635
Views
29
CrossRef citations to date
0
Altmetric
Articles

A critical review on the applications of artificial neural networks in winemaking technology

, ORCID Icon, & ORCID Icon

References

  • Acioli, P.H., Magela, E. and Silva, G. (1999). Investigating charge transport in molecular switches with neural networks. J. Comput. Chem. 20:1060–1066.
  • Agatonovic-Kustrin, S., Morton, D.W. and Yusof, A.P. Md. (2013). The Use of Fourier Transform Infrared (FTIR) Spectroscopy and Artificial Neural Networks (ANNs) to Assess Wine Quality. Mod. Chem. Appl. 1:110. DOI: http://dx.doi.org/10.4172/2329-6798.1000110.
  • Aguilera, T., Lozano, J., Paredes, J.A., Álvarez, F.J. and Suárez, J.I. (2012). Electronic nose based on independent component analysis combined with partial least squares and artificial neural networks for wine prediction. Sensors 12:8055–8072.
  • Aires-de-Sousa, J. (1996). Verifying wine origin: A neural network approach. Am. J. Enol. Viticult. 47:410–414.
  • Álvarez, M., Moreno, I.M., Jos, Á., Cameán, A.M. and González, A.G. (2007). Differentiation of ‘two Andalusian DO ‘fino’ wines according to their metal content from ICP-OES by using supervised pattern recognition methods. Microchem. J. 87:72–76.
  • Apuleius. (2010). El asno de oro [Spanish for The Golden Ass]. Rojo, J.M, Ed. Cátedra, Madrid.
  • Asimakopoulou, F.E., Tsekouras, G.J., Gonos, I.F. and Stathopulos, I.A. (2013). Electr. Pow. Syst. Res. 94:113–121.
  • Astray, G., Castillo, J.X., Ferreiro-Lage, J.A., Gálvez, J.F. and Mejuto, J.C. (2010). Artificial neural networks: a promising tool to evaluate the authenticity of wine. Cienc. Tecnol. Aliment. 8:79–86.
  • Avila, F., Mora, M., Fredes, C. and González, P. (2013). Shadow detection in complex images using neural networks: application to wine grape seed segmentation. In: ICANNGA 2013, LNCS 7824, pp. 495–503. Tomassini, M., Antonioni, A., Daolio, A. and Buesser, P., Eds., Springer, Boston.
  • Baykal, H. and Yildirim, H.K. (2013). Application of artificial neural networks (ANNs) in wine technology. Crit. Rev. Food Sci. 53:415–421
  • Bednárová, A., Kranvogl, R., Vonˇcina, D.B., Jug, T., and Beinrohr, E. (2013). Characterization of Slovenian Wines using multidimensional data analysis from simple enological descriptors. Acta Chim. Slov. 60:274–286.
  • Beltrán, N.H., Duarte-Mermoud, M.A., Bustos, M.A., Salah, S.A., Loyola, E.A., Peña-Neira, A.I. and Jalocha, J.W. (2006). Feature extraction and classification of Chilean wines. J. Food Eng. 75: 1–10.
  • Boger, Z. and Guterman, H. (1997). Knowledge extraction from artificial neural networks models. Invited paper. IEEE Systems, Man and Cybernetics Conference, Orlando.
  • Cabrita, M.J., Aires-De-Sousa, J., Gomes Da Silva, M.D.R., Rei, F., and Costa Freitas, A.M. (2012). Multivariate statistical approaches for wine classification based on low molecular weight phenolic compounds_. Aust. J. Grape Wine R. 18: 138–146.
  • Cetó, X., Gutiérrez, J.M., Gutiérrez, M., Céspedes, F., Capdevila, J., Mínguez, S., Jiménez-Jorquera, C., del Valle, M. (2012a). Determination of total polyphenol index in wines employing a voltammetric electronic tongue. Anal. Chim. Acta 732:172–179.
  • Cetó, X., Céspedes, F., del Valle, M. (2012b). BioElectronic tongue for the quantification of total polyphenol content in wine. Talanta 99:544–551.
  • Cetó, X., Capdevila, J., Puig-Pujol, A., and del Valle, M. (2014). Cava wine authentication employing a voltammetric electronic tongue. Electroanal. 26:1504–1512.
  • Cetó, X., González-Calabuig, A., Capdevila, J., Puig-Pujol, A. and del Valle, M. (2015). Instrumental measurement of wine sensory descriptors using a voltammetric electronic tongue. Sens. Actuat. B-Chem. 207:1053–1059.
  • Chairez, I. (2013). Differential neuro-fuzzy controller for uncertain nonlinear systems. IEEE Trans. Fuzzy Syst. 21:369–384.
  • Chtioui, Y., Bertrand, D., Devaux, M.F. and Barba, D. (1997). Comparison of multilayer perceptron and probabilistic neural networks in artificial vision. Application to the discrimination of seeds. J. Chemometr. 11:111–129.
  • Díaz, C., Conde, J.E., Estévez, D., Pérez Olivero, S.J. and Pérez Trujillo, J.P. (2003). Application of multivariate analysis and artificial neural networks for the differentiation of Red Wines from the Canary Islands according to the Island of origin. J. Agric. Food Chem. 51:4303–4307.
  • Ferrier, J.G. and Block, D.E. (2001). Neural-network-assisted optimization of wine blending based on sensory analysis. Am. J. Enol. Vitic. 52:386–395.
  • Frías, S., Conde, J.E., Rodríguez, M.A., Dohnal, V. and Pérez-Trujillo, J.P. (2002). Metallic content of wines from the Canary Islands (Spain). Application of artificial neural networks to the data analysis. Nahrung 46:370–375.
  • Fu, J., Yang, X., Yang, X., Li, G. and Freeman, W.J. (2005). Application of biologically modeled chaotic neural network to pattern recognition in artificial olfaction. In: Proceedings of the IEEE-EMBS, pp. 4666–4669. IEEE, New Jersey.
  • Fu J., Huang, C., Xing, J. and Zheng, J. (2012). Pattern classification using an olfactory model with PCA feature selection in electronic noses: study and application. Sensors 12:2818–2830.
  • Gaeta, M., Marsella, M., Miranda, S. and Salerno, S. (1998). Using neural networks for wine identification. In: Proceedings of the IEEE International Joint Symposia on Intelligence and Systems, pp. 418–421. IEEE, New Jersey.
  • Gomes, V.M., Fernandes, A.M., Faia, A. and Melo-Pinto, P. (2014). Determination of sugar content in whole Port Wine grape berries combining hyperspectral imaging with neural networks methodologies. In: Procedings of the 2014 IEEE Symposium on Computational Intelligence for Engineering Solutions (CIES), pp. 188–193. IEEE, New Jersey.
  • Gozzini Giacosa, I. (1994). A Taste of Ancient Rome. University of Chicago Press, Chicago.
  • Haykin, S. (2009). Neural Networks and Learning Machines International Edition. Pearson, New Jersey.
  • Hebb, D.O. (1949). The Organization of Behaviour: A neuropsychological Theory. Wiley, New York.
  • Hornik, K., Stinchcombe, M. and White, H. (1989). Multilayer feedforward networks are universal approximators. Neural Networks 2:359–366.
  • Hosu, A., Cristea V.-M. and Cimpoiu, C. (2014). Analysis of total phenolic, flavonoids, anthocyanins and tannins content in Romanian red wines: prediction of antioxidant activities and classification of wines using artificial neural networks. Food Chem. 150:113–118.
  • Kemp, S.J., Zaradic, P. and Hansen, F. (2007). An approach for determining relative input parameter importance and significance in artificial neural networks. Ecol. Model. 204:326–334.
  • Kohonen, T. (1982). Self-organized formation of topologically correct feature maps. Biol. Cybern. 43:59–69.
  • Kruzlicova, D., Mocak, J., Balla, B., Petka, J., Farkova, M. and Havel, J. (2009). Classification of Slovak white wines using artificial neural networks and discriminant techniques. Food Chem. 112:1046–1052.
  • Le Gars. C. and Roudié, P. (1996). Des vignobles et des vins à travers le monde: colloque tenu à Bordeaux les 1, 2 et 3 octobre 1992 : hommage à Alain Huetz de Lemps. Presses Universitaires de Bordeaux, Bodeaux.
  • Liou, C.-Y. and Lin, S.-L. 2006. Finite Memory Loading in Hairy Neurons. Nat. Comp. 5:15–42.
  • Lozano, J., Santos, J.P., Suárez, J.I., Cabellos, M., Arroyo, T. and Horrillo, C. (2015). Automatic sensor system for the continuous analysis of the evolution of wine. Am. J. Enol. Vitic. 66:148–155.
  • Ludermir, T.B. and Yamazaki, A. (2003). Neural networks for odor recognition in artificial noses. In: Proceedings of the International Joint Conference on Neural Networks. Vol. 1, pp. 143–148.
  • Macías Macías, M., Agudo, J.E., García Manso, A., García Orellana, C.J., González Velasco, H.M. and Gallardo Caballero, R. (2013). A compact and low cost electronic nose for aroma detection. Sensors, 13:5528–5541.
  • Macías Macías, M., Agudo, J.E., García Manso, A., García Orellana, C.J., González Velasco, H.M. and Gallardo Caballero, R. (2014). Improving short term instability for quantitative analyses with portable electronic noses. Sensors 14:10514–10526.
  • Malacarne, M., Bergamo, L., Bertoldi, D., Nicolini, G. and Larcher, R. (2013). Use of Fourier transform infrared spectroscopy to create models forecasting the tartaric stability of wines. Talanta 117: 505–510.
  • Mancuso, S., Pisani, P.L., Bandinelli, R., Rinaldelli, E. (1998). Application of an Artificial Neural Network (ANN) for the identification of Vitis vinifera L. genotypes. Vitis 37: 27–32.
  • Mancuso, S. (1999). Elliptic Fourier Analysis (EFA) and Artificial Neural Networks (ANNs) for the identification of grapevine (Vitis vinifera L.) genotypes. Vitis. 38: 73–77.
  • Mancuso, S. (2001). Clustering of grapevine (Vitis vinifera L.) genotypes with Kohonen neural networks. Vitis. 40: 59–63.
  • Marengo, E., Aceto, M, and Maurino, V. (2001). Classification of Nebbiolo-based wines from Piedmont (Italy) by means of solid-phase microextraction–gas chromatography–mass spectrometry of volatile compounds. J. Chromatogr. A 943: 123–137.
  • Martelo-Vidal. M.J. and Vázquez M. (2014a). Rapid authentication of white wines. Part 1: Classification by designation of origin. Agro Food Ind. Hi Tec. 25(5): 44–48.
  • Martelo-Vidal. M.J. and Vázquez. M. (2014b). Rapid authentication of white wines. Part 2: Classification by grape variety. Agro Food Ind. Hi Tec. 25(6): 20–22.
  • Martelo-Vidal, M.J. and Vázquez, M. (2015). Application of artificial neural networks coupled to UV–VIS–NIR spectroscopy for the rapid quantification of wine compounds in aqueous mixtures. Cienc. Tecnol. Aliment. 13: 32–39.
  • Martínez del Brío, B, and Sanz Molina, A. (2001). Redes Neuronales y Sistemas Borrosos 2nd ed. Ra-Ma, Madrid.
  • Masoum, S., Bouveresse, D.J.-R., Vercauteren, J., Jalali-Heravi, M. and Rutledge. D.N. (2006). Discrimination of wines based on 2D NMR spectra using learning vector quantization neural networks and partial least squares discriminant analysis. Anal. Chim. Acta. 558: 144–149.
  • Maurelli, G. and Di Giulio, M. (1998). Artificial neural networks for the identification of the differences between “light” and “heavy” alcoholics, starting from five nonlinear biological variables. Subst. Use Misuse. 33: 693–708.
  • McCulloch, W.S. and Pitts, W. (1943). A logical calculus of the ideas immanent in nervous activity. B. Math. Biophys. 5: 115–137.
  • Meena, K., Subramaniam, K. and Gomathy, M. (2013). Gender Classification in Speech Recognition using Fuzzy Logic and Neural Network. Int. Arab J. Inf. Techn. 10: 477–485.
  • Mekanik, F., Imteaz, M., Gato-Trinidad, S., and Elmahdi, A. (2013). Multiple regression and Artificial Neural Network for long-term rainfall forecasting using large scale climate modes. J. Hydrol. 503: 11–21.
  • Minsky, M. and Papert, S. (1987). Perceptrons: An Introduction to Computational Geometry (Expanded edition). MIT Press, Cambridge.
  • Moldes, Ó.A., Cid, A., Astray, G. and Mejuto, J.C. (2014). Percolative behavior models based on artificial neural networks for electrical percolation of AOT microemulsions in the presence of crown ethers as additives. Tenside Surf. Det. 51: 533–540.
  • Moldes, Ó.A., Cid, A., Montoya, I.A. and Mejuto, J.C. (2015). Linear polyethers as additives for AOT-based microemulsions: prediction of percolation temperature changes using artificial neural networks. Tenside Surf. Det. 52: 264–267.
  • Montoya, I. A., Moldes, O. A., Cid, A., Astray, G., Gálvez, J. F. and Mejuto, J.C. (2015). Influence Prediction of Alkylamines Upon Electrical Percolation of AOT-based Microemulsions Using Artificial Neural Networks. Tenside Surf. Det. 52:473–476.
  • Nemati, P., Imani, M., Farahmandghavi, F., Mirzadeh, H., Marzban-Rad, E. and Nasrabadi, A.M. (2013). J. Pharm. Pharmacol. 66: 624–638.
  • Nemati, P., Imani, M., Farahmandghavi, F., Mirzadeh, H., Marzban-Rad, E. and Nasrabadi, A. M. (2014). Artificial neural networks for bilateral prediction of formulation parameters and drug release profiles from cochlear implant coatings fabricated as porous monolithic devices based on silicone rubber. J. Pharm. Pharmacol. 66: 624–638.
  • Pazourek, J., Gajdošová, D., Spanilá, M., Farková, M., Novotná, K, and Havel, J. (2005). Analysis of polyphenols in wines: Correlation between total polyphenolic content and antioxidant potential from photometric measurements: Prediction of cultivars and vintage from capillary zone electrophoresis fingerprints using artificial neural network. J. Chromatogr. A 1081: 48–54.
  • Penza M. and Cassano G. (2004a). Recognition of adulteration of Italian wines by thin-film multisensor array and artificial neural networks. Anal. Chim. Acta 509: 159–177.
  • Penza M. and Cassano G. (2004b). Chemometric characterization of Italian wines by thin-film multisensors array and artificial neural networks. Food Chem. 86:283–296.
  • Pérez-Magariño, S., Ortega-Heras, M., González-San José, M.L. and Boger, Z. (2004). Comparative study of artificial neural network and multivariate methods to classify Spanish DO rose wines. Talanta 62:983–990.
  • Ren, J. and li, Z. (2006). A system of wine blending based on neural network. In: International Federation for Information Processing (IFIP), Volume 207, Knowledge Enterprise: Intelligent Strategies In Product Design, Manufacturing, and Management, pp. 604–609. Wang, K., Kovacs, G., Wozny, M. and Fang, M., Eds. Springer, Boston.
  • Riul Jr., A., de Sousa H.C., Malmegrim, R.R., dos Santos Jr., D.S., Carvalho, A.C.P.L.F., Fonseca, F.J., Oliveira Jr., O.N. and Mattoso, L.H.C. (2004). Sensor. Actuat. B-Chem. 98:77–82.
  • Robinson, J. (2006) The Oxford companion to wine, 3rd ed. Oxford University Press, Oxford.
  • Röck, F., Barsan, N., and Weimar, U. (2008). Electronic Nose:  Current Status and Future Trends. Chem. Rev., 108:705–725.
  • Román, R.C., Hernández, O.G. and Urtubia, U.A. (2011). Prediction of problematic wine fermentations using artificial neural networks. Bioproc. Biosyst. Eng. 34:1057–1065.
  • Rosenblatt, F. (1958). The Perceptron: a probabilistic model for information storage and organization in the brain. Psychol. Rev. 65:386–408.
  • Russel S. and Norvig P. (2010). Artificial Intelligence. A Modern Approach. 3rd Ed. Pearson, New Jersey.
  • Schwenker, F., Kestler, H.A., Palm, G. (2001). Three learning phases for radial-basis-function networks, Neural Networks 14:439–458.
  • Šelih, V.S., Šala, M., Drgan, V. (2014). Multi-element analysis of wines by ICP-MS and ICP-OES and their classification according to geographical origin in Slovenia. Food Chem. 153:414–423.
  • Tao, Y., Wu, D., Zhang, Q.-A. and Sun, D.-W. (2014). Ultrasound-assisted extraction of phenolics from wine lees: Modeling, optimization and stability of extracts during storage. Ultrason. Sonochem. 21:706–715.
  • Tesauro, G. (1995). Temporal difference learning and TD-Gammon. Commun. ACM 38:58–68.
  • Tiefenbrunner, M., Gangl, H., Tscheik, G., and Tiefenbrunner, W. (2009). Creating an artificial wine taster: inferring the influence of must and yeast from the aroma profile of wines using artificial intelligence. Vitis 48:97–100.
  • Urtubia, A., Hernández, G. and Roger, J.M. (2012). Detection of abnormal fermentations in wine process by multivariate statistics and pattern recognition techniques. J. Biotechnol. 159:336–341.
  • Valdés, J. J., Romero, E. and Barton, A. J. (2012). Data and knowledge visualization with virtual reality spaces, neural networks and rough sets: application to cancer and geophysical prospecting data. Expert Syst. Appl. 39:13193–13201.
  • Vlassides, S., Ferrier, J.G. and Block, D.E. (2001). Using historical data for bioprocess optimization: Modeling wine characteristics using artificial neural networks and archived process information. Biotechnol. Bioeng. 73:55–68.
  • Yamazaki, A. and Ludermir, T. B. (2002). Classification of vintages of wine by an artificial nose with neural networks. Electronic Lett. 37:1466–1467.
  • Wang, L., Kowk, S.K. and Ip, W.H. (2012). A radio frequency identification-based quality evaluation system design for the wine industry. Int. J. Comput. Integ. M. 25:11–19.
  • Zeravik, J., Hlavacek, A., Lacina, K. and Skládal P. (2009). State of the art in the field of electronic and bioelectronic tongues– towards the analysis of wines. Electroanal. 21:2509–2520.
  • Zhang, G.P. (2000). Neural networks for classification a survey. IEEE Trans. Syst. Man Cyber. C 30:451–462.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.