2,412
Views
70
CrossRef citations to date
0
Altmetric
Original Articles

Vitamin A and the epigenome

&

References

  • Amat, R., and Gudas, L. J. (2011). RARgamma is required for correct deposition and removal of Suz12 and H2A.Z in embryonic stem cells. J Cell Physiol. 226:293–298.298.
  • Amit-Romach, E., Uni, Z., Cheled, S., Berkovich, Z., and Reifen, R. (2009). Bacterial population and innate immunity-related genes in rat gastrointestinal tract are altered by vitamin A-deficient diet. J Nutr Biochem. 20:70–77.77.
  • Angrisano, T., Sacchetti, S., Natale, F., Cerrato, A., Pero, R., Keller, S., Peluso, S., Perillo, B., Avvedimento, V. E., Fusco, A., Bruni, C. B., Lembo, F., Santoro, M., Chiariotti, L. (2011). Chromatin and DNA methylation dynamics during retinoic acid-induced RET gene transcriptional activation in neuroblastoma cells. Nucleic Acids Res. 39:1993–2006.2006.
  • Brinkmann, A. O. (1994). Steroid hormone receptors: activators of gene transcription. J Pediatr Endocrinol. 7:275–282.282.
  • Budhu, A. S., and Noy, N. (2002). Direct channeling of retinoic acid between cellular retinoic acid-binding protein II and retinoic acid receptor sensitizes mammary carcinoma cells to retinoic acid-induced growth arrest. Mol Cell Biol. 22:2632–2641.2641.
  • Cerchia, L., D'Alessio, A., Amabile, G., Duconge, F., Pestourie, C., Tavitian, B., Libri, D., and de Franciscis, V. (2006). An autocrine loop involving ret and glial cell-derived neurotrophic factor mediates retinoic acid-induced neuroblastoma cell differentiation. Mol Cancer Res. 4:481–488.488.
  • Cheong, H. S., Lee, H. C., Park, B. L., Kim, H., Jang, M. J., Han, Y. M., Kim, S. Y., Kim, Y. S., and Shin, H. D. (2010). Epigenetic modification of retinoic acid-treated human embryonic stem cells. BMB Rep. 43:830–835.835.
  • Connolly, R. M., Nguyen, N. K., and Sukumar, S. (2013). Molecular pathways: current role and future directions of the retinoic acid pathway in cancer prevention and treatment. Clin Cancer Res. 19:1651–1659.1659.
  • Cucu, N. V. (2011). DNA Methylation. In: Nutrition in Epigenetics, Niculescu, M. D., and Haggarty, P., Eds., Wiley-Blackwell, Oxford.
  • De Luca, L. M. (1991). Retinoids and their receptors in differentiation, embryogenesis, and neoplasia. FASEB J. 5:2924–2933.2933.
  • Di Corce, L., Raker, V. A., Corsaro, M., Fazi, F., Fanelli, M., Faretta, M., Fuks, F., La Coco, F., Kouzarides, T., Nervi, C., Minucci, S., and Pellici, B. (2002). Methyltransferase recruitment and DNA hypermethylation of target promoters by an oncogenic transcription factor. Science. 295:1079–1082.1082.
  • Dilworth, F. J., and Chambon, P. (2001). Nuclear receptors coordinate the activities of chromatin remodeling complexes and coactivators to facilitate initiation of transcription. Oncogene. 20:3047–3054.3054.
  • Duester, G. (2008). Retinoic acid synthesis and signaling during early organogenesis. Cell. 134:921–931.931.
  • Fazi, F., Travaglini, L., Carotti, D., Palitti, F., Diverio, D., Alcalay, M., McNamara, S., Miller, W.H., Jr., Lo Coco, F., Pelicci, P.G., and Nervi, C. (2005). Retinoic acid targets DNA-methyltransferases and histone deacetylases during APL blast differentiation in vitro and in vivo. Oncogene. 24:1820–1830.1830.
  • Fernandez-Morera, J. L., Calvanese, V., Rodriguez-Rodero, S., Menendez-Torre, E., and Fraga, M. F. (2010). Epigenetic regulation of the immune system in health and disease. Tissue Antigens. 76:431–439.439.
  • Gillespie, R. F., and Gudas, L. J. (2007). Retinoic acid receptor isotype specificity in F9 teratocarcinoma stem cells results from the differential recruitment of coregulators to retinoic response elements. J Biol Chem. 282:33421–33434.33434.
  • Gluckman, P. D., Hanson, M. A., and Low, F. M. (2011). The role of developmental plasticity and epigenetics in human health. Birth Defects Res C Embryo Today. 93:12–18.18.
  • Gravina, S., and Vijg, J. (2010). Epigenetic factors in aging and longevity. Pflugers Arch. 459:247–258.258.
  • Gray, T., Koo, J. S., and Nettesheim, P. (2001). Regulation of mucous differentiation and mucin gene expression in the tracheobronchial epithelium. Toxicology. 160:35–46.46.
  • Gudas, L. J., and Wagner, J. A. (2011). Retinoids regulate stem cell differentiation. J Cell Physiol. 226:322–330.330.
  • Hake, S. B. (2011). Chromatin modifications. In: Nutrition in Epigenetics, Niculescu M. D., and Haggarty, P., Eds., Wiley-Blackwell, Oxford.
  • Hong, W. K., Benner, S. E., and Lippman, S. M. (1994). Evolution of aerodigestive tract 13-cis-retinoid acid chemoprevention: the M.D. Anderson experience. Leukemia. 8 Suppl 3: S33–37.37.
  • Iwata, M., Eshima, Y., and Kagechika, H. (2003). Retinoic acids exert direct effects on T cells to suppress Th1 development and enhance Th2 development via retinoic acid receptors. Int Immunol 15:1017–1025.1025.
  • Iwata, M., Hirakiyama, A., Eshima, Y., Kagechika, H., Kato, C., and Song, S. Y. (2004). Retinoic acid imprints gut-homing specificity on T cells. Immunity. 21:527–538.538.
  • Kang, S. G., Lim, H. W., Andrisani, O. M., Broxmeyer, H. E., and Kim, C. H. (2007). Vitamin A metabolites induce gut-homing FoxP3 +regulatory T cells. J Immunol. 179:3724–3733.3733.
  • Kashyap, V., and Gudas, L. J. (2010). Epigenetic regulatory mechanisms distinguish retinoic acid-mediated transcriptional responses in stem cells and fibroblasts. J Biol Chem. 285:14534–14548.14548.
  • Kimura, A., and Kishimoto, T. (2010). IL-6: regulator of Treg/Th17 balance. Eur J Immunol. 40:1830–1835.1835.
  • Lal, G., and Bromberg, J. S. (2009). Epigenetic mechanisms of regulation of Foxp3 expression. Blood. 114:3727–3735.3735.
  • Lee, E. R., Murdoch, F. E., and Fritsch, M.K. (2007). High histone acetylation and decreased polycomb repressive complex 2 member levels regulate gene specific transcriptional changes during early embryonic stem cell differentiation induced by retinoic acid. Stem Cells. 25:2191–2199.2199.
  • Lefebvre, B., Ozato, K., and Lefebvre, P. (2002). Phosphorylation of histone H3 is functionally linked to retinoic acid receptor beta promoter activation. EMBO Rep. 3:335–340.340.
  • Lu, L., Ma, J., Li, Z., Lan, Q., Chen, M., Liu, Y., Xia, Z., Wang, J., Han, Y., Shi, W., Quesniaux, V., Ryffel, B., Brand, D., Li, B., Liu, Z., and Zheng, S. G. (2011). All-trans retinoic acid promotes TGF-beta-induced Tregs via histone modification but not DNA demethylation on Foxp3 gene locus. PLoS One. 6:e24590.24590.
  • Maden, M. (2007). Retinoic acid in the development, regeneration and maintenance of the nervous system. Nat Rev Neurosci. 8:755–765.765.
  • Mark, M., Ghyselinck, N. B., and Chambon, P. (2006). Function of retinoid nuclear receptors: lessons from genetic and pharmacological dissections of the retinoic acid signaling pathway during mouse embryogenesis. Annu Rev Pharmacol Toxicol. 46:451–480.480.
  • McKenna, N. J., and O'Malley, B. W. (2002). Minireview: nuclear receptor coactivators—an update. Endocrinology. 143:2461–2465.2465.
  • Miyamoto, K., and Ushijima, T. (2005). Diagnostic and therapeutic applications of epigenetics. Jpn J Clin Oncol. 35:293–301.301.
  • Mohr, F., Dohner, K., Buske, C., and Rawat, V. P. (2011). TET genes: new players in DNA demethylation and important determinants for stemness. Exp Hematol. 39:272–281.281.
  • Mongan, N. P., and Gudas, L. J. (2007). Diverse actions of retinoid receptors in cancer prevention and treatment. Differentiation. 75:853–870.870.
  • Mora, J. R., Bono, M. R., Manjunath, N., Weninger, W., Cavanagh, L. L., Rosemblatt, M., and Von Andrian, U. H. (2003). Selective imprinting of gut-homing T cells by Peyer's patch dendritic cells. Nature. 424:88–93.93.
  • Mora, J. R., Iwata, M., Eksteen, B., Song, S. Y., Junt, T., Senman, B., Otipoby, K. L., Yokota, A., Takeuchi, H., Ricciardi-Castagnoli, P., Rajewsky, K., Adams, D. H., and von Andrian, U. H. (2006). Generation of gut-homing IgA-secreting B cells by intestinal dendritic cells. Science. 314:1157–1160.1160.
  • Nagy, L., and Schwabe, J. W. (2004). Mechanism of the nuclear receptor molecular switch. Trends Biochem Sci. 29:317–324.324.
  • Niculescu, M. D. (2012). Nutritional epigenetics. ILAR J. 53:270–278.278.
  • Niculescu, M. D., and Lupu, D. S. (2011). Nutritional influence on epigenetics and effects on longevity. Curr Opin Clin Nutr Metab Care. 14:35–40.40.
  • Oppenheimer, O., Cheung, N. K., and Gerald, W. L. (2007). The RET oncogene is a critical component of transcriptional programs associated with retinoic acid-induced differentiation in neuroblastoma. Mol Cancer Ther. 6:1300–1309.1309.
  • Pastorino, U., Infante, M., Maioli, M., Chiesa, G., Buyse, M., Firket, P., Rosmentz, N., Clerici, M., Soresi, E., and Valente, M. (1993). Adjuvant treatment of stage I lung cancer with high-dose vitamin A. J Clin Oncol. 11:1216–1222.1222.
  • Racke, M. K., Burnett, D., Pak, S. H., Albert, P. S., Cannella, B., Raine, C. S., McFarlin, D. E., and Scott, D. E. (1995). Retinoid treatment of experimental allergic encephalomyelitis. IL-4 production correlates with improved disease course. J Immunol. 154:450–458.458.
  • Rahim, R., and Strobl, J. S. (2009). Hydroxychloroquine, chloroquine, and all-trans retinoic acid regulate growth, survival, and histone acetylation in breast cancer cells. Anticancer Drugs. 20:736–745.745.
  • Reifen, R., Zaiger, G., and Uni, Z. (1998). Effect of vitamin A on small intestinal brush border enzymes in a rat. Int J Vitam Nutr Res. 68:281–286.286.
  • Reynolds, C. P., Matthay, K. K., Villablanca, J. G., and Maurer, B. J. (2003). Retinoid therapy of high-risk neuroblastoma. Cancer Lett. 197:185–192.192.
  • Ross, A. C. (2012). Vitamin A and retinoic acid in T cell-related immunity. Am J Clin Nutr. 96:1166S–1172S.
  • Ross, A. C., and Ternus, M. E. (1993). Vitamin A as a hormone: recent advances in understanding the actions of retinol, retinoic acid, and beta carotene. J Am Diet Assoc. 93:1285–1290; quiz 1291–1282.1282.
  • Sakaguchi, S., Miyara, M., Costantino, C. M., and Hafler, D. A. (2010). FOXP3+ regulatory T cells in the human immune system. Nat Rev Immunol. 10:490–500.500.
  • Sato, F., Tsuchiya, S., Meltzer, S. J., and Shimizu, K. (2011). MicroRNAs and epigenetics. FEBS J. 278:1598–1609.1609.
  • Skinner, M. K. (2011). Role of epigenetics in developmental biology and transgenerational inheritance. Birth Defects Res C Embryo Today. 93:51–55.55.
  • Stefanska, B., Rudnicka, K., Bednarek, A., and Fabianowska-Majewska, K. (2010). Hypomethylation and induction of retinoic acid receptor beta 2 by concurrent action of adenosine analogues and natural compounds in breast cancer cells. Eur J Pharmacol. 638:47–53.53.
  • Stefanska, B., Salame, P., Bednarek, A., and Fabianowska-Majewska, K. (2012). Comparative effects of retinoic acid, vitamin D and resveratrol alone and in combination with adenosine analogues on methylation and expression of phosphatase and tensin homologue tumour suppressor gene in breast cancer cells. Br J Nutr. 107:781–790.790.
  • Stephensen, C. B. (2001). Vitamin A, infection, and immune function. Annu Rev Nutr. 21:167–192.192.
  • Stephensen, C. B., Jiang, X., and Freytag, T. (2004). Vitamin A deficiency increases the in vivo development of IL-10-positive Th2 cells and decreases development of Th1 cells in mice. J Nutr. 134:2660–2666.2666.
  • Strahl, B. D., and Allis, C. D. (2000). The language of covalent histone modifications. Nature. 403:41–45.45.
  • Szarc vel Szic, K., Ndlovu, M. N., Haegeman, G., and Vanden Berghe, W. (2010). Nature or nurture: let food be your epigenetic medicine in chronic inflammatory disorders. Biochem Pharmacol. 80:1816–1832.1832.
  • Szyf, M. (2005). DNA methylation and demethylation as targets for anticancer therapy. Biochemistry (Mosc). 70:533–549.549.
  • Takahashi, M., Buma, Y., and Taniguchi, M. (1991). Identification of the ret proto-oncogene products in neuroblastoma and leukemia cells. Oncogene. 6:297–301.301.
  • Teodoridis, J. M., Strathdee, G., Plumb, J. A., and Brown, R. (2004). CpG-island methylation and epigenetic control of resistance to chemotherapy. Biochem Soc Trans. 32:916–917.917.
  • Theodosiou, M., Laudet, V., and Schubert, M. (2010). From carrot to clinic: an overview of the retinoic acid signaling pathway. Cell Mol Life Sci. 67:1423–1445.1445.
  • Toyota, M., Sasaki, Y., Satoh, A., Ogi, K., Kikuchi, T., Suzuki, H., Mita, H., Tanaka, N., Itoh, F., Issa, J. P., Jair, K. W., Schuebel K. E., Imai, K., Tokino, T. (2003). Epigenetic inactivation of CHFR in human tumors. Proc Natl Acad Sci U S A. 100:7818–7823.7823.
  • Uni, Z., Zaiger, G., and Reifen, R. (1998). Vitamin A deficiency induces morphometric changes and decreased functionality in chicken small intestine. Br J Nutr. 80:401–407.407.
  • Urvalek, A. M., and Gudas, L. J. (2014). Retinoic acid and histone deacetylases regulate epigenetic changes in embryonic stem cells. J Biol Chem. 289:19519–19530.19530.
  • Weaver, C. T., and Hatton, R. D. (2009). Interplay between the TH17 and TReg cell lineages: a (co-)evolutionary perspective. Nat Rev Immunol. 9:883–889.889.
  • Widschwendter, M., and Jones, P. A. (2002). DNA methylation and breast carcinogenesis. Oncogene. 21:5462–5482.5482.
  • Xiao, S., Jin, H., Korn, T., Liu, S. M., Oukka, M., Lim, B., and Kuchroo, V. K. (2008). Retinoic acid increases Foxp3 +regulatory T cells and inhibits development of Th17 cells by enhancing TGF-beta-drivsen Smad3 signaling and inhibiting IL-6 and IL-23 receptor expression. J Immunol. 181:2277–2284.2284.
  • Yu, X., Minter-Dykhouse, K., Malureanu, L., Zhao, W. M., Zhang, D., Merkle, C. J., Ward, I. M., Saya, H., Fang, G., van Deursen, J., and Chen, J. (2005). Chfr is required for tumor suppression and Aurora A regulation. Nat Genet. 37:401–406.406.
  • Zaiger, G., Nur, T., Barshack, I., Berkovich, Z., Goldberg, I., and Reifen, R. (2004). Vitamin A exerts its activity at the transcriptional level in the small intestine. Eur J Nutr. 43:259–266.266.
  • Zuchegna, C., Aceto, F., Bertoni, A., Romano, A., Perillo, B., Laccetti, P., Gottesman, M. E., Avvedimento, E. V., and Porcellini, A. (2014). Mechanism of retinoic acid-induced transcription: histone code, DNA oxidation and formation of chromatin loops. Nucleic Acids Res. 42:11040–11055.11055.
  • Zunino, S. J., Storms, D. H., and Stephensen, C. B. (2007). Diets rich in polyphenols and vitamin A inhibit the development of type I autoimmune diabetes in nonobese diabetic mice. J Nutr. 137:1216–1221.1221.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.