smith, E. L. (1961). Studies on ultraviolet difference spectra of proteins and polypeptides. J Biol Chem 236:2942–7.
  • Gonçalves, R., Soares, S., Mateus, N. and De Freitas, V. (2007). Inhibition of trypsin by condensed tannins and wine. J Agric Food Chem 5:7596–601.
  • Gonçalves, R., Mateus, N., Pianet, I., Languerre, M. and de Freitas, V. (2011). Mechanisms of tannin-induced trypsin inhibition: a molecular approach. Langmuir 27:13122–9.
  • Grabowska, I., Radecka, H., Burza, A., Radecki, J., Kaliszan, M. and Kaliszan, R. (2010). Association constants of pyridine and piperidine alkaloids to amyloid beta peptide determined by electrochemical impedance spectroscopy. Curr Alzheimer Res 7:165–72.
  • Greenfield, N. J. (2006). Using circular dichroism spectra to estimate protein secondary structure. Nat Prot 1:2876–90.
  • Griffiths, D. W. (1984). The trypsin and chymotrypsin inhibitor activities of various pea (Pisum spp.) and field bean (Vicia faba) cultivars. J Sci Food Agr 35:481–6.
  • Guo, W., Kong, E. and Meydani, M. (2009). Dietary polyphenols, inflammation and cancer. Nutr Canc 61:807–10.
  • Ha, T. and Tinnefeld, P. (2012). Photophysics of fluorescent probes for single-molecule biophysics and super-resolution imaging. Johnson, M. A., Martinez, T. J. (Eds), Annual Press, Palo Alto, CA, Book Series: Ann Rev Phys Chem 2012;63:595–617.
  • Hagerman, A. E. and Butler, L. G. (1980). Determination of protein in tannin-protein precipitates. J Agric Food Chem 28:944–7.
  • Hagerman, A. E. and Butler, L. G. (1981). The specificity of proanthocyanidin-protein interactions. J Biol Chem 256:4494–7.
  • Hagerman, A. E., Rice, M. E. and Ritchard, N. T. (1998). Mechanisms of protein precipitation for two tannins, pentagalloyl glucose and epicatechin(16) (4 -> 8) catechin (procyanidin). J Agric Food Chem 46:2590–5.
  • Harke, B., Keller, J., Ullal, C. K., Westphal, V., Schönle, A. and Hell, S. V. (2008). Resolution scaling in STED microscopy. Opt. Express 16:4154–62.
  • Haslam, E. (1996). Natural polyphenols (vegetable tannins) as drugs: possible modes of action. J Natur Prod 59:205–15.
  • Hasni, I., Bourassa, P., Hamdani, S., Samson, G., Carpentier, R. and Tajmir-Riahi, H-A. (2011). Interaction of milk alpha- and beta-caseins with tea polyphenols. Food Chemistry 126:630–639.
  • Hassell, A. M., An, G., Bledsoe, R. K., Bynum, J. M., Carter, H. L., Deng, S. J. J., Gampe, R. T., Grisard, T. E., Madauss, K. P., Nolte, R. T., Rocque, W. J., Wang, L. P., Weaver, K. L., Williams, S. P., Wisely, G. B., Xu, R., and Shewchuk, L. M. (2007). Crystallization of protein-ligand complexes. Acta Crystallogr D 63:72–9.
  • Himmler, A., Stratowa, C. and Czernilofsky, A. P. (1993). Functional testing of human dopamine D1 and D5 receptors expressed in stable cAMP-responsive luciferase reporter cell lines. J Recept Res 13:79–94.
  • Hussain, S., Franck, J. M. and Han, S. (2013). Transmembrane protein activation refined by site-specific hydration dynamics. Angew Chem Int Ed 52:1953–8.
  • Hui, C., Yujun, S. and Xiaoqing, C. (2013). Advances on the interaction between tea catechins and plasma proteins: Structure-affinity relationship, Influence on antioxidant activity, and molecular docking aspects. Current Drug Metabolism 14:446–450.
  • Ishikawa-Ankerhold, H. C., Ankerhold, R. and Drummen, G. P. C. (2012). Advanced fluorescence microscopy techniques—FRAP, FLIP, FLAP, FRET and FLIM. Molecules 17:4047–132.
  • Kakihana, M. and Okamoto, M. (1984). Vibrational analysis of pyruvate ion molecules and estimation of equilibrium constants for their hydrogen isotopic exchange reactions. J Phys Chem 88:1797–804.
  • Kanakis, C. D., Hasni, I., Bourassa, P., Tarantilis, P. A., Polissiou, M. G. and Heidar-Ali, T. R. (2011). Milk b-lactoglobulin complexes with tea polyphenols. Food Chem 127:1046–55.
  • Kendrew, J. C., Bodo, G., Dintzis, H. M., Parrish, R. G., Wyckoff, H., Phillips, D. C. (1958). Three-dimensional model of the myoglobin molecule obtained by X-ray analysis. Nature 181:662–6.
  • Kitova, E. N., El-Hawiet, A., Schnier, P. D. and Klassen, J. S. (2012). Reliable determinations of protein-ligand interactions by direct ESI-MS measurements. Are we there yet? J Am Soc Mass Spectrom 23:431–41.
  • Krushelnitsky, A., Reichert, D. and Saalwächter, K. (2013). Solid-state NMR approaches to internal dynamics of proteins: from picoseconds to microseconds and seconds. Acc Chem Res 46:2028–36.
  • Kuriyama, S., Shimazu, T., Ohmori, K., Kikuchi, N., Nakaya, N., Nishino, Y., Tsubono, Y. and Tsuji, I. (2006). Green tea consumption and mortality due to cardiovascular disease, cancer and all causes in Japan. J Am Medical Ass 296:1255–65.
  • Kwan, A. H., Mobli, M., Gooley, P. R., King, G. F. and Mackay, J. P. (2011). Macromolecular NMR spectroscopy for the non-spectroscopist. FEBS J 278:687–703.
  • Ladbury, J. E., Klebe, G. and Freire, E. (2010). Adding calorimetric data to decision making in lead discovery: a hot tip. Nat Rev Drug Discov 9:23–7.
  • Le Bourvellec, C. and Renard, C. M. G. C. (2011). Interactions between polyphenols and macromolecules: quantification methods and mechanisms. Crit Rev Food Sci Nutr 52:213–48.
  • Lekmul, J. A. and Bevan, D. R. (2010). Destabilizing Alzheimer's Ab42 protofibrils with morin: mechanistic insights from molecular dynamics simulations. Biochemistry 49:3935–46.
  • Lescop, E., Kern, T., and Brutscher, B. (2010). Guidelines for the use of band-selective radiofrequency pulses in hetero-nuclear NMR: example of longitudinal-relaxation-enhanced BEST-type 1H–15N correlation experiments. J Magn Reson 203:190–8.
  • Lewy-Sakin, M., Shreberk, M., Daniel, Y. and Gazit, E. (2009). Targeting insulin amyloid assembly by small aromatic molecules: toward rational design of aggregation inhibitors. Islets 1:210–5.
  • Liang, M., Liu, R., Qi, W., Su, R. X., Yu, Y. J., Wang, L. B. and He, Z. M. (2013). Interaction between lysozyme and procyanidin: multilevel structural nature and effect of carbohydrates. Food Chem 138:1596–603.
  • Lim, C. K. and Lord, G. (2002). Current developments in LC-MS for pharmaceutical analysis. Biol Pharm Bull 200225:547–57.
  • Liu, F. G., Xu, C. Q., Yuan, F. and Gao, Y. X. (2014). Molecular interaction between (-)-epigallocatechin-3-gallate and bovine lactoferrin using multi-spectroscopic method and isothermal titration calorimetry. Food Research Inter 64:141–9.
  • Maple, H. J., Garlish, R. A., Rigau-Roca, L., Porter, J., Whitcombe, I., Prosser, C. E., Kennedy, J., Henry, A. J., Taylor, R. J., Crump, M. P. and Crosby, J. (2012). Automated protein-ligand interaction screening by mass spectrometry. J Med Chem 55:837–51.
  • Mari, S., Serrano-Gómez, D., Cañada, F. J., Corbí, A. L. and Jiménez-Barbero, J. (2005). One-dimensional saturation transfer difference NMR experiments on living cells: the DC-SIGN/oligomannose interaction. Angew Chem Int Ed 44:296–8.
  • Markova, N. and Hallen, D. (2004). The development of a continuous isothermal titration calorimetric method for equilibrium studies. Anal Biochem 331:77–88.
  • McDougall, G. J., Shpiro, F., Dobson, P., Smith, P., Blake, A. and Stewart, D. (2005). Different polyphenolic components of soft fruits inhibit a-amylase and a-glucosidase. J Agric Food Chem 53:2760–6.
  • McDougall, G. J. and Stewart, D. (2005). The inhibitory effects of berry polyphenols on digestive enzymes. Biofactors 23:189–95.
  • McRae, J. M. and Kennedy, J. A. (2011). Wine and grape tannin interactions with salivary proteins and their impact on astringency: a review of current research. Molecules 16:2348–64.
  • Meyer, B and Peters, T. (2003). NMR spectroscopy techniques for screening and identifying ligand binding to protein receptors. Angew Chem Int Ed 42:864–90.
  • Mildvan, A. S. and Cohn, M. (1996). Kinetics and magnetic resonance studies of pyruvate kinase reaction II complexes of enzyme, metal and substrates. J Biol Chem 241:1178–93.
  • Möckl, L., Lamb, D. C., and Bräuchle, C. (2014). Super-resolved Fluorescence Microscopy: Nobel Prize in Chemistry 2014 for Eric Betzig, Stefan Hell, and William E. Moerner. Angewandte Chemie International Edition 53:13972–77.
  • Morris, G. A. (1986). Modern NMR techniques for structure elucidation. Magn Reson Chem 24:371–403.
  • Mueller, S., Galliardt, H., Schneider, J., Barisas, B. G. and Seidel, T. (2013). Quantification of Forster resonance energy transfer by monitoring sensitized emission in living plant cells. Front Plant Sci 4:369–82.
  • Murray, N. J. and Williamson, M. P. (1994). Conformational study of a salivary proline rich protein repeat sequence. Eur J Biochem 219:915–21.
  • Mursu, J., Voutilainen, S., Nurmi, T., Tuomainen, T. P., Kurt, S. and Salonen, J. T. (2008). Flavonoid intake and the risk of ischaemic stroke and CVD mortality in middle-ages Finnish men. J Nutr 100:890–5.
  • Nakahara, K., Kawabata, S., Ono, H., Ogura, K., Tanaka, T., Ooshima, T. and Hamada, S. (1993). Inhibitory effect of oolong tea polyphenols on glycosyltransferases of mutans Streptococci. Appl Environ Microbiol 59:968–73.
  • Neylon, C. (2008). Small angle neutron and X-ray scattering in structural biology: recent examples from the literature. Eur Biophys J Biophys Lett 37:531–41.
  • North, S. H., Lock, E. H., Taitt, C. R. and Walton, S. G. (2010). Crytical aspects of biointerface design and their impact on biosensor development. Anal Bioanal Chem 3:925–33.
  • Oh, H. I., Hoff, J. E., Armstrong, G. S. and Haff, L. A. (1980). Hydrophobic interaction in tannin-protein complexes. J Agric Food Chem 28:394–8.
  • Pal, S., Dey, S. K. and Saha, C. (2014). Inhibition of Catalase by Tea Catechins in Free and Cellular State: A Biophysical Approach. PLoS ONE 9:e102460.
  • Ozdal, T., Capanoglu, E. and Altay, F. (2013). A review on protein–phenolic interactions and associated changes. Food Res Int 51:954–70.
  • Papadopoulou, A., Green, R. J. and Frazier, R. A. (2005). Interaction of flavonoids with bovine serum albumin: a fluorescence quenching study. J Agric Food Chem 53:158–63.
  • Pascal, C., Poncet-Legrand, C., Cabane, B. and Vernhet, A. (2008). Aggregation of a proline-rich protein induced by epigallocatechin gallate and condensed tannins: effect of protein glycosylation. J Agr Food Chem 56:6724–32.
  • Pascal, C, Poncet-Legrand, C., Cabane, B and Vernhet, A. (2008). Aggregation of a proline-rich protein induced by epigallocatechin gallate and condensed tannins: effect of protein glycosylation. J Agri. Food Chem 56:6724–32.
  • Pellecchia, M., Bertini, I., Cowburn, D., Dalvit, C., Giralt, E., Jahnke, W., James, T. L., Homans, S. W., Kessler, H., Luchinat, C., Meyer, B., Oschkinat, H., Peng, J., Schwalbe, H. and Siegal, G. (2008). Perspectives on NMR in drug discovery: a technique comes of age. Nat Rev Drug Discov 7:738–45.
  • Pereira, A, Pfeifer, T. A., Grigliatti, T. A. and Andersen, R. J. (2009). Functional cell-based screening and saturation transfer double-difference NMR have identified haplosamate A as a cannabinoid receptor agonist. ACS Chem Biol 4:139–44.
  • Perozzo, R, Folkers, G. and Scapozza, L. (2004). Thermodynamics of protein-ligand interactions: history, presence, and future aspects. J Recept Sig Transd 24:1–52.
  • Peters, T. (1996). All about albumin. Biochemistry, Genetics and Medical Applications. San Diego: Accademic Press.
  • Petoukhov, M. V. and Svergun, D. I. (2007). Analysis of X-ray and neutron scattering from biomacromolecular solutions. Curr Opin Struc Biol 17:562–71.
  • Petryayeva, E., Algar, W. R., and Medintz, I. L. (2013). Quantum dots in bioanalysis: a review of applications across various platforms for fluorescence spectroscopy and imaging. Appl Spectr 67:215–52.
  • Pianet, I., Andre, Y., Ducasse, M. A., Tarascou, I., Lartigue, J. C., Pinaud, N., Fouquet, E., Dufourc, E. J. and Laguerre, M. (2008). Modeling procyanidin selfassociation processes and understanding their micellar organization: a study by diffusion NMR and molecular mechanics. Langmuir 24:11027–35.
  • Poncet-Legrand, C, Cartalade, D., Putaux, J. L., Cheynier, W. and Vernhet, A. (2003). Flavan-3-ol aggregation in model ethanolic solutions: incidence of polyphenol structure, concentration, ethanol content, and ionic strength. Langmuir 19:10563–72.
  • Porat, Y, Abramowitz, A. and Gazit, E. (2006). Inhibition of amyloid fibril formation by polyphenols: structural similarity and aromatic interactions as a common inhibition mechanism. Chem Biol Drug Des 67:27–37.
  • Potenza, D., Vasile, F., Belvisi, L., Civera, M. and Araldi, E. M. V. (2011). STD and trNOESY NMR study of receptor–ligand interactions in living cancer cells. ChemBioChem 12:695–9.
  • Prigent, S. V. E., Gruppen, H., Visser, A. J. W. G., Van Koningsveld, G. A. H. D. and Alfons, G. J. V. (2003). Effects of non-covalent interactionswith 5-o-caffeoylquinic acid (CGA) on the heat denaturation and solubility of globular proteins. J Agric Food Chem 51:5088–95.
  • Rademacher, C., Guiard, J., Kitov, P. I., Fiege, B., Dalton, K. P., Parra, F., Bundle, D. R. and Peters, T. (2011). Targeting norovirus infection–multivalent entry inhibitor design based on NMR experiments. Chem Eur J 17:7442–53.
  • Rademacher, C., Krishna, N. R., Palcic, M., Parra, F. and Peters, T. (2008). NMR experiments reveal the molecular basis of receptor recognition by a calicivirus. J Am Chem Soc 130:3669–75.
  • Rawel, H. A., Meidtner, K. and Kroll, J. (2005). Binding of selected phenolic compounds to proteins. J Agric Food Chem 53:4228–35.
  • Riu, A., le Maire, A., Grimaldi, M., Audebert, M., Hillenweck, A., Bourguet, W., Balaguer, P. and Zalko, D. (2011). Characterization of novel ligands of ERα, ERβ, and PPARγ: the case of halogenated bisphenol A and their conjugatedmetabolites. Toxicol Sci Off J Soc Toxicol 122:372–82.
  • Rohn, S., Rawel, H. M. and Kroll, J. (2002). Inhibitory effects of plant phenols on the activity of selected enzymes. J Agric Food Chem 50:3566–71.
  • Rudbeck, M. E., Kumar, S., Mroginski, M. A., Lill, S. O. N., Blomberg, M. R. A and Barth, A. (2009). Infrared spectrum of phosphoenolpyruvate: computational and experimental studies. J Phys Chem A 113:2935–42.
  • Sastry, M. C. S. and Rao, M. S. N. (1990). Binding of chlorogenic acid by the isolated polyphenol-free 11s protein of sunflower (Helianthus annuus) seed. J Agric Food Chem 38:2103–10.
  • Schmitt, C., LaMoree, M., Leonards, P., Weiss, J. M., de Deckere, E. (2013). In-vivo effect confirmation of anti-androgenic compounds in sediment contact tests with Potamopyrgus antipodarum. J Environ Sci Health, Part A: Tox Hazard Subst Environ Eng 48:475–80.
  • Signoretto, C., Canepari, P., Stauder, M., Vezzulli, L. and Pruzzo, C. (2012). Functional foods and strategies contrasting bacterial adhesion. Curr Opin Biot 23:160–7.
  • Simon, C., Barathieu, K., Laguerre, M., Schmitter, J. M., Fouquet, E., Pianet, I., and Dufourc, E. J. (2003). Three-dimensional structure and dynamics of wine tannin-saliva protein complexes. A multitechnique approach. Biochemistry 42:10385–95.
  • Skarzynski, T. and Thorpe, J. (2006). Industrial perspective on X-ray data collection and analysis. Acta Crystallogr D 62:102–7.
  • Skrt, M., Benedik, E., Podlipnik, È and Poklar Ulrih, N. (2013). Interactions of different polyphenols with bovine serum albumin using fluorescence quenching and molecular docking. Food Chem 135:2418–24.
  • Smyth, M. S. and Martin, J. H. J. (2002). X-ray crystallography. J Clin Pathol Mol Pa 53:8–14.
  • Soeller, C. and Baddeley, D. (2013). Super-resolution imaging of EC coupling protein distribution in the heart. J Mol Cell Cardiology 58:32–40.
  • Speight, R. E. and Cooper, M. A. (2002). A survey of the 2010 quartz crystal microbalance literature. J Mol Recognit 25:451–73.
  • Svergun, D. I. and Koch, M. H. J. (2003). Small-angle scattering studies of biological macromolecules in solution. Rep Prog Phys 66:1735–82.
  • Svergun, D. I., Koch, M. H. J., Timmins, P. A. and May, R. P. (2013). Small angle X-ray and neutron scattering from solutions of biological macromolecules. Int. Union Crystallograp. Texts Crystallograp. 19:1–369.
  • Tadana, N., Du, C. K., Yumota, F., Morimoto, S., Ohta, M., Xie, M. F., Nagata, K., Zhan, D. Y., Lu, Q. W., Miwa, Y., Takahashi-Yanaga, F., Tanokura, M., Ohtsuki, I. and Sasaguri, T. (2010). Biological action if green tea catechins on cardiac troponin C. Br J Pharmacol 161:1034–43.
  • Turnbull, A. P. and Emsley, P. (2013). Studying protein-ligand interactions using X-ray crystallography. Methods Mol Biol 1008:457–77.
  • Tycko, R. (2011). Solid-state NMR studies of amyloid fibril structure. Annu Rev Phys Chem 62:279–99.
  • Velazquez-Campoy, A. and Freire, E. (2006). Isothermal titration calorimetry to determine association constants for high-affinity ligands. Nat Protoc 1:186–91.
  • Wallace, B. A. (2009). Protein characterization by synchrotron radiation circular dichroism spectroscopy. Quart Rev Biophys 4:317–70.
  • Wartchow, C. A., Podlaski, F., Li, S., Rowan, K., Zhang, X., Mark, D. and Huang, K. S. (2011). Biosensor-based small molecule fragment screening with biolayer interferometry. J Comput Aided Mol Des 25:669–76.
  • Weng, C. J. and Yen, G. C. (2012). Chemopreventive effects of dietary phytochemicals against cancer invasion and metastasis: phenolic acids, monophenol, polyphenol and their derivatives. Canc Treat Rev 38:76–87.
  • Whitmore, L. and Wallace, B. A. (2008). Protein secondary structure analyses from circular dichroism spectroscopy: methods and reference databases. Biopolymers 89:392–400.
  • Wlodawer, A., Minor, W., Dauter, Z. and Jaskolski, M. (2008). Protein crystallography for non-crystallographers, or how to get the best (but not more) from published macromolecular structures. FEBS J 275:1–21.
  • Wright, W. W. and Vanderkooi, J. (1997). Use of IR absorption of the carboxyl group of amino acids and their metabolites to determine pKs, to study proteins and to monitor enzymatic activity. Biospectroscopy 3:457–67.
  • Wu, D. and Bird, M. R. (2010). The interaction of protein and polyphenol species in ready to drink black tea liquor production. J Food Process Eng 33:481–505.
  • Wu, X. L., He, W. Y., Yao, L., Zhang, H. P., Liu, Z. G., Wang, W. P., Ye, Y. and Cao, J. J. (2013). Characterization of binding interactions of (−)-epigallocatechin-3-gallate from green tea and lipase. J Agri Food Chem 61:8829–35.
  • Xiao, J. B. (2013). Polyphenol-plasma protein interactions: its nature, analytical techniques, and influence on bioactivities of polyphenols. Current Drug Metabolism 14:367–8.
  • Xiao, J. B. and Kai, G. Y. (2012). A review of dietary polyphenol-plasma protein interactions: Characterization, influence on the bioactivity, and structure-affinity relationship. Critical Reviews in Food Science and Nutrition 52:85–101.
  • Yoshikawa, M., Shimoda, H, Nishida, N, Takada, M and Matsuda, H. (2002). Salacia reticulata and its polyphenolic constituents with lipase inhibitory and lipolytic activities have mild antiobesity effects in rats. J Nut 132:1819–24.
  • Zanchi, D., Poulain, C., Konarev, P., Tribet, C. and Svergun, D. I. (2008). Colloidal stability of tannins: astringency, wine tasting and beyond. J Phys. Condens Matt 20(494224):1–6.
  • Zanchi, D., Vernhet, A., Poncet-Legrand, C., Cartalade, D., Tribet, C., Schweins, R. and Cabane, B. (2007). Colloidal dispersions of tannins in water-ethanol solutions. Langmuir 23:9949–59.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.