3,957
Views
243
CrossRef citations to date
0
Altmetric
Articles

Emulsifying properties of soy proteins: A critical review with emphasis on the role of conformational flexibility

References

  • Achouri, A., Boye, J. I., Yaylayan, V. A. and Yeboah, F. K. (2005). Functional properties of glycated soy 11S glycinin. J. Food Sci. 70:C269–C275.
  • Achouri, A. and Zhang, W. (2001). Effect of succinylation on the physicochemical properties of soy protein hydrolysate. Food Res. Int. 34:507–514.
  • Achouri, A., Zhang, W. and Shiying, X. (1998). Enzymatic hydrolysis of soy protein isolate and effect of succinylation on the functional properties of resulting protein hydrolysates. Food Res. Int. 31:617–623.
  • Amine, C., Dreher, J., Helgason, T. and Tadros, T. (2014). Investigation of emulsifying properties and emulsion stability of plant and milk proteins using interfacial tension and interfacial elasticity. Food Hydrocoll. 39:180–186.
  • Aoki, H., Taneyama, O. and Inami, M. (1980). Emulsifying properties of soy protein: Characteristics of 7S and 11S proteins. J. Food Sci. 45:534–538, 546.
  • Arditty, S., Schmitt, V., Giermanska-Kahn, J. and Leal-Calderon, F. (2004). Materials based on solid-stabilized emulsions. J. Colloid Interface Sci. 275:659–664.
  • Arditty, S., Whitby, C. P., Binks, B. P., Schmitt, V. and Leal-Calderon, F. (2003). Some general features of limited coalescence in solid-stabilized emulsions. Eur. Phys. J. E. 11:273–281.
  • Augustin, M. A. and Hemar, Y. (2009). Nano- and micro-structured assemblies for encapsulation of food ingredients. Chem. Soc. Rev. 38:902–912.
  • Banerjee, T. and Kishore, N. (2004). A differential scanning calorimetric study on the irreversible thermal unfolding of concanavalin A. Thermochim. Acta 411:195–201.
  • Baniel, A., Caer, D., Colas, B. and Gueguen, J. (1992). Functional properties of glycosylated derivatives of the 11S storage protein from pea (Pisum sativum L.). J. Agric. Food Chem. 40:200–205.
  • Barman, B. G., Hansen, J. R. and Mossey, A. R. (1977). Modification of the physical properties of soy protein isolate by acetylation. J. Agric. Food Chem. 25:638–641.
  • Bos, M. A. and van Vliet, T. (2001). Interfacial rheological properties of adsorbed protein layers and surfactants: A review. Adv. Colloid Interface Sci. 91:437–471.
  • Britten, M. and Giroux, H. J. (1991). Coalescence index of protein-stabilized emulsions. J. Food Sci. 56:792–795.
  • Cai, T. and Chang, K.-C. (1999). Processing effect on soybean storage proteins and their relationship with Tofu quality. J. Agric. Food Chem. 47:720–727.
  • Cameron, D. R., Weber, M. E., Idziak, E. S., Neufeld, R. J. and Cooper, D. G. (1991). Determination of interfacial areas in emulsions using turbidimetric and droplet size data: Correction of the formula for emulsifying activity index. J. Agric. Food Chem. 39:655–659.
  • Castelain, C. and Genot, C. (1994). Conformational changes of bovine serum albumin upon its adsorption in dodecane-in-water emulsions as revealed by front-face steady-state fluorescence. Biochim. Biophys. Acta 1199:59–64.
  • Chevalier, Y. and Bolzinger, M.-A. (2013). Emulsions stabilized with solid nanoparticles: Pickering emulsions. Colloids Surf. A: Physicochem. Eng. Aspects 439:23–34.
  • Choi, S. M. and Ma, C.-Y. (2005). Conformational study of globulin from common buckwheat (Fagopyrum esculentum Moench) by Fourier transform infrared spectroscopy and differential scanning calorimetry. J. Agric. Food Chem. 53:8046–8053.
  • Chove, B. E., Grandison, A. S. and Lewis, M. J. (2001). Emulsifying properties of soy protein isolate fractions obtained by isoelectric precipitation. J. Sci. Food Agric. 81:759–763.
  • Clara Sze, K. W., Kshirsagar, H. H., Venkatachalam, M. and Sathe, S. (2007). A circular dichroism and fluorescence spectrometric assessment of effects of selected chemical denaturants on soybean (Glycine max L.) storage proteins glycinin (11S) and β-conglycinin (7S). J. Agric. Food Chem. 55:8745–8753.
  • Cui, Z., Chen, Y., Kong, X., Zhang, C. and Hua, Y. (2014). Emulsifying properties and oil/water (O/W) interface adsorption behavior of heated soy proteins: Effects of heating concentration, homogenizer rotating speed, and salt addition level. J. Agric. Food Chem. 62:1634–1642.
  • Dalgleish, D. G. (1997a). Adsorption of protein and the stability of emulsions. Trends Food Sci. Technol. 8:1–6.
  • Dalgleish, D. G. (1997b). Food emulsions stabilized by proteins. Curr. Opin. Colloid Interface Sci. 2:573–577.
  • Damodaran, S. (1988). Refolding of thermally unfolded soy proteins during the cooling regime of the gelation process: Effect on gelation. J. Agric. Food Chem. 36:262–269.
  • Damodaran, S. (1996). Functional properties. In: Food Proteins: Properties and Characterization, pp. 167–260. Nakai, S. and Modler, H.W. , Eds., VCH, New York.
  • Damodaran, S. (1997). Protein-stabilized foams and emulsions. In: Food Proteins and Their Applications, pp. 57–110. Damodaran, S. and Paraf, A., Eds., Marcel Dekker, New York.
  • Damodaran, S. (2005). Protein stabilization of emulsions and foams. J. Food Sci. 70:R54–R66.
  • Damodaran, S. and Song, K. B. (1988). Kinetics of adsorption of protein at interface: Role of protein conformation in diffusional adsorption. Biochim. Biophys. Acta 954:253–264.
  • Day, L., Xu, M., Lundin, L. and Wooster, T. J. (2009). Interfacial properties of deamidated wheat protein in relation to its ability to stabilize oil-in-water emulsions. Food Hydrocoll. 23:2158–2167.
  • de Folter, J. W. J., van Ruijven, M. W. M. and Velikov, K. P. (2012). Oil-in-water Pickering emulsions stabilized by colloidal particles from water-insoluble protein zein. Soft Matter. 8:6807–6815.
  • Destribats, M., Lapeyre, V., Wolfs, M., Sellier, E., Leal-Calderon, F., Ravaine, V. and Schmitt, V. (2011). Soft microgels as Pickering emulsion stabilisers: Role of particle deformability. Soft Matter. 7:7689–7698.
  • Destribats, M., Ravaine, S., Heroguez, V., Leal-Calderon, F. and Schmitt, V. (2010). Outstanding stability of poorly-protected Pickering emulsions. Prog. Colloid Polym. Sci. 137:13–18.
  • Destribats, M., Rouvet, M., Gehin-Delval, C., Schmitt, C. and Binks, B. P. (2014). Emulsions stabilised by whey protein microgel particles: Towards food-grade Pickering emulsions. Soft Matter. 10:6941–6954.
  • Destribats, M., Wolfs, M., Pinaud, F., Lapeyre, V., Sellier, E., Schmitt, V. and Ravaine, V. (2013). Pickering emulsions stabilized by soft microgels: Influence of the emulsification process on particle interfacial organization and emulsion properties. Langmuir. 29:12367–12374.
  • Dickinson, E. (1994). Protein-stabilized emulsions. J. Food Eng. 22:59–74.
  • Dickinson, E. (1999). Adsorbed protein layers at fluid interfaces: Interactions, structure and surface rheology. Colloids Surf. B. 15:161–176.
  • Dickinson, E. (2001). Milk protein interfacial layers and the relationship to emulsion stability and rheology. Colloids Surf. B. 20:197–210.
  • Dickinson, E. (2010a). Flocculation of protein-stabilized oil-in-water emulsions. Colloids Surf. B. 81:130–140.
  • Dickinson, E. (2010b). Food emulsions and foams: Stabilization by particles. Curr. Opin. Colloid Interface Sci. 15:40–49.
  • Dickinson, E. (2012). Use of nanoparticles and microparticles in the formation and stabilization of food emulsions. Trend. Food Sci. Technol. 24:4–12.
  • Dickinson, E. (2013). Stabilising emulsion-based colloidal structures with mixed food ingredients. J. Sci. Food Agric. 93:710–721.
  • Dickinson, E. and Matsumura, Y. (1994). Proteins at liquid interfaces: Role of the molten globule state. Colloids Surf. B. 3:1–17.
  • Ducel, V., Richard, J., Popineau, Y. and Boury, F. (2004). Adsorption kinetics and rheological interfacial properties of plant proteins at the oil-water interface. Biomacromolecules. 5:2088–2093.
  • Elizalde, B. E., Bartholomai, G. B. and Pilosof, A. M. R. (1996). The effect of pH on the relationship between hydrophilic/lipophilic characteristics and emulsification properties of soy proteins. LWT-Food Sci. Technol. 29:334–339.
  • Ellepola, S. W., Choi, S. M. and Ma, C.-Y. (2005). Conformational study of globulin from rice (Oryza sativa) seeds by fourier-transform infrared spectroscopy. Int. J. Biol. Macromol. 37:L12–L20.
  • Fan, J., Zhang, Y., Tan, S., Li, F., Zhou, M., Masayoshi, S., Eizo, T. and Li, L. (2006). Improving functional properties of soy protein hydrolysate by conjugation with curdlan. J. Food Sci. 71:C285–C291.
  • Fayad, S. J., Zanetti-Ramos, B. G., Barreto, P. L. M., Soldi, V. and Minatti, E. (2011). Morphology of soy protein isolate at oil/water and oil/air interfaces. J. Braz. Chem. Soc. 24:1012–1017.
  • Floury, J., Desrumaux, A. and Legand, J. (2002). Effect of ultra-high-pressure homogenization on structure and on rheological properties of soy protein-stabilized emulsions. J. Food Sci. 67:3388–3395.
  • Franzen, K. L. and Kinsella, J. E. (1976). Functional properties of succinylated and acetylated soy protein. J. Agric. Food Chem. 24:788–795.
  • Frelichowska, J., Bolzinger, M.-A. and Chevalier, Y. (2010). Effects of solid particle on properties of o/w Pickering emulsions. J. Colloid Interface Sci. 351:348–356.
  • Frelichowska, J., Bolzinger, M.-A., Pelletier, J., Valour, J.-P. and Chevalier, Y. (2009). Topical delivery of lipophilic drugs from o/w Pickering emulsions. Int. J. Pharm. 371:56–63.
  • Friedman, M. and Brandon, D. L. (2001). Nutritional and health benefits of soy proteins. J. Agric. Food Chem. 49:1069–1086.
  • Garrec, D. A., Frasch-Melnik, S., Henry, J. V. L., Spyropoulos, F. and Norton, I. T. (2012). Designing colloidal structures for micro and macro nutrient content and release in foods. Faraday Discuss. 158:37–49.
  • Gorinstein, S., Zemser, M. and Paredes-López, O. (1996). Structural stability of globulins. J. Agric. Food Chem. 44:100–105.
  • Gould, J., Vieira, J. and Wolf, B. (2013). Cocoa particles for food emulsion stabilsation. Food Funct. 4:1369–1373.
  • Gu, X., Campbell, L. J. and Euston, S. R. (2009). Effects of different oils on the properties of soy protein isolate emulsions and gels. Food Res. Int. 42:925–932.
  • Herrero, A. M., Carmona, P., Pintado, T., Jiménez-Colmenero, F. and Ruíz-Capillas, C. (2011). Infrared spectroscopic analysis of structural features and interactions in olive oil-in-water emulsions stabilized with soy proteins. Food Res. Int. 44:360–366.
  • Jiang, J., Chen, J. and Xiong, Y. L. (2009). Structural and emulsifying properties of soy protein isolate subjected to acid and alkaline pH-shifting processes. J. Agric. Food Chem. 57:7576–7583.
  • Jong, L. (2013). Characterization of soy protein nanoparticles prepared by high shear microfluidization. J. Disper. Sci. Technol. 34:469–475.
  • Jung, S., Murphy, P. A. and Johnson, L. A. (2005). Physicochemical and functional properties of soy protein substrates modified by low levels of protease hydrolysis. J. Food Sci. 70:C180–C187.
  • Kalashnikova, I., Bizot, H., Cathala, B. and Capron, I. (2011). New Pickering emulsions stabilized by bacterial cellulose nanocrystals. Langmuir. 27:7471–7479.
  • Kargar, M., Spyropoulos, F. and Norton, I. T. (2011). Microstructural design to reduce lipid oxidation in oil-in-water emulsions. Procedia Food Sci. 1:104–108.
  • Kato, A., Komatsu, K., Fujimoto, K. and Kobayashi, K. (1985). Relationship between surface functional properties and flexibility of proteins detected by the protease susceptibility. J. Agric. Food Chem. 33:931–934.
  • Kato, A. and Nakai, S. (1980). Hydrophobicity determined by a fluorescence probe method and its correlation with surface properties of proteins. Biochim. Biophys. Acta. 624:13–20.
  • Keerati-u-Rai, M. and Corredig, M. (2009a). Effect of dynamic high pressure homogenization on the aggregation state of soy protein. J. Agric. Food Chem. 57:3556–3562.
  • Keerati-u-rai, M. and Corredig, M. (2009b). Heat-induced change in oil-in-water emulsion stabilized with soy protein isolate. Food Hydrocoll. 23:2141–2148.
  • Keerati-U-Rai, M. and Corredig, M. (2010). Heat-induced changes occurring in oil/water emulsions stabilized by soy glycinin and β-conglycinin. J. Agric. Food Chem. 58:9171–9180.
  • Keerati-u-rai, M., Miriani, M., Iametti, S., Bonomi, F. and Corredig, M. (2012). Structural changes of soy proteins at the oil-water interface studies by fluorescence spectroscopy. Colloids Surf. B. 93:41–48.
  • Keerati-u-rai, M., Wang, Z. and Corredig, M. (2011). Adsorption of soy protein isolate in oil-in-water emulsions: Difference between native and spray dried isolate. J. Am. Oil Chem. Soc. 88:1593–1602.
  • Kilara, A. and Harwalkar, V. R. (1996). Denaturation. In: Food Proteins: Properties and Characterization, pp. 99–120. Nakai, S. and Modler, H.W. , Eds., VCH, New York.
  • Kim, D. A., Cornec, M. and Narsimhan, G. (2005). Effect of thermal treatment on interfacial properties of beta-lactoglobulin. J. Colloid Interface Sci. 285:100–109.
  • Kimura, A., Fukuda, T., Zhang, M., Motoyama, S., Maruyama, N. and Utsumi, S. (2008). Comparison of physicochemical properties of 7S and 11S globulins from pea, Fava bean, cowpea, and French bean with those of soybean – French bean 7S globulin exhibits excellent properties. J. Agric. Food Chem. 56:10273–10279.
  • Kinsella, J. E. (1979). Functional properties of soy proteins. J. Am. Oil Chem. Soc. 56:242–258.
  • Knopfe, C., Schwenke, K. D., Mothes, R., Mikneeva, L. M., Grinberg, V. Y., Görnitz, E. and Dautzenberg, H. (1998). Acetylation and succinylation of faba bean legumin: Modification of hydrophobicity and conformation. Nahrung. 42:194–196.
  • Lakemond, C. M., de Jongh, H. H. J., Hessing, M., Gruppen, H. and Voragen, A. G. (2000). Soy glycinin: Influence of pH and ionic strength on solubility and molecular structure at ambient temperature. J. Agric. Food Chem. 48:1985–1990.
  • Lam, R. S. H. and Nickerson, M. T. (2013). Food proteins: A review on their emulsifying properties using a structure-function approach. Food Chem. 141:975–984.
  • Lee, K. H., Ryu, H. S. and Rhee, K. C. (2003). Protein solubility characteristics of commercial soy protein products. J. Am. Oil Chem. Soc. 80:85–90.
  • Li, F., Kong, X., Zhang, C. and Hua, Y. (2011). Effect of heat treatment on the properties of soy protein-stabilised emulsions. Int. J. Food Sci. Technol. 46:1554–1560.
  • Liang, H. N. and Tang, C. H. (2013). Emulsifying and interfacial properties of vicilins: Role of conformational flexibility at quaternary and/or tertiary levels. J. Agric. Food Chem. 61:11140–11150.
  • Liang, H. N. and Tang, C. H. (2014). Pea protein exhibits a novel Pickering stabilization for oil-in-water emulsions at pH 3.0. LWT-Food Sci. Technol. 58:463–469.
  • Li-Chan, E., Nakai, S. and Wood, D. F. (1984). Hydrophobicity and solubility of meat proteins and their relationship to emulsifying properties. J. Food Sci. 49:345–350.
  • Liu, F. and Tang, C. H. (2011). Cold, gel-like whey protein emulsions by microfluidisation emulsification: Rheological properties and microstructures. Food Chem. 127:1641–1647.
  • Liu, F. and Tang, C. H. (2013). Soy protein nanoparticle aggregates as Pickering stabilizers for oil-in-water emulsions. J. Agric. Food Chem. 61:8888–8898.
  • Liu, F. and Tang, C. H. (2014). Emulsifying properties of soy protein nanoparticles: Influence of the protein concentration and/or emulsification process. J. Agric. Food Chem. 62:2644–2654.
  • Liu, F. and Tang, C. H. (2016a). Soy glycinin nanoparticles as food-grade Pickering stabilizers: Part. I. Structural characteristics, emulsifying properties and adsorption/arrangement at interface, Food Hydrocoll. 60:606–619.
  • Liu, F. and Tang, C. H. (2016b). Soy glycinin nanoparticles as food-grade Pickering stabilizers: Part. II. Influence of electrostatic screening on the emulsifying and interfacial adsorption at interface. Submitted for publication. Food Hydrocoll. 60:620–630.
  • Liu, F. and Tang, C. H. (2016c). Soy glycinin as food-grade Pickering stabilizers: Part. III. Fabrication of gel-like emulsions and their potential as sustained-release delivery systems for β-carotene. Food Hydrocoll. 56:434–444.
  • Liu, J., Ru, Q. and Ding, Y. (2012). Glycation a promising method for food protein modification: Physicochemical properties and structure, a review. Food Res. Int. 49:170–183.
  • Liu, M., Lee, D.-S. and Damodaran, S. (1999). Emulsifying properties of acidic subunits of soy 11S globulin. J. Agric. Food Chem. 47:4970–4975.
  • Lucassen-Reynders, E. H., Benjamins, J. and Fainerman, V. B. (2010). Dilational rheology of protein films adsorbed at fluid interfaces. Curr. Opin. Colloid Interface Sci. 15:264–270.
  • Lucassen-Reynders, E. H., Lucassen, J., Garrett, P. R., Giles, D. and Hollway, F. (1975). Dynamic surface measurements as a tool to obtain equation-of-state for soluble monolayers. Adv. Chem. Ser. 144:272–285.
  • Luo, L. J., Liu, F. and Tang, C. H. (2013). The role of glycinin in the formation of gel-like soy protein-stabilized emulsions. Food Hydrocoll. 32:97–105.
  • Luo, Z., Murray, B. S., Ross, A.-L., Povey, M. J. W., Morgan, M. R. A. and Day, A. J. (2012). Effects of pH on the ability of flavonoids to act as Pickering emulsion stabilizers. Colloids Surf. B. 92:84–90.
  • Luo, Z., Murray, B. S., Yusoff, A., Morgan, M. R. A., Povey, M. J. W. and Day, A. J. (2011). Particle-stabilizing effects of flavonoids at the oil-water interface. J. Agric. Food Chem. 59:2636–2645.
  • Manoi, K. and Rizvi, S. S. H. (2009). Emulsification mechanisms and characterizations of cold, gel-like emulsions produced from texturized whey protein concentrate. Food Hydrocoll. 23:1837–1847.
  • Marcone, M. F. (1999). Biochemical and biophysical properties of plant storage proteins: A current understanding with emphasis on 11S seed globulins. Food Res. Int. 32:79–92.
  • Marcone, M. F., Neniac, D. R., Harauz, G. and Yada, R. Y. (1994). Quaternary structure and the model of oligomeric seed globulin from Amaranthus hypochondriacus K343. J. Agric. Food Chem. 42:2675–2678.
  • Martin, A. H., Bos, M. A. and van Vliet, T. (2002). Interfacial rheological properties and conformational aspects of soy glycinin at the air/water interface. Food Hydrocoll. 16:63–71.
  • Maruyama, N., Adachi, M.,Takahashi, K., Yagasaki, K., Kohno, M., Takenaka, Y., Okuda, E., Nakagawa, S., Mikami, B. and Utsumi, S. (2001). Crystal structures of recombinant and native soybean β-conglycinin β homotrimers. Eur. J. Biochem. 268:3595–3604.
  • Maruyama, N., Katsube, T., Wada, Y., Oh, M. H., Barba de la Rosa, A. P., Okuda, E., Nakagawa, S. and Utsumi, S. (1998). The roles of the N-linked glycans and extensive regions of soybean β-conglycinin in folding, assembly and structural features. Eur. J. Biochem. 258:854–862.
  • Maruyama, N., Prak, K., Motoyama, S., Choi, S.-K., Yagasaki, K., Ishimoto, M. and Utsumi, S. (2004). Structure-physicochemical function relationships of soybean glycinin at subunit levels assessed by using mutant lines. J. Agric. Food Chem. 52:8197–8201.
  • Maruyama, N., Salleh, M. R. M., Takahashi, K., Yagasaki, K., Goto, H., Hontani, N., Nakagawa, S. and Utsumi, S. (2002a). The effect of the N-linked glycans on structural features and physicochemical functions of soybean β-conglycinin homotrimers. J. Am. Oil Chem. Soc. 79:139–144.
  • Maruyama, N., Salleh, M. R. M., Takahashi, K., Yagasaki, K., Goto, H., Hontani, N., Nakagawa, S. and Utsumi, S. (2002b). Structure-physicochemical function relationships of soybean β-conglycinin heterotrimers. J. Agric. Food Chem. 50:4323–4326.
  • Maruyama, N., Sato, R., Wada, Y., Matsumura, Y., Goto, H., Okuda, E., Nakagawa, S. and Utsumi, S. (1999). Structure-physicochemical function relationships of soybean β-conglycinin constituent subunits. J. Agric. Food Chem. 47:5278–5284.
  • McClements, D. J. (2004). Protein-stabilized emulsions. Curr. Opin. Colloid Interface Sci. 9:305–313.
  • McClements, D. J. (2007). Critical review of techniques and methodologies for characterization of emulsion stability. Crit. Rev. Food Sci. Nutr. 47:611–649.
  • Meng, G. T. and Ma, C. Y. (2001). Thermal properties of Phaseolus angularis (red bean) globulin. Food Chem. 73:453–460.
  • Meshulam, D. and Lesmes, U. (2014). Responsiveness of emulsions stabilized by lactoferrin nano-particles to simulated intestinal conditions. Food Funct. 5:65–73.
  • Miller, R., Aksenenko, E. V., Fainerman, V. B. and Pison, U. (2001). Kinetics of adsorption of globular proteins at liquid/fluid interfaces. Colloids Surf. A. 183-185:381–390.
  • Mitidieri, F. E. and Wagner, J. R. (2002). Coalescence of o/w emulsions stabilized by whey and isolate soybean proteins. Influence of thermal denaturation, salt addition and competitive interfacial adsorption. Food Res. Int. 35:547–557.
  • Molina, E., Papadopoulou, A. and Ledward, D. A. (2001). Emulsifying properties of high pressure treated soy protein isolate and 7S and 11S globulins. Food Hydrocoll. 15:263–269.
  • Moure, A., Sineiro, J., Domínguez, H. and Parajó, J. C. (2006). Functionality of oilseed protein products: A review. Food Res. Int. 39:945–963.
  • Murray, B. S. (2002). Interfacial rheology of food emulsifiers and proteins. Curr. Opin. Colloid Interface Sci. 7:426–431.
  • Murray, B. S. (2011). Rheological properties of protein films. Curr. Opin. Colloid Interface Sci. 16:27–35.
  • Nagano, T., Hirotsuka, M., Mori, H., Kohyama, K. and Nishinari, K. (1992). Dynamic viscoelastic study on the gelation of 7S globulin from soybeans. J. Agric. Food Chem. 40:941–944.
  • Nakai, S. (1983). Structure-functional relationship of food proteins with emphasis on the importance of the protein hydrophobicity. J. Agric. Food Chem. 31:676–683.
  • Nakai, S. (1996). An overview. In: Food Proteins: Properties and Characterization, pp. 167–234. Nakai, S. and Modler, H.W., Eds., VCH, New York.
  • Neethirajan, S. and Tayas, D. S. (2011). Nanotechnology for the food and bioprocessing industries. Food Bioprocess Technol. 4:39–47.
  • Nguyen, B. T., Nicolai, T. and Benyahia, L. (2013). Stabilization of water-in-water emulsions by addition of protein particles. Langmuir. 29:10658–10664.
  • Nishinari, K., Fang, Y., Guo, S. and Philips, G. O. (2014). Soy proteins: A review on composition, aggregation and emulsification. Food Hydrocoll. 39:301–318.
  • Oliver, C. M., Melton, L. D. and Stanley, R. A. (2006). Creating proteins with novel functionality via the Maillard reaction: A review. Crit. Rev. Food Sci. Nutr. 46:337–351.
  • Palazolo, G. G., Mitidieri, F. E. and Wagner, J. R. (2003). Relationship between interfacial behavior of native and denatured soybean isolates and microstructure and coalescence of oil in water emulsions – Effect of salt and protein concentration. Food Sci. Technol. Int. 9:0409–0411.
  • Palazolo, G. G., Sorbral, P. A. and Wagner, J. R. (2011). Freeze-thaw stability of oil-in-water emulsions prepared with native and thermally-denatured soybean isolates. Food Hydrocoll. 25:398–409.
  • Palazolo, G. G., Sorgentini, D. A. and Wagner, J. R. (2005). Coalescence and flocculation in o/w emulsions of native and denatured whey soy proteins in comparison with soy protein isolates. Food Hydrocoll. 19:595–604.
  • Patino, J. M. R., Niño, M. R. R., Sánchez, C. C., Ortiz, S. E. M. and Añón, M. C. (2005). Dilatational properties of soy globulin adsorbed films at the air-water interface from acidic solutions. J. Food Eng. 68:429–437.
  • Patino, J. M. R., Ortiz, S. E. M., Sánchez, C. C., Niño, M. R. R. and Añón, M. C. (2003). Dynamic properties of soy globulin adsorbed films at the air-water interface. J. Colloid Interface Sci. 268:50–57.
  • Patino, J. M. R., Sánchez, C. C., Ortiz, S. E. M., Niño, M. R. R. and Añón, M. C. (2004). Adsorption of soy globulin films at the air-water interface. Ind. Eng. Chem. Res. 43:1681–1689.
  • Paunov, V. N., Cayre, O. J., Noble, P. F., Stoyanov, S. D., Velikov, K. P. and Golding, M. (2007). Emulsions stabilised by food colloid particles: Role of particle adsorption and wettability at the liquid interface. J. Colloid Interface Sci. 312:381–389.
  • Pearce, K. N. and Kinsella, J. E. (1978). Emulsifying properties of proteins: Evaluation of a turbidimetric technique. J. Agric. Food Chem. 26:716–723.
  • Peng, I. C., Quass, D. W., Dayton, W. R. and Allen, C. E. (1984). The physicochemical and functional properties of soybean 11S globulin—A review. Cereal Chem. 61:480–490.
  • Perez, A. A., Carrara, C. R., Sánchez, C. C., Santiago, L. G. and Patino, J. M. R. (2009). Interfacial dynamic properties of whey protein concentrate/polysaccharide mixtures at neutral pH. Food Hydrocoll. 23:1253–1262.
  • Pesic, M., Vucelic-Radovic, B., Barac, M. B. and Stanojevic, S. P. (2005). The influence of genotypic variation in protein composition on emulsifying properties of soy proteins. J. Am. Oil Chem. Soc. 82:667–672.
  • Petruccelli, S. and Añón, M. C. (1996). pH-Induced modifications in the thermal stability of soybean protein isolates. J. Agric. Food Chem. 44:3005–3009.
  • Pinaud, F., Geisel, K., Massé, P., Catargi, B., Isa, L., Richtering, W., Ravaine, V. and Schmitt, V. (2014). Adsorption of microgels at an oil-water interface: Correlation between packing and 2D elasticity. Soft Matter. 10:6963–6974.
  • Poon, S., Clarke, A. E. and Schultz, C. J. (1999). Structure-function analysis of the emulsifying and interfacial properties of apomyoglobulin and derived peptides. J. Colloid Interface Sci. 213:193–203.
  • Prak, K., Nakatani, K., Katsube-Tanaka, T., Adachi, M., Maruyama, N. and Utsumi, S. (2005). Structure-function relationships of soybean proglycinins at subunit levels. J. Agric. Food Chem. 53:3650–3657.
  • Puppo, M. C., Beaumal, V., Speroni, F., de Lamballerie, M., Añón, M. C. and Anton, M. (2011). β-Conglycinin and glycinin soybean protein emulsions treated by combined temperature-high-pressure treatment. Food Hydrocoll. 25:389–397.
  • Puppo, M. C., Speroni, F., Chapleau, N., de Lamballerie, M., Añón, M. C. and Anton, M. (2005). Effect of high-pressure treatment on emulsifying properties of soybean proteins. Food Hydrocoll. 19:289–296.
  • Raikos, V. (2010). Effect of heat treatment on milk protein functionality at emulsion interfaces. A review. Food Hydrocoll. 24:259–265.
  • Rangel, A., Domont, G. B., Pedrosa, C. and Ferreira, S. T. (2003). Functional properties of purified vicilins from cowpea (Vigna unguiculata) and pea (Pisum sativum) and cowpea protein isolate. J. Agric. Food Chem. 51:5792–5797.
  • Rashidi, L. and Khosravi-Darani, K. (2011). The applications of nanotechnology in food industry. Crit. Rev. Food Sci. Nutr. 51:723–730.
  • Rayner, M., Sjöö, M., Timgren, A. and Dejmek, P. (2012a). Quinoa starch granules as stabilizing particles for production of Pickering emulsions. Faraday Discuss. 158:139–155.
  • Rayner, M., Timgren, A., Sjöö, M. and Dejmek, P. (2012b). Quinoa starch granules: A candidate for stabilising food-grade Pickering emulsions. J. Sci. Food Agric. 92:1841–1847.
  • Razumovsky, L. and Damodaran, S. (1999). Surface activity-compressibility relationship of proteins. Langmuir. 15:1392–1399.
  • Rivas, H. J. and Sherman, P. (1984). Soy and meat proteins as emulsion stabilizers. 4. The stability and interfacial rheology of O/W emulsions stabilised by soy and meat protein fractions. Colloids Surf. 11:155–171.
  • Roesch, R. R. and Corredig, M. (2002). Characterization of oil-in-water emulsions prepared with commercial soy protein concentrate. J. Food Sci. 67:2837–2842.
  • Roesch, R. R. and Corredig, M. (2003). Texture and microstructure of emulsions prepared with soy protein concentrate by high-pressure homogenization. LWT-Food Sci. Technol. 36:113–124.
  • Ruiz-Henestrosa, V. M. P., Martinez, M. J., Patino, J. M. R. and Pilosof, A. M. R. (2012). A dynamic light scattering study on the complex assembly of glycinin soy globulin in aqueous solutions. J. Am. Oil Chem. Soc. 89:1183–1191.
  • Ruíz-Henestrosa, V. M. P., Sánchez, C. C., de Mar Yust Escobar, M., Jiménez, J. J. P., Rodríguez, F. M. and Patino, J. M. R. (2007). Interfacial and foaming characteristics of soy globulins as a function of pH and ionic strength. Colloids Surf. A. 309:202–215.
  • Ruíz-Henestrosa, V. M. P., Sánchez, C. C., Pedroche, J. J., Millán, F. and Patino, J. M. R. (2009). Improving the functional properties of soy glycinin by enzymatic treatment. Adsorption and foaming characteristics. Food Hydrocoll. 23:377–386.
  • Sanchez-Ruiz, J. M. (1992). Theoretical analysis of Lumry-Eyring models in differential scanning calorimetry. Biophys. J. 61:921–935.
  • Santiago, L. G., Maldonado-Valderrama, J., Martín-Molina, A., Haro-Pérez, C., García-Martínez, J., Martín-Rodríguez, A., Cabrerizo-Vílchez, M. A. and Gálvez-Ruiz, M. J. (2008). Adsorption of soy protein isolate at air-water and oil-water interfaces. Colloids Surf. A. 323:155–162.
  • Schmitt, C., Moitzi, C., Bovay, C., Rouvet, M., Bovetto, L., Donato, L., Leser, M. E., Schurtenberger, P. and Stadner, A. (2010). Internal structure and colloidal behavior of covalent whey protein microgels obtained by heat treatment. Soft Matter. 6:4876–4884.
  • Schwenke, K. D. (2001). Reflections about the functional potential of legume proteins. A review. Nahrung/Food. 45:377–381.
  • Schwenke, K. D., Henning, T., Dudek, S., Dautzenberg, H., Danilenko, A. N., Kozhevnikov, G. O. and Braudo, E. E. (2001). Limited tryptic hydrolysis of pea legumin: Molecular mass and conformational stability of legumin-T. Int. J. Biol. Macromol. 28:175–182.
  • Sengupta, T. and Damodaran, S. (1998). Role of dispersion interactions in the adsorption of proteins at oil-water and air-water interfaces. Langmuir. 14:6457–6469.
  • Shao, Y. and Tang, C. H. (2014). Characteristics and oxidative stability of soy protein-stabilized oil-in-water emulsions: Influence of ionic strength and heat pretreatment. Food Hydrocoll. 37:149–158.
  • Shimoni, G., Levi, C. S. and Lesmes, U. (2013). Emulsions stabilization by lactoferrin nano-particles under in vitro digestion conditions. Food Hydrocoll. 33:264–272.
  • Simovic, S. and Prestidge, C. A. (2007). Nanoparticle layers controlling drug release from emulsions. Eur. J. Pharm. Biopharm. 67:39–47.
  • Subirade, M., Gueguen, J. and Pézolet, M. (1994). Conformational changes upon dissociation of a globular protein from pea: A Fourier transform infrared spectroscopy study. Biochim. Biophys. Acta. 1205:239–247.
  • Suttiprasit, F., Krisdahasima, V. and McGuire, J. (1992). The surface activity of α-lactalbumin, β-lactoglobulin, and bovine serum albumin: I. Surface tension measurements with single-component and mixed solutions. J. Colloid Interface Sci. 154:316–326.
  • Tan, Y., Xu, K., Niu, C., Li, Y., Wang, P. and Binks, B. P. (2014). Triglyceride-water emulsions stabilised by starch-based nanoparticles. Food Hydrocoll. 36:70–75.
  • Tandang-Silvas, M. R., Tecson-Mendoza, E. M., Mikami, B., Utsumi, S. and Maruyama, N. (2011). Molecular design of seed storage proteins for enhanced food physicochemical properties. Ann. Rev. Food Sci. Technol. 2:59–73.
  • Tang, C. H., Chen, Z., Li, L. and Yang, X. Q. (2006). Effect of transglutaminase treatment on the thermal properties of soy protein isolates. Food Res. Int. 39:704–711.
  • Tang, C. H. and Shen, L. (2013). Role of conformational flexibility in the emulsifying properties of bovine serum albumin. J. Agric. Food Chem. 61:3097–3100.
  • Tang, C. H. and Liu, F. (2013). Cold, gel-like soy protein emulsions by microfluidization: Emulsion characteristics, rheological and microstructural properties, and gelling mechanism. Food Hydrocoll. 30:61–72.
  • Tang, C. H. and Ma, C. Y. (2009). Effect of high pressure treatment on aggregation and structural properties of soy protein isolate. LWT-Food Sci. Technol. 42:606–611.
  • Tang, C. H. and Shen, L. (2015). Dynamic adsorption and dilatational properties of BSA at oil/water interface: Role of conformational flexibility. Food Hydrocoll. 43:388–399.
  • Tang, C. H. and Sun, X. (2011). A comparative study of physicochemical and conformational properties in three vicilins from Phaseolus legumes: Implications for the structure-function relationship. Food Hydrocoll. 25:315–324.
  • Tang, C. H., Sun, X. and Foegeding, E. A. (2011). Modulation of physicochemical and structural properties of kidney bean vicilin (phaseolin) by glycation with glucose: Implications for the structure-function relationship. J. Agric. Food Chem. 59:10114–10123.
  • Tang, C. H. and Wang, X. Y. (2010). Physicochemical and structural characterisation of globulin and albumin from common buckwheat (Fagopyrum esculentum Moench) seeds. Food Chem. 121:119–126.
  • Tang, C. H., Wang, X. Y., Yang, X. Q. and Li, L. (2009). Formation of soluble aggregates from insoluble commercial soy protein isolate by means of ultrasonic treatment and their gelling properties. J. Food Eng. 92:432–437.
  • Tcholakova, S., Denkov, N. D., Ivanov, I. B. and Campbell, B. (2006). Coalescence stability of emulsions containing globular milk proteins. Adv. Colloid Interface Sci. 123-126:259–293.
  • Thanh, V. H. and Shibasaki, K. (1976). Major proteins of soybean seeds: A straightforward fractionation and their characterization. J. Agric. Food Chem. 24:1117–1121.
  • Thanh, V. H. and Shibasaki, K. (1978a). Major proteins of soybean seeds. Subunit structure of β-conglycinin. J. Agric. Food Chem. 26:692–695.
  • Thanh, V. H. and Shibasaki, K. (1978b). Major proteins of soybean seeds. Reconstitution of β-conglycinin from its subunits. J. Agric. Food Chem. 26:695–699.
  • Timgren, A., Rayner, M., Dejmek, P., Marku, D. and Sjöö, M. (2013). Emulsion stabilizing capacity of intact starch granules modified by heat treatment or octenyl succinic anhydride. Food Sci. Nutr. 1:157–171.
  • Tsumura, K., Saito, T., Tsuge, K., Ashida, H., Kugimiya, W. and Inouye, K. (2005). Functional properties of soy protein hydrolysates obtained by selective proteolysis. LWT-Food Sci. Technol. 38:255–261.
  • Tzoumaki, M. V., Moschakis, T., Kiosseoglou, V. and Biliaderis, C. G. (2011). Oil-in-water emulsions stabilized by chitin nanocrystal particles. Food Hydrocoll. 35:1521–1529.
  • Tzoumaki, M. V., Moschakis, T., Schclten, E. and Biliaderis, C. G. (2013). In vitro digestion of chitin nanocrystal stabilized o/w emulsions. Food Funct. 4:121–129.
  • Utsumi, S., Matsumura, Y. and Mori, T. (1997). Structure-function relationships of soy proteins. In: Food Proteins and Their Applications, pp. 257–292. Damodaran, S. and Paraf, A., Eds., Marcel Dekker, New York.
  • Visschers, R. W. and de Jongh, H. H. J. (2005). Disulphide bond formation in food protein aggregation and gelation. Biotechnol. Adv. 23:75–80.
  • Wagner, J. R. and Guéguen, J. (1995). Effects of dissociation, deamidation, and reducing treatment on structural and surface active properties of soy glycinin. J. Agric. Food Chem. 43:1993–2000.
  • Wagner, J. R. and Guéguen, J. (1999). Surface functional properties of native, acid-treated, and reduced soy glycinin. 2. Emulsifying properties. J. Agric. Food Chem. 47:2181–2187.
  • Wagner, J. R., Sorgentini, D. A. and Añón, M. C. (1996). Thermal and electrophoretic behavior, hydrophobicity, and some functional properties of acid-treated soy isolates. J. Agric. Food Chem. 44:1881–1889.
  • Wagner, J. R., Sorgentini, D. A. and Añón, M. C. (2000). Relation between solubility and surface hydrophobicity as an indicator of modifications during preparation processes of commercial and laboratory-prepared soy protein isolates. J. Agric. Food Chem. 48:3159–3165.
  • Wang, C. and Johnson, L. A. (2001). Functional properties of hydrothermally cooked soy protein products. J. Am. Oil Chem. Soc. 78:189–195.
  • Wang, J.-M., Xia, N., Yang, X.-Q., Yin, S.-W., He, X.-T., Yuan, D.-B. and Wang, L.-J. (2012). Adsorption and dilatational rheology of heat-treated soy protein at the oil-water interface: Relationship to structural properties. J. Agric. Food Chem. 60:3302–3310.
  • Wang, X. S., Tang, C. H., Li, B. S., Yang, X. Q., Li, L. and Ma, C. Y. (2008). Effect of high pressure treatment on some physicochemical and functional properties of soy protein isolates. Food Hydrocoll. 22:560–567.
  • Ward, A. F. H. and Tordai, L. (1946). Time dependence of boundary tensions of solutions. J. Chem. Phys. 14:353–361.
  • Weiss, J., Takhistov, P. and McClements, J. (2006). Functional materials in food nanotechnology. J. Food Sci. 71:R107–R116.
  • Williams, A. and Prins, A. (1996). Comparison of the dilational behavior of adsorbed milk proteins at the air-water and oil-water interfaces. Colloids Surf. A. 114:267–275.
  • Wolf, W. J. (1993). Sulfhydryl contents of glycinin: Effect of reducing agents. J. Agric. Food Chem. 41:168–176.
  • Wüstneck, R., Moser, B. and Muschiolik, G. (1999). Interfacial dilational behavior of adsorbed β-lactoglobulin layers at the different fluid interfaces. Colloids Surf. B. 15:263–273.
  • Xu, S. and Damodaran, S. (1994). Kinetics of adsorption of protein at the air-water interface from a binary mixture. Langmuir. 10:472–480.
  • Yin, S. W., Tang, C. H., Wen, Q. B. and Yang, X. Q. (2009). Effects of acylation on the functional properties and in vitro trypsin digestibility of red kidney bean (Phaseolus vulgaris L.) protein isolate. J. Food Sci. 74:E488–E494.
  • Yusoff, A. and Murray, B. S. (2011). Modified starch granules as particle-stabilizers of oil-in-water emulsions. Food Hydrocoll. 25:42–55.
  • Zhai, J., Hoffmann, S. V., Day, L., Lee, T.-H., Augustin, M. A., Aguilar, M.-I. and Wooster, T. I. (2012). Conformational changes of α-lactoalbumin adsorbed at oil-water interfaces: Interplay between protein structure and emulsion stability. Langmuir. 28:2357–2367.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.