2,964
Views
90
CrossRef citations to date
0
Altmetric
Original Articles

Progress and challenges in improving the nutritional quality of rice (Oryza sativa L.)

, , , , &

References

  • Al-Babili, S., Hoa, T. T. C. and Schaub, P. (2006). Exploring the potential of the bacterial carotene desaturase CrtI to increase the β-carotene content in golden Rice. J. Exp. Bot. 57:1007–1014.
  • Al-Babili, S., Hobeika, E. and Beyer, P. (1996). A cDNA encoding lycopene cyclase (accession, X98796) from Narcissus pseudonarcissus L. (PGR 96ð107). Plant Physiol. 112:1398.
  • Ali, N., Paul, S., Gayen, D., Sarkar, S. N., Datta, K. and Datta, S. K. (2013). Development of low phytate rice by RNAi mediated seed-specific silencing of inositol 1, 3, 4, 5, 6-pentakisphosphate 2-kinase gene (IPK1). PLoS One. 8:e68161. Available from doi:10.1371/journal.pone.0068161
  • Ali, N., Paul, S., Gayen, D., Sarkar, S. N., Datta, S. K. and Datta, K. (2013). RNAi mediated down regulation of myo-inositol-3-phosphate synthase to generate low phytate rice. Rice 6:1–12.
  • Aluko, G., Martinez, C., Tohme, J., Castano, C., Bergman, C. and Oard, J. H. (2004). QTL mapping of grain quality traits from the interspecific cross Oryza sativa x O. glaberrima. Theor. Appl. Genet. 109:630–639.
  • An, N., Ou, J., Jiang, D., Zhang, L., Liu, J., Fu, K., Dai, Y. and Yang, D. (2013). Expression of a functional recombinant human basic fibroblast growth factor from transgenic rice seeds. Intl. J. Mol. Sci. 14:3556–3567.
  • Anai, T., Koga, M., Tanaka, H., Kinoshita, T., Rahman, S. M. and Takagi, Y. (2003). Improvement of rice (Oryza sativa L.) seed oil quality through introduction of a soybean microsomal omega-3 fatty acid desaturase gene. Plant Cell Rep. 21:988–992.
  • Aoyama, T., Kobayashi, T., Takahashi, M., Nagasaka, S., Usuda, K., Kakei, Y., Ishimaru, Y., Nakanishi, H., Mori, S. and Nishizawa, N. K. (2009). OsYSL18 is a rice iron (III)-deoxymugineic acid transporter specifically expressed in reproductive organs and phloem of lamina joints. Plant Mol. Biol. 70:681–692.
  • Azevedo, R. A. and Arruda, P. (2010). High-lysine maize: the key discoveries that have made it possible. Amino acids. 39:979–989.
  • Baek, S. H., Shin, W. C., Ryu, H. S., Lee, D. W., Moon, E., Seo, C. S., Hwang, E., Lee, H. S., Ahn, M. H., Jeon, Y., Kang, H. J., Lee, S. W., Kim, S. Y., D'souza, R., Kim, H. J., Hong, S. T. and Jeon, J. S. (2013). Creation of resveratrol-enriched rice for the treatment of metabolic syndrome and related diseases. PLoS One 8:e57930. doi: 10.1371/journal.pone.0057930
  • Baek, S. H., Chung, H. J., Lee, H. K., D'souza, R., Jeon, Y., Kim, H. J., Kweon, S. J. and Hong, S. T. (2014). Treatment of obesity with the resveratrol-enriched rice DJ-526. Sci. Rep.2014 4:3879. Available from doi: 10.1038/srep03879
  • Bajaj, S. and Mohanty, A. (2005). Recent advances in rice biotechnology-towards genetically superior transgenic rice. Plant Biotechnol. J. 3:275–307.
  • Bao, J. (2014). Genes and QTLs for rice grain quality improvement. In: Rice - Germplasm, Genetics and Improvement. Yan, W. (Ed.), ISBN: 978–953-51–1240-2, InTech, DOI: 10.5772/56621. Available from http://www.intechopen.com/books/rice-germplasm-genetics-and-improvement/genes-and-qtls-for-rice-grain-quality-improvement
  • Bao, J., Jin, L., Xiao, P., Shen, S., Sun, M. and Corke, H. (2008). Starch physicochemical properties and their associations with microsatellite alleles of starch-synthesizing genes in a rice RIL population. J. Agri. Food Chem. 56:1589–1594.
  • Beyer, P., Al-Babili, S., Ye, X., Lucca, P., Schaub, P., Welsch, R. and Potrykus, I. (2002). Golden Rice: Introducing the β-carotene biosynthetic pathway into rice endosperm by genetic engineering to defeat vitamin A deficiency. J. Nutr. 132:506S–510S.
  • Bhattacharya, S., Chattopadhyaya, B., Koduru, L., Das, N. and Maiti, M. K. (2014). Heterologous expression of Brassica juncea microsomal ω-3 desaturase gene (BjFad3) improves the nutritionally desirable ω-6: ω-3 fatty acid ratio in rice bran oil. Plant Cell Tiss. Org. Cult. 119:117–129.
  • Bhullar, N. K. and Gruissem, W. (2013). Nutritional enhancement of rice for human health: the contribution of biotechnology. Biotechnol. Adv. 31:50–57.
  • Biselli, C., Cavalluzzo, D., Perrini, R., Gianinetti, A., Bagnaresi, P., Urso, S., Orasen, G., Desiderio, F., Lupotto, E., Cattivelli, L. and Valè, G. (2014). Improvement of marker-based predictability of apparent amylose content in japonica rice through GBSSI allele mining. Rice 7:1. Available from doi: 10.1186/1939-8433-7-1
  • Blancquaert, D., Van Daele, J., Storozhenko, S., Stove, C., Lambert, W., and Van Der Straeten, D. (2013). Rice folate enhancement through metabolic engineering has an impact on rice seed metabolism, but does not affect the expression of the endogenous folate biosynthesis genes. Plant Mol. Biol. 83:329–349.
  • Bocobza, S. E., Malitsky, S., Araújo, W. L., Nunes-Nesi, A., Meir, S., Shapira, M., Fernie, A. R. and Aharoni, A. (2013). Orchestration of thiamin biosynthesis and central metabolism by combined action of the thiamin pyrophosphate riboswitch and the circadian clock in Arabidopsis. Plant Cell 25:288–307.
  • Bouis, H. E. (2002). Plant breeding: A new tool for fighting micronutrient malnutrition. J. Nutr. 132:4918–4943.
  • Bouis, H., and Hunt, J. (1999). Linking food and nutrition security: Past lessons and future opportunities. In: Investing in Child Nutrition in Asia. ADB Nutrition and Development Series 1, ADB and UNICEF, pp. 168–213. Hunt, J., Quibria, M. G., Eds., ADB Manila 17(1 & 2).
  • Brar, D. S., Virk, P. S., Grewal, D., Slamet-Loedin, I., Fitzgerald, M., and Khush, G. S. (2012). Breeding rice varieties with improved grain and nutritional quality. Quality Assurance and Safety of Crops & Foods. 4:137.
  • Breseghello, F. and Coelho, A. S. G. (2013). Traditional and modern plant breeding methods with examples in rice (Oryza sativa L.). J. Agri. Food Chem. 61:8277–8286.
  • Brinch-Pedersen, H., Galili, G., Knudsen, S. and Holm, P. B. (1996). Engineering of the aspartate family biosynthetic pathway in barley (Hordeum vulgare L.) by transformation with heterologous genes encoding feed-back-insensitive aspartate kinase and dihydrodipicolinate synthase. Plant Mol. Biol. 32:611–620.
  • Buer, C. S., Imin, N. and Djordjevic, M. A. (2010). Flavonoids: New roles for old molecules. J. Integr. Plant Biol. 52:98–111.
  • Bughio, N., Yamaguchi, H., Nishizawa, N. K., Nakanishi, H. and Mori, S. (2002). Cloning an iron-regulated metal transporter from rice. J. Exp. Bot. 53:1677–1682.
  • Burton, R. A., Wilson, S. M., Hrmova, M., Harvey, A. J., Shirley, N. J., Medhurst, A., Stone, B., Newbigin, E., Bacic, A. and Fincher, G. B. (2006). Cellulose synthase-like CSLF genes mediate the synthesis of cell wall (1, 3; 1, 4)-ß-D-glucans. Science 311:1940–1942.
  • Butardo, V. M., Fitzgerald, M. A., Bird, A. R., Gidley, M. J., Flanagan, B. M., Larroque, O., Resurreccion, A. P., Laidlaw, H. K. C., Jobling, S. A., Morell, M. K. and Rahman, S. (2011). Impact of down-regulation of starch branching enzyme IIb in rice by artificial microRNA-and hairpin RNA-mediated RNA silencing. J. Exp. Bot. 62:4927–4941.
  • Buttery, R. G., Ling, L. C., Juliano, B. O. and Turnbaugh, J. G. (1983). Cooked rice aroma and 2-acetyl-1-pyrroline. J. Agri. Food Chem. 31:823–826.
  • Cabanos, C., Ekyo, A., Amari, Y., Kato, N., Kuroda, M., Nagaoka, S., Takaiwa, F., Utsumi, S. and Maruyama, N. (2013). High-level production of lactostatin, a hypocholesterolemic peptide, in transgenic rice using soybean A1aB1b as carrier. Transgenic Res. 22:621–629.
  • Cai, Y., Xie, D., Wang, Z. and Hong, M. (2002). Interaction of rice bZIP protein REB with the 5′-upstream region of both rice sbe1 gene and waxy gene. Chin. Sci. Bull. 47:310–314.
  • Cheah, T. W., Ismail, I., Sidek, N. M., Wagiran, A. and Abdullah, R. (2013). Biosynthesis of very long polyunsaturated Omega-3 and Omega-6 fatty acids in transgenic Japonica rice (Oryza sativa L). Australian J. Crop Sci. 7:1227.
  • Chen, J., Zhang, J., Liu, H., Hu, Y. and Huang, Y. (2012). Molecular strategies in manipulation of the starch synthesis pathway for improving storage starch content in plants (review and prospect for increasing storage starch synthesis). Plant Physiol. Biochem. 61:1–8.
  • Chen, L., Hao, L., Parry, M. A., Phillips, A. L. and Hu, Y. G. (2014). Progress in TILLING as a tool for functional genomics and improvement of crops. J. Integr. Plant Biol. 56:425–443.
  • Chen, M. H., Bergman, C., Pinson, S. and Fjellstrom, R. (2008). Waxy gene haplotypes: Associations with apparent amylose content and the effect by the environment in an international rice germplasm collection. J. Cereal Sci. 47:536–545.
  • Chen, M., Wei, X., Shao, G., Tang, S., Luo, J. and Hu, P. (2012). Fragrance of the rice grain achieved via artificial microRNA-induced down-regulation of OsBADH2. Plant Breed. 131:584–590.
  • Chen, S., Yang, Y., Shi, W., Ji, Q., He, F., Zhang, Z., Cheng, Z., Liu, X. and Xu, M. (2008). Badh2, encoding betaine aldehyde dehydrogenase, inhibits the biosynthesis of 2-acetyl-1-pyrroline, a major component in rice fragrance. Plant Cell 20:1850–1861.
  • Chen, Y., Liu, L., Shen, Y., Liu, S., Huang, J., Long, Q., Wu, W., Yang, C., Chen, H, Guo, X, Cheng, Z, Jiang, L. and Wan, J. (2015). Loss of function of the cytochrome P450 gene CYP78B5 causes giant embryos in rice. Plant Mol. Biol. Rep. 33:69–83.
  • Chen, Y., Wang, M., and Ouwerkerk, P. B. (2012). Molecular and environmental factors determining grain quality in rice. Food & Energy Security. 1:111–132.
  • Cheng, F. M., Zhong, L. J., Wang, F. and Zhang, G. P. (2005). Differences in cooking and eating properties between chalky and translucent parts in rice grains. Food Chem. 90:39–46.
  • Cho, H.-J., Brotherton, J. E., Song, H.-S. and Widholm, J. M. (2000). Increasing tryptophan synthesis in a forage legume Astragalus sinicus by expressing the tobacco feedback-insensitive anthranilate synthase (ASA2) gene. Plant Physiol. 123:1069–1076.
  • Chodok, P., Cove, D. J., Quatrano, R. S., Kanjana-Opas, A. and Kaewsuwan, S. (2012). Metabolic engineering and oil supplementation in Physcomitrella patens for activation of C22 polyunsaturated fatty acid production. J. Am. Oil Chem. Soc. 89:465–476.
  • Coast, O., Ellis, R. H., Murdoch, A. J., Quiñones, C. and Jagadish, K. S. (2015). High night temperature induces contrasting responses for spikelet fertility, spikelet tissue temperature, flowering characteristics and grain quality in rice. Functional Plant Biol. 42:149–161.
  • Crofts, N., Abe, K., Aihara, S., Itoh, R., Nakamura, Y., Itoh, K. and Fujita, N. (2012). Lack of starch synthase IIIa and high expression of granule-bound starch synthase I synergistically increase the apparent amylose content in rice endosperm. Plant Sci. 193:62–69.
  • Datta, K., Baisakh, N., Oliva, N., Torrizo, L., Abrigo, E., Tan, J., Rai, M., Rehana, S., Al-Babili, S., Beyer, P., Potrykus, I. and Datta, S. K. (2003). Bioengineered ‘golden’ indica rice cultivars with beta-carotene metabolism in the endosperm with hygromycin and mannose selection systems. Plant Biotechnol. J. 1:81–90.
  • Degenkolbe, T., Do, P. T., Kopka, J., Zuther, E., Hincha, D. K. and Köhl, K. I. (2013). Identification of drought tolerance markers in a diverse population of rice cultivars by expression and metabolite profiling. PLoS One. 8:e63637.
  • DellaPenna, D. and Pogson, B. J. (2006). Vitamin synthesis in plants: Tocopherols and carotenoids. Annu. Rev. Plant Biol. 57:711–738.
  • Demaison, L. and Moreau, D. (2002). Dietary n-3 polyunsaturated fatty acids and coronary heart disease-related mortality: A possible mechanism of action. Cell Mol Life Sci. 59:463–477.
  • Diaz de la Garza, R. I., Gregory, J. F. III and Hanson, A. D. (2007). Folate biofortification of tomato fruit. Proc. Natl. Acad. Sci. USA. 104:4218–4222.
  • Dipti, S. S., Bergman, C., Indrasari, S. D., Herath, T., Hall, R., Lee, H., Habibi, F., Bassinello, P. Z., Graterol, E., Ferraz, J. P. and Fitzgerald, M. (2012). The potential of rice to offer solutions for malnutrition and chronic diseases. Rice 5:16.
  • Diretto, G., Tavazza, R., Welsch, R., Pizzichini, D., Mourgues, F., Papacchioli, V., Beyer, P. and Giuliano, G. (2006). Metabolic engineering of potato tuber carotenoids through tuber-specific silencing of lycopene epsilon cyclase. BMC Plant Biol. 6:13.
  • Dixon, R. A. and Pasinetti, G. M. (2010). Flavonoids and isoflavonoids: From plant biology to agriculture and neuroscience. Plant Physiol. 154:453–457.
  • Dong, Y., Tsuzuki, E., Lin, D., Kamiunten, H., Terao, H., Matsuo, M. and Cheng, S. (2004). Molecular genetic mapping of quantitative trait loci for milling quality in rice (Oryza sativa L.). J. Cereal Sci. 40:109–114.
  • Duan, M. and Sun, S. S. (2005). Profiling the expression of genes controlling rice grain quality. Plant Mol. Biol. 59:165–178.
  • Dunwell, J. M. (2014). Transgenic cereals: Current status and future prospects. J. Cereal Sci. 59:419–434.
  • Endo, M., Mikami, M. and Toki, S. (2015). Multigene knockout utilizing off-target mutations of the CRISPR/Cas9 system in rice. Plant Cell Physiol. 56:41–47.
  • Esa, N. M., Ling, T. B. and Peng, L. S. (2013). By-products of rice processing: An overview of health benefits and applications. J. Rice Res. 1:2.
  • Fader, G., Jung, W., McGonigle, B., Odell, J. and Yu, X. (2006). Nucleic acid fragments encoding isoflavone synthase. U.S. Patent Application. 11/478:024.
  • Falco, S. C., Guida, T., Locke, M., Mauvais, J., Sanders, C., Ward, R. T. and Webber, P. (1995). Transgenic canola and soybean seeds with increased lysine. Nat. Biotechnol. 13:577–582.
  • Fan, C., Xing, Y., Mao, H., Lu, T., Han, B., Xu, C., Li, X. and Zhang, Q. (2006). GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein. Theor. Appl. Genet. 112:1164–1171.
  • FAO. (2012). Available from http://faostat.fao.org/site/339/default.aspx. 2012.
  • Farré, G., Blancquaert, D., Capell, T., Van Der Straeten, D., Christou, P. and Zhu, C. (2014). Engineering complex metabolic pathways in plants. Annu. Rev. Plant Biol. 65:187–223.
  • Farré, G., Sudhakar, D., Naqvi, S., Sandmann, G., Christou, P., Capell, T. and Zhu, C. (2012). Transgenic rice grains expressing a heterologous ρ-hydroxyphenylpyruvate dioxygenase shift tocopherol synthesis from the γ to the α isoform without increasing absolute tocopherol levels. Transgenic Res. 21:1093–1097.
  • Feng, Q., Zhang, Y., Hao, P., Wang, S., Fu, G., Huang, Y., Li, Y., Zhu, J., Liu, Y., Hu, X., Jia, P., Zhang, Y., Zhao, Q., Ying, K., Yu, S., Tang, Y., Weng, Q., Zhang, L., Lu, Y., Mu, J., Lu, Y., Zhang, L. S., Yu, Z., Fan, D., Liu, X., Lu, T., Li, C., Wu, Y., Sun, T., Lei, H., Li, T., Hu, H., Guan, J., Wu, M., Zhang, R., Zhou, B., Chen, Z., Chen, L., Jin, Z., Wang, R., Yin, H., Cai, Z., Ren, S., Lv, G., Gu, W., Zhu, G., Tu, Y., Jia, J., Zhang, Y., Chen, J., Kang, H., Chen, X., Shao, C., Sun, Y., Hu, Q., Zhang, X., Zhang, W., Wang, L., Ding, C., Sheng, H., Gu, J., Chen, S., Ni, L., Zhu, F., Chen, W., Lan, L., Lai, Y., Cheng, Z., Gu, M., Jiang, J., Li, J., Hong, G., Xue, Y. and Han, B. (2002). Sequence and analysis of rice chromosome 4. Nature 420:316–320.
  • Feng, X. and Yoshida, K. T. (2004). Molecular approaches for producing low-phytic-acid grains in rice. Plant Biotechnol. J. 21:183–189.
  • Fitzgerald, M. A., McCouch, S. R. and Hall, R. D. (2009). Not just a grain of rice: the quest for quality. Trends Plant Sci. 14:133–139.
  • Fitzgerald, M. A., Sackville Hamilton, N. R., Calingacion, M. N., Verhoeven, H. A. and Butardo, V. M. (2008). Is there a second fragrance gene in rice? Plant Biotechnol. J. 6:416–423.
  • Frizzi, A., Huang, S., Gilbertson, L. A., Armstrong, T. A., Luethy, M. H. and Malvar, T. M. (2008). Modifying lysine biosynthesis and catabolism in corn with a single bifunctional expression/silencing transgene cassette. Plant Biotechnol. J. 6:13–21.
  • Fu, F. F. and Xue, H. W. (2010). Coexpression analysis identifies Rice Starch Regulator1, a rice AP2/EREBP family transcription factor, as a novel rice starch biosynthesis regulator. Plant Physiol. 154:927–938.
  • Fujita, N. (2014). Starch biosynthesis in rice endosperm. Agri-Biosci. Monogr. 4:1–18.
  • Fujiwara, Y., Aiki, Y., Yang, L., Takaiwa, F., Kosaka, A., Tsuji, N., Shiraki, K. and Sekikawa, K. (2010). Extraction and purification of human interleukin-10 from transgenic rice seeds. Protein Expr. Purif. 72:125–130.
  • Galili, G. (2002). New insights into the regulation and functional significance of lysine metabolism in plants. Annu. Rev. Plant Biol. 7:153–156.
  • Galili, G., Amir, R., Hoefgen, R. and Hesse, H. (2005). Improving the levels of essential amino acids and sulfur metabolites in plants. Biol. Chem. 386:817–831.
  • Gayen, D., Ali, N., Ganguly, M., Paul, S., Datta, K. and Datta, S. K. (2014). RNAi mediated silencing of lipoxygenase gene to maintain rice grain quality and viability during storage. Plant Cell Tiss. Org. Cult. 118:229–243.
  • Gerdes, S., Lerma-Ortiz, C., Frelin, O., Seaver, S. M., Henry, C. S., de Crécy-Lagard, V. and Hanson, A. D. (2012). Plant B vitamin pathways and their compartmentation: a guide for the perplexed. J. Exp. Bot. 63:5379–5395.
  • Gibson, R. S., Perlas, L. and Hotz, C. (2006). Improving the bioavailability of nutrients in plant foods at the household level. Proc. Nutri. Soc. 65:160–168.
  • Gillies, S. A., McIntosh, S. R. and Henry, R. J. (2008). A transgenic cereal crop with enhanced folate: rice expressing wheat HPPK/DHPS. In: 11th International Wheat Genetics Symposium, Brisbane, Qld, pp. 24–28.
  • Goff, S. A., Ricke, D., Lan, T. H., Presting, G., Wang, R., Dunn, M., Glazebrook, J., Sessions, A., Oeller, P., Varma, H., Hadley, D., Hutchison, D., Martin, C., Katagiri, F., Lange, B. M., Moughamer, T., Xia, Y., Budworth, P., Zhong, J., Miguel, T., Paszkowski, U., Zhang, S., Colbert, M., Sun, W. L., Chen, L., Cooper, B., Park, S., Wood, T. C., Mao, L., Quail, P., Wing, R., Dean, R., Yu, Y., Zharkikh, A., Shen, R., Sahasrabudhe, S., Thomas, A., Cannings, R., Gutin, A., Pruss, D., Reid, J., Tavtigian, S., Mitchell, J., Eldredge, G., Scholl, T., Miller, R. M., Bhatnagar, S., Adey, N., Rubano, T., Tusneem, N., Robinson, R., Feldhaus, J., Macalma, T., Oliphant, A. and Briggs, S. (2002). A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science 296:92–100.
  • Goffman, F. D. and Bergman, C. J. (2004). Rice kernel phenolic content and its relationship with antiradical efficiency. J. Sci. Food Agric. 84:1235–1240.
  • Gong, C. Y., Li, Q., Yu, H. T., Wang, Z. and Wang, T. (2012). Proteomics insight into the biological safety of transgenic modification of rice as compared with conventional genetic breeding and spontaneous genotypic variation. J. Proteome Res. 11:3019–3029.
  • Goto, F., and Yoshihara, T. (2001). Improvement of micronutrient contents by genetic engineering. Development of high iron content crops. Plant Biotechnol. J. 18:7–15.
  • Goto, F., Yoshihara, T., Shigemoto, N., Toki, S. and Takaiwa, F. (1999). Iron fortification of rice seed by the soybean ferritin gene. Nat. Biotechnol. 17:282–286.
  • Goufo, P., Falco, V., Brites, C., Wessel, D. F., Kratz, S., Rosa, E. A., Carranca, C. and Trindade, H. (2014). Effect of elevated carbon dioxide concentration on rice quality: Nutritive value, color, milling, cooking, and eating qualities. Cereal Chem. 91:513–521.
  • Graham, R. D., Welch, R. M. and Bouis, H. E. (2001). Addressing micronutrient malnutrition through enhancing the nutritional quality of staple foods: Principles, perspectives and knowledge gaps. Advan. Agron. 70:77–142.
  • Hagan, N. D., Upadhyaya, N., Tabe, L. M. and Higgins, T. J. V. (2003). The redistribution of protein sulfur in transgenic rice expressing a gene for a foreign, sulfur-rich protein. Plant J. 34:1–11.
  • Halford, N. G., Curtis, T. Y., Chen, Z. and Huang, J. (2014). Effects of abiotic stress and crop management on cereal grain composition: implications for food quality and safety. J. Exp. Bot. doi: 10.1093/jxb/eru473
  • Hanashiro, I., Itoh, K., Kuratomi, Y., Yamazaki, M., Igarashi, T., Matsugasako, J. I. and Takeda, Y. (2008). Granule-bound starch synthase I is responsible for biosynthesis of extra-long unit chains of amylopectin in rice. Plant Cell Physiol. 49:925–933.
  • Hanson, A. D., and Gregory III, J. F. (2011). Folate biosynthesis, turnover, and transport in plants. Annu. Rev. Plant Biol. 62:105–125.
  • Hoa, T. T. C., Al-Babili, S., Schaub, P., Potrykus, I. and Beyer, P. (2003). Golden Indica and Japonica rice lines amenable to deregulation. Plant Physiol. 133:161–169.
  • Holler, S., Ueda, Y., Wu, L., Wang, Y., Hajirezaei, M. R., Ghaffari, M. R., Wiren, N. V. and Frei, M. (2015). Ascorbate biosynthesis and its involvement in stress tolerance and plant development in rice (Oryza sativa L.). Plant Mol Biol. 88:545–560.
  • Hood, E. E., Witcher, D. R., Maddock, S., Meyer, T., Baszczynski, C., Bailey, M., Flynn, P., Register, J., Marshall, L., Bond, D., Kulisek, E., Kusmadi, A., Evangelista, R., Nikolov, Z., Wooge, C., Mehigh, R. J., Herman, R., Kappel, W. K., Ritland, D., Li, C. P. and Howard, J. A. (1997). Commercial production of avidin from transgenic maize: Characterization of transformants, production, processing, extraction and purification. Mol. Breed. 3:291–306.
  • Hotz, C. and Brown, K. H. (2004). Assessment of the risk of zinc deficiency in populations and options for its control. Food Nutr. Bull. 25(suppl):S95–203.
  • Houmard, N. M., Mainville, J. L., Bonin, C. P., Huang, S., Luethy, M. H. and Malvar, T. M. (2007). High-lysine corn generated by endosperm-specific suppression of lysine catabolism using RNAi. Plant Biotechnol. J. 5:605–614.
  • Hsu, Y. C., Tseng, M. C., Wu, Y. P., Lin, M. Y., Wei, F. J., Hwu, K. K., Hsing, Y. and Lin, Y. R. (2014). Genetic factors responsible for eating and cooking qualities of rice grains in a recombinant inbred population of an inter-subspecific cross. Mol. Breed. 34:655–673.
  • Huang, J., Cai, M., Long, Q., Liu, L., Lin, Q., Jiang, L., Chen, S. and Wan, J. (2014). OsLOX2, a rice type I lipoxygenase, confers opposite effects on seed germination and longevity. Transgenic Res. 23:643–655.
  • Huang, R., Jiang, L., Zheng, J., Wang, T., Wang, H., Huang, Y. and Hong, Z. (2013). Genetic bases of rice grain shape: So many genes, so little known. Trends Plant Sci. 18:218–226.
  • Impa, S. M. and Johnson-Beebout, S. E. (2012). Mitigating zinc deficiency and achieving high grain Zn in rice through integration of soil chemistry and plant physiology research. Plant and Soil. 361:3–41.
  • Inoue, H., Kobayashi, T., Nozoye, T., Takahashi, M., Kakei, Y., Suzuki, K., Nakazono, M., Nakanishi, H., Mori, S. and Nishizawa, N. K. (2009). Rice OsYSL15 is an iron-regulated iron (III)-deoxymugineic acid transporter expressed in the roots and is essential for iron uptake in early growth of the seedlings. J. Biol. Chem. 284:3470–3479.
  • Ishimaru, Y., Masuda, H., Bashir, K., Inoue, H., Tsukamoto, T., Takahashi, M., Nakanishi, H., Aoki, N., Hirose, T., Ohsugi, R. and Nishizawa, N. K. (2010). Rice metal-nicotianamine transporter, OsYSL2, is required for the long-distance transport of iron and manganese. Plant J. 62:379–390.
  • Ishimaru, Y., Masuda, H., Suzuki, M., Bashir, K., Takahashi, M., Nakanishi, H., Mori, S. and Nishizawa, N. K. (2007). Overexpression of the OsZIP4 zinc transporter confers disarrangement of zinc distribution in rice plants. J Exp Bot. 58:2909–2915.
  • Ishimaru, Y., Suzuki, M., Tsukamoto, T., Suzuki, K., Nakazono, M., Kobayashi, T., Wada, Y., Watanabe, S., Matsuhashi, S., Takahashi, M., Nakanishi, H., Mori, S. and Nishizawa, N. K. (2006). Rice plants take up iron as an Fe3+-phytosiderophore and as Fe2+. Plant J. 45:335–346.
  • Isshiki, M., Nakajima, M., Satoh, H. and Shimamoto, K. (2000). dull: Rice mutants with tissue-specific effects on the splicing of the waxy pre‐mRNA. Plant J. 23:451–460.
  • Itoh, K., Ozaki, H., Okada, K., Hori, H., Takeda, Y. and Mitsui, T. (2003). Introduction of Wx transgene into rice wx mutants leads to both high-and low-amylose rice. Plant Cell Physiol. 44:473–480.
  • Jain, R. K., Kumar, J., Jain, S. and Chowdhury, V. K. (2013). Molecular strategies for improving mineral density and bioavailability in Rice. In: Biotechnology: Prospects and Applications, pp. 53–66. Salar, R. K. et al., Eds., Springer, India.
  • Jaiwal, P. K. (2006). Plant Genetic Engineering, vol.7: Metabolic Engineering and Molecular Farming-1. Studium Press, LLC Houston, USA.
  • Jaiwal, P. K., Sahoo, L., Singh, N. D. and Singh, R. P. (2002). Strategies to deal with the concern about marker genes in transgenic plants : some environmental approaches. Curr. Sci. 83:128–136.
  • Jakociunas, T., Bonde, I., Herrgard, M., Harrison, S. J., Kristensen, M., Pedersen, L. E., Jensen, M. K. and Keasling, J. D. (2015). Multiplex metabolic pathway engineering using CRISPR/Cas9 in Saccharomyces cerevisiae. Metab. Eng. 28:213–22.
  • James, M. G., Denyer, K. and Myers, A. M. (2003). Starch synthesis in the cereal endosperm. Curr. Opin. Plant Biol. 6:215–222.
  • Jeon, J. S., Ryoo, N., Hahn, T. R., Walia, H. and Nakamura, Y. (2010). Starch biosynthesis in cereal endosperm. Plant Physiol. and Biochem. 48:383–392.
  • Jeon, Y. H., Oh, S. J., Yang, H. J., Lee, S. Y. and Pyun, B. Y. (2011). Identification of major rice allergen and their clinical significance in children. Korean J. Pediatr. 54:414–421.
  • Jiang, L., Yu, X., Qi, X., Yu, Q., Deng, S., Bai, B., Li, N., Zhang, A., Zhu, C., Liu, B. and Pang, J. (2013). Multigene engineering of starch biosynthesis in maize endosperm increases the total starch content and the proportion of amylose. Transgenic Res. 22:1133–1142.
  • Jiang, Y., Cai, Z., Xie, W., Long, T., Yu, H. and Zhang, Q. (2012). Rice functional genomics research: Progress and implications for crop genetic improvement. Biotechnol. Adv. 30:1059–1070.
  • Juliano, B. O. (2003). An adventure in rice chemistry and quality: The Japan connection. J. Appl. Glycosci. 50:73–76.
  • Kaewnaree, P., Vichitphan, S., Klanrit, P., Siri, B. and Vichitphan, K. (2011). Effect of accelerated aging process on seed quality and biochemical changes in sweet pepper (Capsicum annuum Linn.) seeds. Biotechnology 10:175–182.
  • Kankaanpaa, P., Sutas, Y., Salminen, S., Lichtenstein, A. and Isolauri, E. (1999). Dietary fatty acids and allergy. Ann. Med. 31:282–287.
  • Kathuria, H., Giri, J., Tyagi, H. and Tyagi, A. K. (2007). Advances in transgenic rice biotechnology. Crit. Rev. Plant Sci. 26:65–103.
  • Kato, T., Miyahara, K. and Nishino, T. (2000). Release of allergenic proteins from rice grains induced by high hydrostatic pressure. J. Agric. Food Chem. 48:3124–3129.
  • Katsube, T., Kurisaka, N., Ogawa, M., Maruyama, N., Ohtsuka, R., Utsumi, S. and Takaiwa, F. (1999). Accumulation of soybean glycinin and its assembly with the glutelins in rice. Plant Physiol. 120:1063–1074.
  • Kawakatsu, T. and Takaiwa, F. (2010). Cereal seed storage protein synthesis: Fundamental processes for recombinant protein production in cereal grains. Plant Biotechol. J. 8:939–953.
  • Kawamukai, M. (2002). Biosynthesis, bioproduction and novel roles of ubiquinone. J. Biosci. Bioeng. 94:511–517.
  • Kazuki, K., Takehara, S., Uno, N., Imaoka, N., Abe, S., Takiguchi, M., Hiramatsu, K., Oshimura, M. and Kazuki, Y. (2013). Highly stable maintenance of a mouse artificial chromosome in human cells and mice. Biochem. Biophys. Res. Comm. 442:44–50.
  • Kepiro, J. L., McClung, A. M., Chen, M. H., Yeater, K. M. and Fjellstrom, R. G. (2008). Mapping QTLs for milling yield and grain characteristics in a tropical japonica long grain cross. J. Cereal Sci. 48:477–485.
  • Khush, G. S. (2005). What it will take to feed 5.0 billion rice consumers in 2030? Plant Mol. Biol. 59:1–6.
  • Kim, H. Y., Ko, J., Kang, S. and Tenhunen, J. (2013). Impacts of climate change on paddy rice yield in a temperate climate. Global Change Biology. 19:548–562.
  • Kim, S. I. and Tai, T. H. (2014). Identification of novel rice low phytic acid mutations via TILLING by sequencing. Mol. Breed. 34:1717–1729.
  • Kim, S. I., Andaya, C. B., Goyal, S. S. and Tai, T. H. (2008a). The rice OsLpa1 gene encodes a novel protein involved in phytic acid metabolism. Theor. Appl. Genet. 117:769–779.
  • Kim, S. I., Andaya, C. B., Newman, J. W., Goyal, S. S. and Tai, T. H. (2008b). Isolation and characterization of a low phytic acid rice mutant reveals a mutation in the rice orthologue of maize MIK. Theor. Appl. Genet. 117:1291–1301.
  • Kim, S. T., Kim, S. G., Agrawal, G. K., Kikuchi, S. and Rakwal, R. (2014). Rice proteomics: a model system for crop improvement and food security. Proteomics. 14:593–610.
  • Kitagawa, K., Kurinami, S., Oki, K., Abe, Y., Ando, T., Kono, I., Yano, M., Kitano, H. and Iwasaki, Y. (2010). A novel kinesin 13 protein regulating rice seed length. Plant Cell Physiol. 51:1315–1329.
  • Koike, S., Inoue, H., Mizuno, D., Takahashi, M., Nakanishi, H., Mori, S. and Nishizawa, N. K. (2004). OsYSL2 is a rice metal-nicotianamine transporter that is regulated by iron and expressed in the phloem. Plant J. 39:415–424.
  • Komatsu, S. (2005). Rice proteome database: A step toward functional analysis of the rice genome. Plant Mol. Biol. 59:179–190.
  • Kubo, A., Fujita, N., Harada, K., Matsuda, T., Satoh, H. and Nakamura, Y. (1999). The starch-debranching enzymes isoamylase and pullulanase are both involved in amylopectin biosynthesis in rice endosperm. Plant Physiol. 121:399–410.
  • Kuo, Y. C., Tan, C. C., Ku, J. T., Hsu, W. C., Su, S. C., Lu, C. A. and Huang, L. F. (2013). Improving pharmaceutical protein production in Oryza sativa. Intl. J. Mol. Sci. 14:8719–8739.
  • Kusano, M., Yang, Z., Okazaki, Y., Nakabayashi, R., Fukushima, A. and Saito, K. (2015). Using metabolomic approaches to explore chemical diversity in rice. Mol. Plant 8:58–67.
  • Kuwano, M., Mimura, T., Takaiwa, F. and Yoshida, K. T. (2009). Generation of stable ‘low phytic acid' transgenic rice through antisense repression of the 1d-myo-inositol 3-phosphate synthase gene (RINO1) using the 18-kDa oleosin promoter. Plant Biotechol. J. 7:96–105.
  • Kuwano, M., Ohyama, A., Tanaka, Y., Mimura, T., Takaiwa, F., and Yoshida, K. T. (2006). Molecular breeding for transgenic rice with low-phytic-acid phenotype through manipulating myo-inositol 3-phosphate synthase gene. Mol. Breed. 18:263–272.
  • Lai, J. and Messing, J. (2002). Increasing maize seed methionine by mRNA stability. Plant J. 30:395–402.
  • Larson, S. R., Rutger, J. N., Young, K. A. and Raboy, V. (2000). Isolation and genetic mapping of a non-lethal rice (L.) mutation. Crop Sci. 40:1397–1405.
  • Lau, O. S. and Sun, S. S. (2009). Plant seeds as bioreactors for recombinant protein production. Biotechnol. Adv. 27:1015–1022.
  • Lee, S. I., Kim, H. U., Lee, Y. H., Suh, S. C., Lim, Y. P., Lee, H. Y. and Kim, H. I. (2001). Constitutive and seed-specific expression of a maize lysine-feedback-insensitive dihydrodipicolinate synthase gene leads to increased free lysine levels in rice seeds. Mol. Breed. 8:75–84.
  • Lee, S., Chiecko, J. C., Kim, S. A., Walker, E. L., Lee, Y., Guerinot, M. L. and An, G. (2009). Disruption of OsYSL15 leads to iron inefficiency in rice plants. Plant Physiol. 150:786–800.
  • Lee, S., Jeon, U. S., Lee, S. J., Kim, Y. K., Persson, D. P., Husted, S., Schjorring, J. K., Kakei, Y., Masuda, H., Nishizawa, N. K. and An, G. (2009). Iron fortification of rice seeds through activation of the nicotianamine synthase gene. Proc. Natl. Acad. Sci. USA. 106:22014–22019.
  • Lee, S., Jeong, H. J., Kim, S. A., Lee, J., Guerinot, M. L. and An, G. (2010). OsZIP5 is a plasma membrane zinc transporter in rice. Plant Mol. Biol. 73:507–517.
  • Lee, S., Kim, Y.-S., Jeon, U. S., Kim, Y.-S, Schjoerring, J. K. and An, G. (2012). Activation of rice nicotinamine synthase 2 (OsNAS2) enhances iron availability for biofortification. Mol. Cell. 3:33.
  • Lee, T. T., Wang, M. M., Hou, R. C., Chen, L. J., Su, R. C., Wang, C. S. and Tzen, J. T. (2003). Enhanced methionine and cysteine levels in transgenic rice seeds by the accumulation of sesame 2S albumin. Biosci. Biotech. Biochem. 67:1699–1705.
  • Li, J., Thomson, M. and McCouch, S. R. (2004). Fine mapping of a grain-weight quantitative trait locus in the pericentromeric region of rice chromosome 3. Genetics 168:2187–2195.
  • Li, T., Liu, B., Spalding, M. H., Weeks, D. P. and Yang, B. (2012). High-efficiency TALEN-based gene editing produces disease-resistant rice. Nat. Biotechnol. 30:390–392.
  • Li, W. X., Zhao, H. J., Pang, W. Q., Cui, H. R., Poirier, Y. and Shu, Q. Y. (2014). Seed-specific silencing of OsMRP5 reduces seed phytic acid and weight in rice. Transgenic Res. 23:585–599.
  • Lisle, A. J., Martin, M. and Fitzgerald, M. A. (2000). Chalky and translucent rice grains differ in starch composition and structure and cooking properties. Cereal Chem. 77:627–632.
  • Liu, C-J., Blount, J. W., Steele, C. L. and Dixon, R. A. (2002). Bottlenecks for metabolic engineering of isoflavone glycoconjugates in Arabidopsis. Proc. Natl. Acad. Sci. USA. 99:14578–14583.
  • Liu, D., Wang, W. and Cai, X. (2014). Modulation of amylose content by structure‐based modification of OsGBSS1 activity in rice (Oryza sativa L.). Plant Biotechol. J. 12:1297–1307.
  • Liu, H. L., Yin, Z. J., Xiao, L., Xu, Y. N. and Qu, L. Q. (2012). Identification and evaluation of ω-3 fatty acid desaturase genes for hyperfortifying α-linolenic acid in transgenic rice seed. J. Exp. Bot. 63:3279–3287.
  • Liu, L., Waters, D. L., Rose, T. J., Bao, J. and King, G. J. (2013). Phospholipids in rice: significance in grain quality and health benefits: a review. Food chem. 139:1133–1145.
  • Liu, Q. L., Xu, X. H., Ren, X. L., Fu, H. W., Wu, D. X. and Shu, Q. Y. (2007). Generation and characterization of low phytic acid germplasm in rice (Oryza sativa L.). Theor. Appl. Genet. 114:803–814.
  • Long, X., Liu, Q., Chan, M., Wang, Q. and Sun, S. S. (2013). Metabolic engineering and profiling of rice with increased lysine. Plant Biotechnol. J. 11:490–501.
  • Lonsdale, D. (2006). A review of the biochemistry, metabolism and clinical benefits of thiamin (e) and its derivatives. Evid. Based Complementary Altern. Med. 3:49–59.
  • Lovegrove, A., Wilkinson, M. D., Freeman, J., Pellny, T. K., Tosi, P., Saulnier, L., Shewry, P. R. and Mitchell, R. A. (2013). RNA interference suppression of genes in glycosyl transferase families 43 and 47 in wheat starchy endosperm causes large decreases in arabinoxylan content. Plant Physiol. 163:95–107.
  • Lucca, P., Hurrell, R. and Potrykus, I. (2001). Genetic engineering approaches to improve the bioavailability and the level of iron in rice grains. Theor. Appl. Genet. 102:392–397.
  • Lusser, M., Parisi, C., Plan, D. and Rodríguez-Cerezo, E. (2012). Development of new biotechnologies in plant breeding. Nat. Biotechnol. 30:231–239.
  • Macovei, A., Gill, S. S. and Tuteja, N. (2012). microRNAs as promising tools for improving stress tolerance in rice. Plant Signal. Behav. 7:1–6.
  • Madan, P., Jagadish, S. V. K., Craufurd, P. Q., Fitzgerald, M., Lafarge, T. and Wheeler, T. R. (2012). Effect of elevated CO2 and high temperature on seed-set and grain quality of rice. J. Exp. Bot. 63:3843–3852.
  • Man, J., Yang, Y., Huang, J., Zhang, C., Chen, Y., Wang, Y., Gu, M., Liu, Q. and Wei, C. (2013). Effect of simultaneous inhibition of starch branching enzymes I and IIb on the crystalline structure of rice starches with different amylose contents. J. Agri. Food Chem. 61:9930–9937.
  • Mandal, S. S., Kumar, N. and Verma, D. K. (2000). Quality indices in rice: a review. Agricultural Reviews (India). 21:178–185.
  • Maruyama, K., Urano, K., Yoshiwara, K., Morishita, Y., Sakurai, N., Suzuki, H., Kojima, M., Sakakibara, H., Shibata, D., Saito, K., Shinozaki, K. and Yamaguchi-Shinozaki, K. (2014). Integrated analysis of the effects of cold and dehydration on rice metabolites, phytohormones, and gene transcripts. Plant Physiol. 164:1759–1771.
  • Massey, K. A., Blakeslee, C. H. and Pitkow, H. P. (1998). A review of physiological and metabolic effects of essential amino acids. Amino Acids. 14:271–300.
  • Masuda, H., Kobayashi, T., Ishimaru, Y., Takahashi, M., Aung, M. S., Nakanishi, H., Mori, S. and Nishizawa, N. K. (2013). Iron-biofortification in rice by the introduction of three barley genes participated in mugineic acid biosynthesis with soybean ferritin gene. Front. Plant Sci. 4. Available from doi.10.3389/fpls.2013.00132
  • Masumoto, C., Miyazawa, S. I., Ohkawa, H., Fukuda, T., Taniguchi, Y., Murayama, S., Kusano, M., Saito, K., Fukayama, H. and Miyao, M. (2010). Phosphoenolpyruvate carboxylase intrinsically located in the chloroplast of rice plays a crucial role in ammonium assimilation. Proc. Natl. Acad. Sci. USA. 107:5226–5231.
  • Matsuda, T., Nakasa, M., Alvarez, A. M., Izumi, H., Kato, T. and Tada, Y. (2006). Rice-seed allergenic protein and hypoallergenic rice. In: Nutraceutical Proteins and Peptides in Health and Disease. pp 493–511. Mine, Y. and Shahidi, F. Eds. Taylor and Francis Group, London.
  • Menguer, P. K., Farthing, E., Peaston, K. A., Ricachenevsky, F. K., Fett, J. P. and Williams, L. E. (2013). Functional analysis of the rice vacuolar zinc transporter OsMTP1. J. Exp. Bot. 64:2871–2883.
  • Mikami, I., Uwatoko, N., Ikeda, Y., Yamaguchi, J., Hirano, H. Y., Suzuki, Y. and Sano, Y. (2008). Allelic diversification at the wx locus in landraces of Asian rice. Theor. Appl. Genet. 116:979–989.
  • Miura, K., Ashikari, M. and Matsuoka, M. (2011). The role of QTLs in the breeding of high-yielding rice. Trends Plant Sci. 16:319–326.
  • Morell, M. K. and Myers, A. M. (2005). Towards the rational design of cereal starches. Curr. Opin. Plant Biol. 8:204–210.
  • Morris, J., Hirschi, K. and Yang, J. (2014). Biofortifying foods: Tripping over high hurdles. Intl. J. Biotechnol. Food Sci. 2:1–15.
  • Morris, W. L., Ducreux, L. J., Fraser, P. D., Millam, S. and Taylor, M. A. (2006). Engineering ketocarotenoid biosynthesis in potato tubers. Metab. Eng. 8:253–263.
  • Nagai, Y. S., Sakulsingharoj, C., Edwards, G. E., Satoh, H., Greene, T. W., Blakeslee, B. and Okita, T. W. (2009). Control of starch synthesis in cereals: metabolite analysis of transgenic rice expressing an up-regulated cytoplasmic ADP-glucose pyrophosphorylase in developing seeds. Plant Cell Physiol. 50:635–643.
  • Nagasawa, N., Hibara, K. I., Heppard, E. P., Vander Velden, K. A., Luck, S., Beatty, M., Nagato, Y. and Sakai, H. (2013). GIANT EMBRYO encodes CYP78A13, required for proper size balance between embryo and endosperm in rice. Plant J. 75:592–605.
  • Naidu, K. A. (2003). Vitamin C in human health and disease is still a mystery? An overview. J. Nutr. 2:7.
  • Nakamura, Y., Kubo, A., Shimamune, T., Matsuda, T., Harada, K. and Satoh, H. (1997). Correlation between activities of starch debranching enzyme and α-polyglucan structure in endosperms of sugary-1 mutants of rice. Plant J. 12:143–153.
  • Naqvi, S., Farré, G., Sanahuja, G., Capell, T., Zhu, C. and Christou, P. (2010). When more is better: multigene engineering in plants. Trends Plant Sci. 15:48–56.
  • Naqvi, S., Farré, G., Zhu, C., Sandmann, G., Capell, T. and Christou, P. (2011). Simultaneous expression of Arabidopsis ρ-hydroxyphenylpyruvate dioxygenase and MPBQ methyltransferase in transgenic corn kernels triples the tocopherol content. Transgenic Res. 20:177–181.
  • Naqvi, S., Zhu, C., Farre, G., Ramessar, K., Bassie, L., Breitenbach, J., Perez Conesa, D., Ros, G., Sandmann, G., Capell, T. and Christou, P. (2009). Transgenic multivitamin corn through biofortification of endosperm with three vitamins representing three distinct metabolic pathways. Proc. Natl. Acad. Sci. USA. 106:7762–7767.
  • Ndindeng, S. A., Mapiemfu, D. L., Fantong, W., Nchinda, V. P., Ambang, Z. and Manful, J. T. (2014). Postharvest adaptation strategies to the effects of temperature variations and farmer-miller practices on the physical quality of rice in Cameroon. Amer. J. Climate Change 3:129–244.
  • Nemeth, C., Freeman, J., Jones, H. D., Sparks, C., Pellny, T. K., Wilkinson, M. D., Dunwell, J., Andersson, A. A. M., Aman, P., Guillon, F., Saulnier, L., Mitchell, R. A. C. and Shewry, P. R. (2010). Down-regulation of the CSLF6 gene results in decreased (1, 3; 1, 4)-β-D-glucan in endosperm of wheat. Plant Physiol. 152:1209–1218.
  • Nguyen, H. C., Hoefgen, R. and Hesse, H. (2012). Improving the nutritive value of rice seeds: Elevation of cysteine and methionine contents in rice plants by ectopic expression of a bacterial serine acetyltransferase. J. Exp. Bot. 63:5991–6001.
  • Nishihara, M. and Nakatsuka, T. (2011). Genetic engineering of flavonoid pigments to modify flower color in floricultural plants. Biotechnol. Lett. 33:433–441.
  • O'Dell, B. L., De Boland, A. R. and Koirtyohann, S. R. (1972). Distribution of phytate and nutritionally important elements among the morphological components of cereal grains. J. Agri. Food Chem. 20:718–723.
  • Ogo, Y., Ozawa, K., Ishimaru, T., Murayama, T. and Takaiwa, F. (2013). Transgenic rice seed synthesizing diverse flavonoids at high levels: A new platform for flavonoid production with associated health benefits. Plant Biotechnol. J. 11:734–746.
  • Ogo, Y., Wakasa, Y., Hirano, K., Urisu, A., Matsuda, T. and Takaiwa, F. (2014). Generation of transgenic rice with reduced content of major and novel high molecular weight allergens. Rice 7:19.
  • Ohara, K., Kokado, Y., Yamamoto, H., Sato, F. and Yazaki, K. (2004). Engineering of ubiquinone biosynthesis using the yeast coq2 gene confers oxidative stress tolerance in transgenic tobacco. Plant J. 40:734–743.
  • Okazaki, Y., Otsuki, H., Narisawa, T., Kobayashi, M., Sawai, S., Kamide, Y., Kusano, M., Aoki, T., Hirai, M. Y. and Saito, K. (2013). A new class of plant lipid is essential for protection against phosphorus depletion. Nat. Communications 4:1510.
  • Oki, K., Fujisawa, Y., Kato, H. and Iwasaki, Y. (2005). Study of the constitutively active form of the subunit of rice heterotrimeric G proteins. Plant Cell Physiol. 46:381–386.
  • Okuyama, H., Ichikawa, Y., Sun, Y., Hamazaki, T. and Lands, W. (2007). ω3 Fatty acids effectively prevent coronary heart disease and other late-onset diseases–The excessive linoleic acid syndrome. In: Prevention of Coronary Heart Disease, pp 83–103. Okuyama, H. Ed., World Rev Nutr Diet, Basel, Karger. Available from doi:10.1159/000097809
  • Oliva, N., Chadha-Mohanty, P., Poletti, S., Abrigo, E., Atienza, G., Torrizo, L., Garcia, R., Duenas Jr., C., Poncio, M. A., Balindong, J., Manzanilla, M., Montecillo, F., Zaidem, M., Barry, G., Herve, P., Shou, H. and Slamet-Loedin, I. H. (2014). Large-scale production and evaluation of marker-free indica rice IR64 expressing phytoferritin genes. Mol. Breed. 33:23–37.
  • Ou, J., Guo, Z., Shi, J., Wang, X., Liu, J., Shi, B., Guo, F., Zhang, C. and Yang, D. (2014). Transgenic rice endosperm as a bioreactor for molecular pharming. Plant Cell Rep. 33:585–594.
  • Paine, J. A., Shipton, C. A., Chaggar, S., Howells, R. M., Kennedy, M. J., Vernon, G., Wright, S. Y., Hinchliffe, E., Adams, J. L., Silverstone, A. L. and Drake, R. (2005). Improving the nutritional value of Golden Rice through increased pro-vitamin A content. Nat. Biotechnol. 23:482–487.
  • Pandey, M. K., Rani, N. S., Madhav, M. S., Sundaram, R. M., Varaprasad, G. S., Sivaranjani, A. K. P., Bohra, A. and Kumar, A. (2012). Different isoforms of starch-synthesizing enzymes controlling amylose and amylopectin content in rice (Oryza sativa L.). Biotechnol. Adv. 30:1697–1706.
  • Parmar, S. S., Jaiwal, A., Dhankher, O. P. and Jaiwal, P. K. (2015). CoQ10 production in plants: Current status and future prospects. Crit. Rev. Biotechnol. 35:152–164.
  • Pinson, S. R., Tarpley, L., Yan, W., Yeater, K., Lahner, B., Yakubova, E., Huang, X-Y, Zhang, M., Guerinot, M. L. and Salt, D. E. (2015). Worldwide genetic diversity for mineral element concentrations in rice grain. Crop Sci. 55:294–311.
  • Pitkin, R. M. (2007). Folate and neural tube defects. Am. J. Clin. Nutr. 85:285S–288S.
  • Pourcel, L., Moulin, M. and Fitzpatrick, T. B. (2013). Examining strategies to facilitate vitamin B1 biofortification of plants by genetic engineering. Front. Plant Sci. 4:160. Available from doi: 10.3389/fpls.2013.00160
  • Qi, B., Fraser, T., Mugford, S., Dobson, G., Sayanova, O., Butler, J., Napier, J. A., Stobart, A. K. and Lazarus, C. M. (2004). Production of very long chain polyunsaturated omega-3 and omega-6 fatty acids in plants. Nat. Biotechnol. 22:739–745.
  • Qiu, X. (2003). Biosynthesis of docosahexaenoic acid (DHA, 22:6–4,7,10,13,16,19): two distinct pathways. Prostaglandins Leukot Essent Fatty acids. 68:181–186.
  • Qu, L. Q. and Takaiwa, F. (2004). Evaluation of tissue specificity and expression strength of rice seed component gene promoters in transgenic rice. Plant Biotechnol. J. 2:113–125.
  • Qu, L. Q., Xing, Y. P., Liu, W. X., Xu, X. P. and Song, Y. R. (2008). Expression pattern and activity of six glutelin gene promoters in transgenic rice. J. Exp. Bot. 59:2417–2424.
  • Qu, L. Q., Yoshihara, T., Ooyama, A., Goto, F. and Takaiwa, F. (2005). Iron accumulation does not parallel the high expression level of ferritin in transgenic rice seeds. Planta 222:225–233.
  • Radwanski, E. R. and Last, R. L. (1995). Tryptophan biosynthesis and metabolism: biochemical and molecular genetics. Plant Cell 7:921–934.
  • Rahman, S., Bird, A., Regina, A., Li, Z., Philippe Ral, J., McMaugh, S., Topping, D. and Morell, M. (2007). Resistant starch in cereals: Exploiting genetic engineering and genetic variation. J. Cereal Sci. 46:251–260.
  • Ramesh, S. A., Shin, R., Eide, D. J. and Schachtman, D. P. (2003). Differential metal selectivity and gene expression of two zinc transporters from rice. Plant Physiol. 133:126–134.
  • Rao, V. T., Mohan, Y. C., Bhadru, D., Bharathi, D. and Venkanna, V. (2014). Genetic variability and association analysis in rice. Intl. J. Appl. Biol. Pharma Tech. 5:63–65.
  • Rapala-Kozik, M. (2011). Vitamin B1 (thiamine): A cofactor for enzymes involved in the main metabolic pathways and an environmental stress protectant. Adv. Bot. Res. 58:37–90.
  • Raven, P. H. (2010). Does the use of transgenic plants diminish or promote biodiversity? New Biotechnol. 27:528–533.
  • Regina, A., Bird, A., Topping, D., Bowden, S., Freeman, J., Barsby, T., Hashemi, B. K., Li, Z., Rahman, S. and Morell, M. (2006). High-amylose wheat generated by RNA interference improves indices of large-bowel health in rats. Proc. Natl. Acad. Sci. USA. 103:3546–3551.
  • Regina, A., Kosar-Hashemi, B., Ling, S., Li, Z., Rahman, S. and Morell, M. (2010). Control of starch branching in barley defined through differential RNAi suppression of starch branching enzyme IIa and IIb. J. Exp. Bot. 61:1469–1482.
  • Ri, X. and Prentice, I. C. (2013). Multiple greenhouse-gas feedbacks from the land biosphere under future climate change scenarios. Nat. Climate Change 3:666–672.
  • Rice Chromosome 10 Sequencing Consortium. (2003). In-depth view of structure, activity, and evolution of rice chromosome 10. Science 300:1566–1569.
  • Roje, S. (2007). Vitamin B biosynthesis in plants. Phytochem. 68:1904–1921.
  • Ronald, P. C. (2014). Lab to farm: Applying research on plant genetics and genomics to crop improvement. PLoS Biology. 12:e1001878.
  • Sakulsingharoj, C., Choi, S. B., Hwang, S. K., Edwards, G. E., Bork, J., Meyer, C. R., Preiss, J. and Okita, T. W. (2004). Engineering starch biosynthesis for increasing rice seed weight: The role of the cytoplasmic ADP-glucose pyrophosphorylase. Plant Sci. 167:1323–1333.
  • Sanahuja, G., Farré, G., Berman, J., Zorrilla-López, U., Twyman, R. M., Capell, T., Christou, P. and Zhu, C. (2013). A question of balance: achieving appropriate nutrient levels in biofortified staple crops. Nutr. Res. Rev. 26:235–245.
  • Sasaki, T., Matsumoto, T., Yamamoto, K., Sakata, K., Baba, T., Katayose, Y., Wu, J., Niimura, Y., Cheng, Z., Nagamura, Y., Antonio, B. A., Kanamori, H., Hosokawa, S., Masukawa, M., Arikawa, K., Chiden, Y., Hayashi, M., Okamoto, M., Ando, T., Aoki, H., Arita, K., Hamada, M., Harada, C., Hijishita, S., Honda, M., Ichikawa, Y., Idonuma, A., Iijima, M., Ikeda, M., Ikeno, M., Ito, S., Ito, T., Ito, Y., Ito, Y., Iwabuchi, A., Kamiya, K., Karasawa, W., Katagiri, S., Kikuta, A., Kobayashi, N., Kono, I., Machita, K., Maehara, T., Mizuno, H., Mizubayashi, T., Mukai, Y., Nagasaki, H., Nakashima, M., Nakama, Y., Nakamichi, Y., Nakamura, M., Namiki, N., Negishi, M., Ohta, I., Ono, N., Saji, S., Sakai, K., Shibata, M., Shimokawa, T., Shomura, A., Song, J., Takazaki, Y., Terasawa, K., Tsuji, K., Waki, K., Yamagata, H., Yamane, H., Yoshiki, S., Yoshihara, R., Yukawa, K., Zhong, H., Iwama, H., Endo, T., Ito, H., Hahn, J. H., Kim, H. I., Eun, M. Y., Yano, M., Jiang, J. and Gojobori, T. (2002). The genome sequence and structure of rice chromosome 1. Nature 420:312–316.
  • Schmidt, M. A. and Herman, E. M. (2008). Proteome rebalancing in soybean seeds can be exploited to enhance foreign protein accumulation. Plant Biotechnol. J. 6:832–842.
  • Scolnik, P. A. and Bartley, G. E. (1994). Nucleotide sequence of Arabidopsis cDNA for phytoene synthase. Plant Physiol. 104:1471–1472.
  • Scolnik, P. A. and Bartley, G. E. (1996). A table of some cloned plant genes involved in isoprenoid biosynthesis. Plant Mol. Biol. Rep. 14:305–319.
  • Seo, M. S., Takahashi, S., Kadowaki, K. I., Kawamukai, M., Takahara, M. and Takamizo, T. (2011). Expression of CoQ10-producing ddsA transgene by efficient Agrobacterium-mediated transformation in Panicum meyerianum. Plant Cell Tiss. Org. Cult. 107:325–332.
  • Shan, Q., Zhang, Y., Chen, K., Zhang, K. and Gao, C. (2015). Creation of fragrant rice by targeted knockout of the OsBADH2 gene using TALEN technology. Plant Biotechnol. J. 13:791–800.
  • Shaul, O. and Galili, G. (1992a). Increased lysine synthesis in tobacco plants that express high levels of bacterial dihydrodipicolinate synthase in their chloroplasts. Plant J. 2:203–209.
  • Shaul, O. and Galili, G. (1992b). Threonine overproducing in transgenic tobacco plants expressing a mutant desensitized aspartate kinase from Escherichia coli. Plant Physiol. 100:1157–1163.
  • She, K. C., Kusano, H., Koizumi, K., Yamakawa, H., Hakata, M., Imamura, T., Fukuda, M., Naito, N., Tsurumaki, Y., Yaeshima, M., Tsuge, T., Matsumoto, K., Kudoh, M., Itoh, E., Kikuchi, S., Kishimoto, N., Yazaki, J., Ando, T., Yano, M., Sasaki, H. and Shimada, H. (2010). A novel factor FLOURY ENDOSPERM2 is involved in regulation of rice grain size and starch quality. Plant Cell 22:3280–3294.
  • Shi, P., Ye, Q., Han, G., Li, N., Wang, M., Fang, W. and Liu, Y. (2012). Living with global climate diversity-suggestions on international governance for coping with climate change risk. Intl. J. Disaster Risk Sci. 3:177–184.
  • Shimada, T., Wakita, Y., Otani, M. and Iba, K. (2000). Modification of fatty acid composition in rice plants by transformation with a tobacco microsomal ω-3 fatty acid desaturase gene (NtFAD3). Biotech. 17:43–48.
  • Shimizu, T., Lin, F., Hasegawa, M., Nojiri, H., Yamane, H. and Okada, K. (2012). The potential bioproduction of the pharmaceutical agent sakuranetin, a flavonoid phytoalexin in rice. Bioengineered. 3:352–357.
  • Shirasawa, K., Takeuchi, Y., Ebitani, T. and Suzuki, Y. (2008). Identification of gene for rice (Oryza sativa) seed lipoxygenase-3 involved in the generation of stale flavor and development of SNP markers for lipoxygenase-3 deficiency. Breed. Sci. 58:169–176.
  • Shomura, A., Izawa, T., Ebana, K., Ebitani, T., Kanegae, H., Konishi, S. and Yano, M. (2008). Deletion in a gene associated with grain size increased yields during rice domestication. Nat. Genetics. 40:1023–1028.
  • Simopoulos, A. P. (1991). Omega-3 fatty acids in health and disease and in growth and development. Am. J. Clin. Nutr. 54:438–463.
  • Sirko, A., Vanek, T., Gora-Sochacka, A. and Redkiewicz, P. (2011). Recombinant cytokines from plants. Int. J. Mol. Sci. 12:3536–3552.
  • Sivaprakash, K. R., Krishnan, S., Datta, S. K. and Parida, A. K. (2006). Tissue-specific histochemical localization of iron and ferritin gene expression in transgenic indica rice Pusa Basmati (Oryza sativa L.). J. Genetics 85:157.
  • Smidansky, E. D., Martin, J. M., Hannah, C. L., Fischer, A. M. and Giroux, M. J. (2003). Seed yield and plant biomass increases in rice are conferred by deregulation of endosperm ADP-glucose pyrophosphorylase. Planta 216:656–664.
  • Song, X. J., Huang, W., Shi, M., Zhu, M. Z. and Lin, H. X. (2007). A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase. Nat. Genetics. 39:623–630.
  • Sreenivasulu, N., Butardo, V. M., Misra, G., Cuevas, R. P., Anacleto, R. and Kishor, P. B. K. (2015). Designing climate-resilient rice with ideal grain quality suited for high-temperature stress. J. Exp. Bot. 66:1737–1748.
  • Sreevidya, V. S., Rao, C. S., Sullia, S. B., Ladha, J. K. and Reddy, P. M. (2006). Metabolic engineering of rice with soybean isoflavone synthase for promoting nodulation gene expression in rhizobia. J. Exp. Bot. 57:1957–1969.
  • Sripriya, R., Sangeetha, M., Parameswari, C. and Veluthambi, K. (2011). Improved Agrobacterium- mediated co-transformation and selectable marker elimination in transgenic rice by using a high copy number pBin19-derived binary vector. Plant Sci. 180:766–774.
  • Stocker, B. D., Roth, R., Joos, F., Spahni, R., Steinacher, M., Zaehle, S., Bouwman, L., Ri, X. and Prentice, I. C. (2013). Multiple greenhouse-gas feedbacks from the land biosphere under future climate change scenarios. Nat. Climate Change. 3:666–672.
  • Stoger, E., Ma, J. K., Fischer, R. and Christou, P. (2005). Sowing the seeds of success: Pharmaceutical proteins from plants. Curr. Opin. Biotechnol. 16:167–173.
  • Storozhenko, S., De Brouwer, V., Volckaert, M., Navarrete, O., Blancquaert, D., Zhang, G. F., Lambert, W. and Van Der Straeten, D. (2007). Folate fortification of rice by metabolic engineering. Nat. Biotechnol. 25:1277–1279.
  • Suzuki, M., Tanaka, K., Kuwano, M. and Yoshida, K. T. (2007). Expression pattern of inositol phosphate-related enzymes in rice (Oryza sativa L.): implications for the phytic acid biosynthetic pathway. Gene. 405:55–64.
  • Takahashi, S., Ogiyama, Y., Kusano, H., Shimada, H., Kawamukai, M. and Kadowaki, K. I. (2006). Metabolic engineering of coenzyme Q by modification of isoprenoid side chain in plant. FEBS Letters 580:955–959.
  • Takahashi, S., Ohtani, T., Iida, S., Sunohara, Y., Matsushita, K., Maeda, H., Tanetani, Y., Kawai, K., Kawamukai, M. and Kadowaki, K. I. (2009). Development of CoQ10-enriched rice from giant embryo lines. Breed. Sci. 59:321–326.
  • Takahashi, S., Ohtani, T., Satoh, H., Nakamura, Y., Kawamukai, M. and Kadowaki, K. I. (2010). Development of coenzyme Q10-enriched rice using sugary and shrunken mutants. Biosci. Biotechnol. Biochem. 74:182–184.
  • Takaiwa, F. (2013). Update on the use of transgenic rice seeds in oral immunotherapy. Immunotherapy 5:301–312.
  • Takaiwa, F., Takagi, H., Hirose, S. and Wakasa, Y. (2007). Endosperm tissue is good production platform for artificial recombinant proteins in transgenic rice. Plant Biotechnol. J. 5:84–92.
  • Tan, Y. Y., Fu, H. W., Zhao, H. J., Lu, S., Fu, J. J., Li, Y. F., Cui, H. R. and Shu, Q. Y. (2013). Functional molecular markers and high-resolution melting curve analysis of low phytic acid mutations for marker-assisted selection in rice. Mol. Breed. 31:517–528.
  • Tanaka, N., Fujita, N., Nishi, A., Satoh, H., Hosaka, Y., Ugaki, M., Kawasaki, S. and Nakamura, Y. (2004). The structure of starch can be manipulated by changing the expression levels of starch branching enzyme IIb in rice endosperm. Plant Biotechnol. J. 2:507–516.
  • Tanaka, Y., Brugliera, F. and Chandler, S. (2009). Recent progress of flower colour modification by biotechnology. Intl J. Mol. Sci. 10:5350–5369.
  • Tanaka, Y., Brugliera, F., Kalc, G., Senior, M., Dyson, B., Nakamura, N., Katsumoto, Y. and Chandler, S. (2010). Flower color modification by engineering of the flavonoid biosynthetic pathway: practical perspectives. Biosci. Biotech. Biochem. 74:1760–1769.
  • Tang, G., Hu, Y., Yin, S. A., Wang, Y., Dallal, G. E., Grusak, M. A. and Russell, R. M. (2012). β-Carotene in golden rice is as good as β-carotene in oil at providing vitamin A to children. Am. J. Clin. Nutr. 96:658–664.
  • Terada, R., Nakajima, M., Isshiki, M., Okagaki, R. J., Wessler, S. R. and Shimamoto, K. (2000). Antisense waxy genes with highly active promoters effectively suppress waxy gene expression in transgenic rice. Plant Cell Physiol. 41:881–888.
  • Thitisaksakul, M., Jiménez, R. C., Arias, M. C. and Beckles, D. M. (2012). Effects of environmental factors on cereal starch biosynthesis and composition. J. Cereal Sci. 56:67–80.
  • Till, B. J., Cooper, J., Tai, T. H., Colowit, P., Greene, E. A., Henikoff, S. and Comai, L. (2007). Discovery of chemically induced mutations in rice by TILLING. BMC Plant Biol. 7:19.
  • Tozawa, Y., Hasegawa, H., Terakawa, T. and Wakasa, K. (2001). Characterization of rice anthranilate synthase α-subunit genes OASA1 and OASA2. Tryptophan accumulation in transgenic rice expressing a feedback-insensitive mutant of OASA1. Plant Physiol. 126:1493–1506.
  • Trimble, L. A. and Fehr, W. R. (2010). Genetic improvement of seedling emergence of low-phytate soybean lines. Crop Sci. 50:67–72.
  • Ufaz, S. and Galili, G. (2008). Improving the content of essential amino acids in crop plants: Goals and opportunities. Plant Physiol. 147:954–961.
  • Uncu, A. O., Doganlar, S. and Frary, A. (2013). Biotechnology for enhanced nutritional quality in plants. Crit. Rev. Plant Sci. 32:321–343.
  • Underwood, B. A. (2000). Overcoming micronutrient deficiencies in developing countries: is there a role for agriculture? Food Nutr. Bull. 21:356–360.
  • Unnevehr, L. J., Duff, B. and Juliano, B. O. Eds. (1992). Consumer Demand for Rice Grain Quality. International Rice Research Institute, Manila, and International Development Research Center, Ottawa.
  • Usuda, K., Wada, Y., Ishimaru, Y., Kobayashi, T., Takahashi, M., Nakanishi, H., Nagato, Y., Mori, S. and Nishizawa, N. K. (2009). Genetically engineered rice containing larger amounts of nicotianamine to enhance the antihypertensive effect. Plant Biotechnol. J. 7:87–95.
  • Usui, Y., Nakase, M., Hotta, H., Urisu, A., Aoki, N., Kitajima, K. and Matsuda, T. (2001). A 33-kDa allergen from rice (Oryza sativa L.). cDNA cloning, expression, and identification as a novel glyoxalase I. J. Biol. Chem. 276:11376–11381.
  • Varshney, R. K., Hoisington, D. A. and Tyagi, A. K. (2006). Advances in cereal genomics and applications in crop breeding. Trends Biotechnol. 24:490–499.
  • Vasconcelos, M., Datta, K., Oliva, N., Khalekuzzaman, M., Torrizo, L., Krishnan, S., Oliveira, M., Goto, F. and Datta, S. K. (2003). Enhanced iron and zinc accumulation in transgenic rice with the ferritin gene. Plant Sci. 164:371–378.
  • Venu, R. C., Madhav, M. S., Sreerekha, M. V., Nobuta, K., Zhang, Y., Carswell, P., Boehm, M. J., Meyers, B. C., Korth, K. L. and Wang, G. L. (2010). Deep and comparative transcriptome analysis of rice plants infested by the beet armyworm (Spodoptera exigua) and water weevil (Lissorhoptrus oryzophilus). Rice 3:22–35.
  • Venu, R. C., Sreerekha, M. V., Nobuta, K., Beló, A., Ning, Y., An, G., Meyer, B. C. and Wang, G. L. (2011). Deep sequencing reveals the complex and coordinated transcriptional regulation of genes related to grain quality in rice cultivars. BMC Genomics 12:190.
  • Vert, G., Grotz, N., Dedaldechamp, F., Gaymard, F., Guerinot, M. L., Briat, J. F. and Curie, C. (2002). IRT1, an Arabidopsis transporter essential for iron uptake from the soil and for plant growth. Plant Cell 14:1223–1233.
  • Wakasa, K. and Widholm, J. (1987). A 5-methyltryptophan resistant rice mutant, MTR1, selected in tissue culture. Theor. Appl. Genet. 74:49–54.
  • Wakasa, K. and Ishihara, A. (2009). Metabolic engineering of the tryptophan and phenylalanine biosynthetic pathways in rice. Plant Biotechnol. J. 26:523–533.
  • Wakasa, K., Hasegawa, H., Nemoto, H., Matsuda, F., Miyazawa, H., Tozawa, Y., Morino, K., Komatsu, A., Yamada, T., Terakawa, T. and Miyagawa, H. (2006). High-level tryptophan accumulation in seeds of transgenic rice and its limited effects on agronomic traits and seed metabolite profile. J. Exp. Bot. 57:3069–3078.
  • Wakasa, Y., Hirano, K., Urisu, A., Matsuda, T. and Takaiwa, F. (2011). Generation of transgenic rice lines with reduced contents of multiple potential allergens using a null mutant in combination with an RNA silencing method. Plant Cell Physiol. 52:2190–2199.
  • Wan, X. Y., Wan, J. M., Jiang, L., Wang, J. K., Zhai, H. Q., Weng, J. F., Wang, H. L., Lei, C. L., Wang, J. L., Zhang, X., Cheng, Z. J. and Guo, X. P. (2006). QTL analysis for rice grain length and fine mapping of an identified QTL with stable and major effects. Theor. Appl. Genet. 112:1258–1270.
  • Wan, X. Y., Wan, J. M., Weng, J. F., Jiang, L., Bi, J. C., Wang, C. M. and Zhai, H. Q. (2005). Stability of QTLs for rice grain dimension and endosperm chalkiness characteristics across eight environments. Theor. Appl. Genet. 110:1334–1346.
  • Wang, A. Z., Chou, M. Y., Liu, C. W., Lai, C. C., and Wang, C. S. (2014). Proteomic characterization of rice bran. research.nchu.edu.tw/upfiles/ADUpload/oc_downmul2327265403.pdf
  • Wang, E., Wang, J., Zhu, X., Hao, W., Wang, L., Li, Q., Zhang, L., He, W., Lu, B., Lin, H., Ma, H., Zhang, G. and He, Z. (2008). Control of rice grain-filling and yield by a gene with a potential signature of domestication. Nat. Genetics. 40:1370–1374.
  • Wang, J. C., Xu, H., Zhu, Y., Liu, Q. Q. and Cai, X. L. (2013). OsbZIP58, a basic leucine zipper transcription factor, regulates starch biosynthesis in rice endosperm. J. Exp. Bot. 64:3453–3466.
  • Wang, N., Long, T., Yao, W., Xiong, L., Zhang, Q. and Wu, C. (2013). Mutant resources for the functional analysis of the rice genome. Mol. Plant 6:596–604.
  • Wang, P., Zhang, Z., Song, X., Chen, Y., Wei, X., Shi, P. and Tao, F. (2014). Temperature variations and rice yields in China: Historical contributions and future trends. Climatic change 124:777–789.
  • Wang, S., Wu, K., Yuan, Q., Liu, X., Liu, Z., Lin, X., Zeng, R., Zhu, H., Dong, G., Qian, Q., Zhang, G. and Fu, X. (2012). Control of grain size, shape and quality by OsSPL16 in rice. Nat. Genetics 44:950–954.
  • Watanabe, M., Miyakawa, J., Ikezawa, Z., Suzuki, Y., Hirano, T., Yoshizawa, T. and Arai, S. (1990a). Production of hypoallergenic rice by enzymatic decomposition of constituent proteins. J. Food Sci. 55:781–783.
  • Watanabe, M., Yoshizawa, T., Miyakawa, J., Ikezawa, Z., Abe, K., Yanagisawa, T. and Arai, S. (1990b). Quality improvement and evaluation of hypoallergenic rice grains. J. Food Sci. 55:1105–1107.
  • Welch, R. M. and Graham, R. D. (2004). Breeding for micronutrients in staple food crops from a human nutrition perspective. J. Exp. Bot. 55:353–364.
  • Wirth, J., Poletti, S., Aeschlimann, B., Yakandawala, N., Drosse, B., Osorio, S., Tohge, T., Fernie, A. R., Günther, D., Gruissem, W. and Sautter, C. (2009). Rice endosperm iron biofortification by targeted and synergistic action of nicotianamine synthase and ferritin. Plant Biotechnol. J. 7:631–644.
  • Witcher, D. R., Hood, E. E., Peterson, D., Bailey, M., Bond, D., Kusnadi, A., Evangelista, R., Nikolov, Z., Wooge, C., Mehigh, R., Kappel, W., Register, J. and Howard, J. A. (1998). Commercial production of β-glucuronidase (GUS): A model system for the production of proteins in plants. Mol. Breed. 4:301–312.
  • Wong, H. W., Liu, Q. and Sun, S. S. M. (2015). Biofortification of rice with lysine using endogenous histones. Plant Mol. Biol. 87:235–248.
  • Wu, B. and Becker, J. S. (2012). Imaging techniques for elements and element species in plant science. Metallomics. 4:403–416.
  • Wu, C. Y., Trieu, A., Radhakrishnan, P., Kwok, S. F., Harris, S., Zhang, K., Wang, J., Wan, J., Zhai, H., Takatsuto, S., Matsumoto, S., Fujioka, S., Feldmann, K. A. and Pennell, R. I. (2008). Brassinosteroids regulate grain filling in rice. Plant Cell 20:2130–2145.
  • Wu, G., Truksa, M., Datla, N., Vriten, P., Bauer, J., Zank, T., Cirpus, P., Heinz, E. and Qiu, X. (2005). Stepwise engineering to produce high yields of very long-chain polyunsaturated fatty acids in plants. Nat. Biotechnol. 23:1013–1017.
  • Wu, J. L., Wu, C., Lei, C., Baraoidan, M., Bordeos, A., Madamba, M., Reina, S., Ramos-Pamplona, M., Mauleon, R., Portugal, A., Ulat, V. J., Bruskiewich, R., Wang, G., Leach, J., Khush, G. and Leung, H. (2005). Chemical-and irradiation-induced mutants of indica rice IR64 for forward and reverse genetics. Plant Mol. Biol. 59:85–97.
  • Wu, Y. P., Pu, C. H., Lin, H. Y., Huang, Y. C., Hong, C. Y., Chang, M. C. and Lin, Y. R. (2015). Three novel alleles of FLOURY ENDOSPERM2 (FLO2) confer dull grains with low amylase content in rice. Plant Sci. 233:44–52.
  • Wuriyanghan, H., Zhang, B., Cao, W. H., Ma, B., Lei, G., Liu, Y. F., Wei, W., Wu, H. J., Chen, L. J., Chen, H. W., Cao, Y. R., He, S. J., Zhang, W. K., Wang, X. J., Chen, S. Y. and Zhang, J. S. (2009). The ethylene receptor ETR2 delays floral transition and affects starch accumulation in rice. Plant Cell 21:1473–1494.
  • Xu, C., Cheng, Z. and Yu, W. (2012). Construction of rice mini-chromosomes by telomere-mediated chromosomal truncation. Plant J. 70:1070–1079.
  • Xu, H., Wei, Y., Zhu, Y., Lian, L., Xie, H., Cai, Q., Chen, Q., Lin, Z., Wang, Z., Xie, H., and Zhang, J. (2015). Antisense suppression of LOX3 gene expression in rice endosperm enhances seed longevity. Plant Biotechnol. J. 13:526–39.
  • Xu, R., Li, H., Qin, R., Wang, L., Li, L., Wei, P. and Yang, J. (2014). Gene targeting using the Agrobacterium tumefaciens-mediated CRISPR/Cas system in rice. Rice 7:1–4.
  • Xu, S., Harrison, J. H., Chalupa, W., Sniffen, C., Julien, W., Sato, H., Fujieda, T., Watanabe, K., Ueda, T. and Suzuki, H. (1998). The effect of ruminal bypass lysine and methionine on milk yield and composition of lactating cows. J. Dairy Sci. 81:1062–1077.
  • Xue, L. J., Zhang, J. J. and Xue, H. W. (2009). Characterization and expression profiles of miRNAs in rice seeds. Nucleic Acids Res. 37:916–930.
  • Yamada, T., Matsuda, F., Kasai, K., Fukuoka, S., Kitamura, K., Tozawa, Y., Miyagawa, H. and Wakasa, K. (2008). Mutation of a rice gene encoding a phenylalanine biosynthetic enzyme results in accumulation of phenylalanine and tryptophan. Plant Cell 20:1316–1329.
  • Yamada, T., Tozawa, Y., Hasegawa, H., Terakawa, T., Ohkawa, Y. and Wakasa, K. (2004). Use of a feedback-insensitive a subunit of anthranilate synthase as a selectable marker for transformation of rice and potato. Mol. Breed. 14:363–373.
  • Yang, F., Chen, Y., Tong, C., Huang, Y., Xu, F., Li, K., Corke, H., Sun, M. and Bao, J. (2014). Association mapping of starch physicochemical properties with starch synthesis-related gene markers in nonwaxy rice (Oryza sativa L.). Mol. Breed. 34:1747–1763.
  • Yang, L., Hirose, S., Takahashi, H., Kawakatsu, T. and Takaiwa, F. (2012). Recombinant protein yield in rice seed is enhanced by specific suppression of endogenous seed proteins at the same deposit site. Plant Biotechnol. J. 10:1035–1045.
  • Yang, X., Huang, J., Jiang, Y. and Zhang, H. S. (2009). Cloning and functional identification of two members of the ZIP (Zrt, Irt-like protein) gene family in rice (Oryza sativa L.). Mol. Biol. Rep. 36:281–287.
  • Yang, X., Li, J., Chen, L., Louzada, E. S., He, J. and Yu, W. (2015). Stable mitotic inheritance of rice minichromosomes in cell suspension cultures. Plant Cell Rep. 34:929–941.
  • Yau, Y-Y., and Stewart, C. N. (2013). Less is more: strategies to remove marker gene from transgenic plants. BMC Biotech. 13:36.
  • Ye, G. Y., Liang, S. S. and Wan, J. M. (2010). QTL mapping of protein content in rice using single chromosome segment substitution lines. Theor. Appl. Genet. 121:741–750.
  • Ye, X., Al-Babili, S., Kl.ti, A., Zhang, J., Lucca, P., Beyer, P. and Potrykus, I. (2000). Engineering the provitamin A (β-carotene) biosynthetic pathway into (carotenoid free) rice endosperm. Science 287:303–305.
  • Yeum, K. J. and Russell, R. M. (2002). Carotenoid bioavailability and bioconversion. Annu. Rev. Nutrition 22:483–504.
  • Yin, Z. J., Liu, H. L., Dong, X., Tian, L., Xiao, L., Xu, Y. N. and Qu, L. Q. (2014). Increasing α-linolenic acid content in rice bran by embryo-specific expression of ω3/Δ15-desaturase gene. Mol. Breed. 33:987–996.
  • Yokoo, E., Valente, J., Grattan, L., Luís Schmidt, S., Platt, I. and Silbergeld, E. (2003). Low level methylmercury exposure affects neuropsychological function in adults. Environ. Health 2:1–11.
  • Yokosho, K., Yamaji, N., Ueno, D., Mitani, N. and Ma, J. F. (2009). OsFRDL1 is a citrate transporter required for efficient translocation of iron in rice. Plant Physiol. 149:297–305.
  • Yu, J., Hu, S., Wang, J., Wong, G. K. S., Li, S., Liu, B., Deng, Y., Dai, L., Zhou, Y., Zhang, X., Cao, M., Liu, J., Sun, J., Tang, J., Chen, Y., Huang, X., Lin, W., Ye, C., Tong, W., Cong, L., Geng, J., Han, Y., Li, L., Li, W., Hu, G., Huang, X., Li, W., Li, J., Liu, Z., Li, L., Liu, J., Qi, Q., Liu, J., Li, L., Li, T., Wang, X., Lu, H., Wu, T., Zhu, M., Ni, P., Han, H., Dong, W., Ren, X., Feng, X., Cui, P., Li, X., Wang, H., Xu, X., Zhai, W., Xu, Z., Zhang, J., He, S., Zhang, J., Xu, J., Zhang, K., Zheng, X., Dong, J., Zeng, W., Tao, L., Ye, J., Tan, J., Ren, X., Chen, X., He, J., Liu, D., Tian, W., Tian, C., Xia, H., Bao, Q., Li, G., Gao, H., Cao, T., Wang, J., Zhao, W., Li, P., Chen, W., Wang, X., Zhang, Y., Hu, J., Wang, J., Liu, S., Yang, J., Zhang, G., Xiong, Y., Li, Z., Mao, L., Zhou, C., Zhu, Z., Chen, R., Hao, B., Zheng, W., Chen, S., Guo, W., Li, G., Liu, S., Tao, M., Wang, J., Zhu, L., Yuan, L. and Yang, H. (2002). A draft sequence of the rice genome (Oryza sativa L. ssp. indica). Science 296:79–92.
  • Yu, J., Wang, J., Lin, W., Li, S., Li, H., Zhou, J., Ni, P., Dong, W., Hu, S., Zeng, C., Zhang, J., Zhang, Y., Li, R., Xu, Z., Li, S., Li, X., Zheng, H., Cong, L., Lin, L., Yin, J., Geng, J., Li, G., Shi, J., Liu, J., Lv, H., Li, J., Wang, J., Deng, Y., Ran, L., Shi, X., Wang, X., Wu, Q., Li, C., Ren, X., Wang, J., Wang, X., Li, D., Liu, D., Zhang, X., Ji, Z., Zhao, W., Sun, Y., Zhang, Z., Bao, J., Han, Y., Dong, L., Ji, J., Chen, P., Wu, S., Liu, J., Xiao, Y., Bu, D., Tan, J., Yang, L., Ye, C., Zhang, J., Xu, J., Zhou, Y., Yu, Y., Zhang, B., Zhuang, S., Wei, H., Liu, B., Lei, M., Yu, H., Li, Y., Xu, H., Wei, S., He, X., Fang, L., Zhang, Z., Zhang, Y., Huang, X., Su, Z., Tong, W., Li, J., Tong, Z., Li, S., Ye, J., Wang, L., Fang, L., Lei, T., Chen, C., Chen, H., Xu, Z., Li, H., Huang, H., Zhang, F., Xu, H., Li, N., Zhao, C., Li, S., Dong, L., Huang, Y., Li, L., Xi, Y., Qi, Q., Li, W., Zhang, B., Hu, W., Zhang, Y., Tian, X., Jiao, Y., Liang, X., Jin, J., Gao, L., Zheng, W., Hao, B., Liu, S., Wang, W., Yuan, L., Cao, M., McDermott, J., Samudrala, R., Wang, J., Wong, G. K. S. and Yang, H. (2005). The genomes of Oryza sativa: a history of duplications. PLoS Biology. 3:e38.
  • Yu, T. Q., Jiang, W., Ham, T. H., Chu, S. H., Lestari, P., Lee, J. H., Kim, M. K., Xu, F. R., Han, L., Dai, L. Y. and Koh, H. J. (2008). Comparison of grain quality traits between japonica rice cultivars from Korea and Yunnan province of China. J. Crop Sci. Biotech. 11:135–140.
  • Yuan, L. P. (1987). Strategy for hybrid rice breeding (in Chinese). Hybrid Rice 1:1–4.
  • Yuan, L., Wu, L., Yang, C. and Lv, Q. (2012). Effects of iron and zinc foliar applications on rice plants and their grain accumulation and grain nutritional quality. J. Sci. Food Agric. 93:254–261.
  • Yun, M. S., Umemoto, T. and Kawagoe, Y. (2011). Rice debranching enzyme isoamylase3 facilitates starch metabolism and affects plastid morphogenesis. Plant Cell Physiol. 52:1068–1082.
  • Zeng, D., Yan, M., Wang, Y., Liu, X., Qian, Q. and Li, J. (2007). Du1, encoding a novel Prp1 protein, regulates starch biosynthesis through affecting the splicing of Wx b pre-mRNAs in rice (Oryza sativa L.). Plant Mol. Biol. 65:501–509.
  • Zhang, G. Y., Liu, R. R., Xu, G., Zhang, P., Li, Y., Tang, K. X., Liang, G. H. and Liu, Q. Q. (2013). Increased α-tocotrienol content in seeds of transgenic rice overexpressing Arabidopsis γ-tocopherol methyltransferase. Transgenic Res. 22:89–99.
  • Zhang, X., Wang, J., Huang, J., Lan, H., Wang, C., Yin, C., Wu, Y., Tang, H., Qian, Q., Li, J. and Zhang, H. (2012). Rare allele of OsPPKL1 associated with grain length causes extra-large grain and a significant yield increase in rice. Proc. Natl. Acad. Sci. USA. 109:21534–21539.
  • Zhang, X-H., Brotherton, J. E., Widholm, J. M., and Portis Jr., A. R. (2001). Targeting a nuclear anthranilate synthase a-subunit gene to the tobacco plastid genome results in enhanced tryptophan biosynthesis. Return of a gene to its pre-endosymbiotic origin. Plant Physiol. 127:131–141.
  • Zhang, Y. C., Yu, Y., Wang, C. Y., Li, Z. Y., Liu, Q., Xu, J., Liao, J. Y., Wang, X. J., Qu, L. H., Chen, F., Xin, P., Yan, C., Chu, J., Li, H. Q. and Chen, Y. Q. (2013). Overexpression of microRNA OsmiR397 improves rice yield by increasing grain size and promoting panicle branching. Nat. Biotechnol. 31:848–852.
  • Zhang, Y., Zhang, F., Li, X., Baller, J. A., Qi, Y., Starker, C. G., Bogdanove, A. J. and Voytas, D. F. (2013). Transcription activator-like effector nucleases enable efficient plant genome engineering. Plant Physiol. 161:20–27.
  • Zhang, Z., Zhao, H., Tang, J., Li, Z., Li, Z., Chen, D. and Lin, W. (2014). A proteomic study on molecular mechanism of poor grain-filling of rice (Oryza sativa L.) inferior spikelets. PLoS One. 9:e89140.
  • Zhao, X. and Fitzgerald, M. (2013). Climate change: implications for the yield of edible rice. PLoS One 8:e66218.
  • Zhu, C., Naqvi, S., Breitenbach, J., Sandmann, G., Christou, P. and Capell, T. (2008). Combinatorial genetic transformation generates a library of metabolic phenotypes for the carotenoid pathway in maize. Proc. Natl. Acad. Sci. USA. 105:18232–18237.
  • Zhu, C., Sanahuja, G., Yuan, D., Farré, G., Arjó, G., Berman, J., Zorrilla-Lopez, U., Banakar, R., Bai, C., Perez-Massot, E., Bassie, L., Capell, T. and Christou, P. (2013). Biofortification of plants with altered antioxidant content and composition: Genetic engineering strategies. Plant Biotechnol. J. 11:129–141.
  • Zhu, L., Gu, M., Meng, X., Cheung, S. C., Yu, H., Huang, J., Sun, Y., Shi, Y. and Liu, Q. (2012). High-amylose rice improves indices of animal health in normal and diabetic rats. Plant Biotechnol. J. 10:353–362.
  • Zhu, X. and Galili, G. (2003). Increased lysine synthesis coupled with a knockout of its catabolism synergistically boosts lysine content and also trans regulates the metabolism of other amino acids in Arabidopsis seeds. Plant Cell 15:845–853.
  • Zhu, Y., Cai, X. L., Wang, Z. Y. and Hong, M. M. (2003). An interaction between a MYC protein and an EREBP protein is involved in transcriptional regulation of the rice Wx gene. J. Biol. Chem. 278:47803–47811.
  • Zimmermann, M. B. and Hurrell, R. F. (2007). Nutritional iron deficiency. The Lancet. 370:511–520.
  • Zullaikah, S., Lai, C. C., Vali, S. R. and Ju, Y. H. (2005). A two-step acid-catalyzed process for the production of biodiesel from rice bran oil. Bioresour. Technol. 96:1889–1896.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.