2,727
Views
33
CrossRef citations to date
0
Altmetric
Original Articles

Addition of milk to tea infusions: Helpful or harmful? Evidence from in vitro and in vivo studies on antioxidant properties

, , &

References

  • Anesini, C., Ferraro, G. E. and Filip, R. (2008). Total polyphenol content and antioxidant capacity of commercially available tea (Camellia sinensis) in Argentina. J. Agric. Food Chem. 56(19):9225–9229.
  • Arts, I. C., Hollman, P. C., Feskens, E. J., De Mesquita, H. B. B. and Kromhout, D. (2001). Catechin intake might explain the inverse relation between tea consumption and ischemic heart disease: The Zutphen Elderly Study. Am. J. Clin. Nutr. 74(2):227–232.
  • Arts, M. J., Haenen, G. R., Wilms, L. C., Beetstra, S. A., Heijnen, C. G., Voss, H.-P. and Bast, A. (2002). Interactions between flavonoids and proteins: Effect on the total antioxidant capacity. J. Agric. Food Chem. 50(5):1184–1187.
  • Benzie, I. F. F. and Szeto, Y. T. (1999). Total antioxidant capacity of teas by the ferric reducing/antioxidant power assay. J. Agric. Food Chem. 47(2):633–636.
  • Bourassa, P., Kanakis, C., Tarantilis, P., Pollissiou, M. and Tajmir-Riahi, H. (2010). Resveratrol, genistein, and curcumin bind bovine serum albumin. J. Phys. Chem. B. 114(9):3348–3354.
  • Butler, G., Nielsen, J. H., Slots, T., Seal, C., Eyre, M. D., Sanderson, R. and Leifert, C. (2008). Fatty acid and fat‐soluble antioxidant concentrations in milk from high‐ and low‐input conventional and organic systems: Seasonal variation. J. Sci. Food Agric. 88(8):1431–1441.
  • Butt, M. S., Ahmad, R. S., Sultan, M. T., Qayyum, M. M. N. and Naz, A. (2015). Green tea and anticancer perspectives: Updates from last decade. Crit. Rev. Food Sci. Nutr. 55(6):792–805.
  • Butt, M. S. and Sultan, M. T. (2009). Green tea: Nature's defense against malignancies. Crit. Rev. Food Sci. Nutr. 49(5):463–473.
  • Dalgleish, D. G. and Corredig, M. (2012). The structure of the casein micelle of milk and its changes during processing. Ann. Rev. Food Sci. Technol. 3:449–467.
  • Dubeau, S., Samson, G. and Tajmir-Riahi, H. A. (2010). Dual effect of milk on the antioxidant capacity of green, Darjeeling, and English breakfast teas. Food Chem. 122(3):539–545.
  • Dubrin, B. (2010). Tea Culture: History, Traditions, Celebrations, Recipes & More. Charlesbridge, Massachusetts.
  • Dufresne, C. and Farnworth, E. (2000). Tea, Kombucha, and health: A review. Food Res. Int. 33(6):409–421.
  • Dufresne, C. J. and Farnworth, E. R. (2001). A review of latest research findings on the health promotion properties of tea. J. Nutr. Biochem. 12(7):404–421.
  • Egert, S., Tereszczuk, J., Wein, S., Müller, M. J., Frank, J., Rimbach, G. and Wolffram, S. (2013). Simultaneous ingestion of dietary proteins reduces the bioavailability of galloylatedcatechins from green tea in humans. Eur. J. Nutr. 52(1):281–288.
  • Engelhardt, U. H. (2010). 3.23 – Chemistry of tea. In: Comprehensive Natural Products II, pp. 999–1032. Liu, H. W. and Mander, L., Eds., Elsevier, Oxford, UK.
  • Eskin, N. M. and Shahidi, F. (2012). Biochemistry of Foods. Academic Press, California.
  • FAO. (2004). Foods and Micro health insurance (MHI). Food and Agriculture Organization of the United Nations, Rome, Italy. Available from http://faostat.fao.org/who.int.
  • Fennema, O. R. (1996). Food Chemistry, 3rd ed. Marcel-Dekker, New York, NY.
  • Gerosa, S. and Skoet, J. (2012). Milk Availability: Trends in Production and Demand and Medium-Term Outlook. Food and Agriculture Organization of the United Nations, Rome, Italy.
  • Goff, D. (2010). Dairy chemistry and physics.In: Dairy Science and Technology. Walstra, P., Wouters, J. T. M. and Geurts, T. J., Eds., CRC Press, New York, NY.
  • Goto, T., Yoshida, Y., Kiso, M. and Nagashima, H. (1996). Simultaneous analysis of individual catechins and caffeine in green tea. J. Chromatogr. A. 749(1):295–299.
  • Graham, H. N. (1992). Green tea composition, consumption, and polyphenol chemistry. Prev. Med. 21(3):334–350.
  • Guinee, T. P., Carić, M. and Kaláb, M. (2004). Pasteurized processed cheese and substitute/imitation cheese products. In: Cheese: Chemistry, Physics and Microbiology, Vol. 2, pp. 349–394. Fox, P F., McSweeney, P. L. H., Cogan, T. M. and Guinee, T. P., Eds., Academic Press, California.
  • Gupta, S., Saha, B. and Giri, A. K. (2002). Comparative anti-mutagenic and anti-clastogenic effects of green tea and black tea: A review. Mutat. Res. Rev. 512(1):37–65.
  • Haratifar, S. and Corredig, M. (2014). Interactions between tea catechins and casein micelles and their impact on renneting functionality. Food Chem. 143:27–32.
  • Hayat, K., Iqbal, H., Malik, U., Bilal, U. and Mushtaq, S. (2015). Tea and its consumption: Benefits and risks. Crit. Rev. Food Sci. Nutr. 55(7):939–954.
  • Hemar, Y., Gerbeaud, M., Oliver, C. M. and Augustin, M. A. (2011). Investigation into the interaction between resveratrol and whey proteins using fluorescence spectroscopy. Int. J. Food Sci. Technol. 46(10):2137–2144.
  • Henning, S. M., Niu, Y., Lee, N. H., Thames, G. D., Minutti, R. R., Wang, H., Go, V. L. W. and Heber, D. (2004). Bioavailability and antioxidant activity of tea flavanols after consumption of green tea, black tea, or a green tea extract supplement. Am. J. Clin. Nutr. 80(6):1558–1564.
  • Hertog, M., Sweetnam, P. M., Fehily, A. M., Elwood, P. C. and Kromhout, D. (1997). Antioxidant flavonols and ischemic heart disease in a Welsh population of men: The Caerphilly Study. Am. J. Clin. Nutr. 65(5):1489–1494.
  • Hertog, M. G., Feskens, E. J., Hollman, P. C., Katan, M. B. and Kromhout, D. (1993). Dietary antioxidant flavonoids and risk of coronary heart disease: The Zutphen Elderly Study. Lancet. 342(8878):1007–1011.
  • Hilario, M. C., Puga, C. D., Ocaña, A. N. and Romo, F. P.-G. (2010). Antioxidant activity, bioactive polyphenols in Mexican goats' milk cheeses on summer grazing. J. Dairy Res. 77(01):20–26.
  • Hofmann, T., Glabasnia, A., Schwarz, B., Wisman, K. N., Gangwer, K. A. and Hagerman, A. E. (2006). Protein binding and astringent taste of a polymeric procyanidin, 1,2,3,4,6-penta-O-galloyl-β-d-glucopyranose, castalagin, and grandinin. J. Agric. Food Chem. 54(25):9503–9509.
  • Hollman, P. C., Tijburg, L. B. and Yang, C. S. (1997). Bioavailability of flavonoids from tea. Crit. Rev. Food Sci. Nutr. 37(8):719–738.
  • Hollman, P. C., Van Het Hof, K. H., Tijburg, L. B. and Katan, M. B. (2001). Addition of milk does not affect the absorption of flavonols from tea in man. Free Radical Res. 34(3):297–300.
  • Horne, D. S. (2006). Casein micelle structure: Models and muddles. Curr. Opinion Colloid. Interf. Sci. 11(2):148–153.
  • Huang, Y. B., Tsai, M. J., Wu, P. C., Tsai, Y. H., Wu, Y. H. and Fang, J. Y. (2011). Elastic liposomes as carriers for oral delivery and the brain distribution of (+)-catechin. J. Drug Target. 19(8):709–718.
  • Jöbstl, E., Howse, J. R., Fairclough, J. P. A. and Williamson, M. P. (2006). Non-covalent cross-linking of casein by epigallocatechingallate characterized by single molecule force microscopy. J. Agric. Food Chem. 54(12):4077–4081.
  • Kanakis, C., Hasni, I., Bourassa, P., Tarantilis, P., Polissiou, M. and Tajmir-Riahi, H. A. (2011). Milk b-lactoglobulin complexes with tea polyphenols. Food Chem. 127(3):1046–1055.
  • Kartsova, L. and Alekseeva, A. (2008). Effect of milk caseins on the concentration of polyphenolic compounds in tea. J. Analyt. Chem. 63(11):1107–1111.
  • Katiyar, S. and Mukhtar, H. (1996). Tea in chemoprevention of cancer. Int. J. Oncol. 8(2):221–238.
  • Keenan, T. and Mather, I. (2006). Intracellular origin of milk fat globules and the nature of the milk fat globule membrane. In: Advanced Dairy Chemistry, Vol. 2 Lipids, pp. 137–171. Fox, P., Ed., Springer, New York, NY.
  • Keli, S. O., Hertog, M. G., Feskens, E. J. and Kromhout, D. (1996). Dietary flavonoids, antioxidant vitamins, and incidence of stroke: The Zutphen Study. Arch. Internal Med. 156(6):637.
  • Komes, D., Horžić, D., Belščak, A., Ganić, K. K. and Vulić, I. (2010). Green tea preparation and its influence on the content of bioactive compounds. Food Res. Int. 43(1):167–176.
  • Korir, M., Wachira, F., Wanyoko, J., Ngure, R. and Khalid, R. (2014). The fortification of tea with sweeteners and milk and its effect on in vitro antioxidant potential of tea product and glutathione levels in an animal model. Food Chem. 145:145–153.
  • Kuriyama, S., Shimazu, T., Ohmori, K., Kikuchi, N., Nakaya, N., Nishino, Y., Tsubono, Y. and Tsuji, I. (2006). Green tea consumption and mortality due to cardiovascular disease, cancer, and all causes in Japan. J. Am. Med. Assoc. 296(10):1255–1265.
  • Kyle, J. A., Morrice, P. C., McNeill, G. and Duthie, G. G. (2007). Effects of infusion time and addition of milk on content and absorption of polyphenols from black tea. J. Agric. Food Chem. 55(12):4889–4894.
  • Lambert, J. D., Sang, S., Lu, A. Y. and Yang, C. S. (2007). Metabolism of dietary polyphenols and possible interactions with drugs. Curr. Drug Metab. 8(5):499–507.
  • Langley-Evans, S. C. (2000). Consumption of black tea elicits an increase in plasma antioxidant potential in humans. Int. J. Food Sci. Nutr. 51(5):309–315.
  • Leenen, R., Roodenburg, A., Tijburg, L. and Wiseman, S. (2000). A single dose of tea with or without milk increases plasma antioxidant activity in humans. Eur. J. Clin. Nutr. 54(1):87–92.
  • Lindmark-Månsson, H. and Åkesson, B. (2000). Antioxidative factors in milk. Brit. J. Nutr. 84(S1):103–110.
  • Liu, S., Lu, H., Zhao, Q., He, Y., Niu, J., Debnath, A. K., Wu, S. and Jiang, S. (2005). Theaflavin derivatives in black tea and catechin derivatives in green tea inhibit HIV-1 entry by targeting gp41. Biochim. Biophys. Acta. 1723(1–3):270–281.
  • Livney, Y. D. (2010). Milk proteins as vehicles for bioactives. Curr. Opinion Colloid Interf. Sci. 15(1–2):73–83.
  • Lorenz, M., Jochmann, N., von Krosigk, A., Martus, P., Baumann, G., Stangl, K. and Stangl, V. (2007). Addition of milk prevents vascular protective effects of tea. Eur. Heart J. 28(2):219–223.
  • Lorenz, M., Stangl, K. and Stangl, V. (2009). Vascular effects of tea are suppressed by soy milk. Atherosclerosis. 206(1):31–32.
  • Luck, G., Liao, H., Murray, N. J., Grimmer, H. R., Warminski, E. E., Williamson, M. P., Lilley, T. H. and Haslam, E. (1994). Polyphenols, astringency and proline-rich proteins. Phytochemistry. 37(2):357–371.
  • MacGibbon, A. and Taylor, M. (2006). Composition and structure of bovine milk lipids.In: Advanced Dairy Chemistry, Vol. 2 Lipid., pp. 1–42. Fox, P., Ed., Springer, New York, NY.
  • Maxwell, S. and Thorpe, G. (1996). Tea flavonoids have little short-term impact on serum antioxidant activity. Brit. Med. J. 313(7051):229.
  • Michalak, A. (2006). Phenolic compounds and their antioxidant activity in plants growing under heavy metal stress. Polish J. Environ. Stud. 15(4):523.
  • Moser, S., Chegeni, M., Jones, O. G., Liceaga, A. and Ferruzzi, M. G. (2014). The effect of milk proteins on the bioaccessibility of green tea flavan-3-ols. Food Res. Int. 66:297–305.
  • Nagy, K., Courtet-Compondu, M.-C., Williamson, G., Rezzi, S., Kussmann, M. and Rytz, A. (2012). Non-covalent binding of proteins to polyphenols correlates with their amino acid sequence. Food Chem. 132(3):1333–1339.
  • Nath, S., Bachani, M., Harshavardhana, D. and Steiner, J. P. (2012). Catechins protect neurons against mitochondrial toxins and HIV proteins via activation of the BDNF pathway. J Neurovirol. 18(6):445–455.
  • O'Connell, J. E. and Fox, P. F. (2001). Significance and applications of phenolic compounds in the production and quality of milk and dairy products: A review. Int. Dairy J. 11(3):103–120.
  • Pascal, C., Poncet-Legrand, C. l., Cabane, B. and Vernhet, A. (2008). Aggregation of a proline-rich protein induced by epigallocatechingallate and condensed tannins: Effect of protein glycosylation. J. Agric. Food Chem. 56(15):6724–6732.
  • Payton, S. (2012). Basic research: Green tea catechin can improve symptoms of menopause-induced overactive bladder. Nat. Rev. Urol. 9(7):353.
  • Quideau, S., Deffieux, D., Douat‐Casassus, C. and Pouységu, L. (2011). Plant polyphenols: Chemical properties, biological activities, and synthesis. Angewandte Chemie Int. Ed. 50(3):586–621.
  • Rashidinejad, A., Birch, E. J., Sun‐Waterhouse, D. and Everett, D. W. (2013). Effects of catechin on the phenolic content and antioxidant properties of low‐fat cheese. Int. J. Food Sci. Technol. 48(12):2448–2455.
  • Rawel, H. M., Czajka, D., Rohn, S. and Kroll, J. (2002). Interactions of different phenolic acids and flavonoids with soy proteins. Int. J. Bio. Macro. 30(3):137–150.
  • Reddy, V. C., Sreeramulu, D., Venu, L. and Raghunath, M. (2005). Addition of milk does not alter the antioxidant activity of black tea. Ann. Nutr. Metab. 49(3):189–195.
  • Richelle, M., Tavazzi, I. and Offord, E. (2001). Comparison of the antioxidant activity of commonly consumed polyphenolic beverages (coffee, cocoa and tea) prepared per cup serving. J. Agric. Food. Chem., 49:3438–3442.
  • Roura, E., Andres-Lacueva, C., Estruch, R., Mata-Bilbao, M. L., Izquierdo-Pulido, M., Waterhouse, A. L. and Lamuela-Raventos, R. M. (2007). Milk does not affect the bioavailability of cocoa powder flavonoid in healthy human. Ann. Nutr. Metab. 51(6):493–498.
  • Ryan, L. and Petit, S. (2010). Addition of whole, semi-skimmed, and skimmed bovine milk reduces the total antioxidant capacity of black tea. Nutr. Res. 30(1):14–20.
  • Ryan, L. and Sutherland, S. (2011). Comparison of the effects of different types of soya milk on the total antioxidant capacity of black tea infusions. Food Res. Int. 44(9):3115–3117.
  • Sabouri, S., Geng, J. and Corredig, M. (2015). Tea polyphenols association to caseinate-stabilized oil–water interfaces. Food Hydrocolloids. 51:95–100.
  • Sano, J., Inami, S., Seimiya, K., Ohba, T., Sakai,mS., Takano, T. and Mizuno, K. (2004). Effects of green tea intake on the development of coronary artery disease. Offic. J. Jap. Circul. Soc. 68(7):665–670.
  • Serafini, M., Ghiselli, A. and Ferro-Luzzi, A. (1996). In vivo antioxidant effect of green and black tea in man. Eur. J. Clin. Nutr. 50(1):28–32.
  • Sharma, V., Vijay Kumar, H. and Jagan Mohan Rao, L. (2008). Influence of milk and sugar on antioxidant potential of black tea. Food Res. Int. 41(2):124–129.
  • Song, J. M., Lee, K. H. and Seong, B. L. (2005). Antiviral effect of catechins in green tea on influenza virus. Antiviral Res. 68(2):66–74.
  • Sun, C. L., Yuan, J. M., Koh, W. P. and Mimi, C. Y. (2006). Green tea, black tea and breast cancer risk: A meta-analysis of epidemiological studies. Carcinogenesis. 27(7):1310–1315.
  • Tantoush, Z., Apostolovic, D., Kravic, B., Prodic, I., Mihajlovic, L., Stanic-Vucinic, D. and Velickovic, T. C. (2012). Green tea catechins of food supplements facilitate pepsin digestion of major food allergens, but hampers their digestion if oxidized by phenol oxidase. J. Funct. Foods. 4(3):650–660.
  • Tewari, S., Gupta, V. and Bhattacharya, S. (2000). Comparative study of antioxidant potential of tea with and without additives. Indian J. Physiol. Pharmacol. 44(2):215–219.
  • Tijburg, L., Wiseman, S. A. W., Meijer, G. and Weststrate, J. A. (1997). Effects of green tea, black tea and dietary lipophilic antioxidants on LDL oxidizability and atherosclerosis in hypercholesterolaemic rabbits. Atherosclerosis. 135(1):37–47.
  • van het Hof, K. H., Kivits, G. A., Weststrate, J. A. and Tijburg, L. B. (1998). Bioavailability of catechins from tea: The effect of milk. Eur. J. Clin. Nutr. 52(5):356–359.
  • Vinson, J. A. (2000). Black and green tea and heart disease: A review. Biofactors. 13(1):127–132.
  • Vinson, J. A., Teufel, K. and Wu, N. (2004). Green and black teas inhibit atherosclerosis by lipid, antioxidant, and fibrinolytic mechanisms. J. Agric. Food Chem. 52(11):3661–3665.
  • Walstra, P., Walstra, P., Wouters, J. T. and Geurts, T. J. (2010). Dairy Science and Technology. CRC Press, New York, NY.
  • Wang, Z. M., Zhou, B., Wang, Y. S., Gong, Q. Y., Wang, Q. M., Yan, J. J., Gao, W. and Wang, L. S. (2011). Black and green tea consumption and the risk of coronary artery disease: A meta-analysis. Am. J. Clin. Nutr. 93(3):506–515.
  • Weisburger, J. H., Rivenson, A., Garr, K. and Aliaga, C. (1997). Tea, or tea and milk, inhibit mammary gland and colon carcinogenesis in rats. Cancer Lett. 114(1):323–327.
  • Williamson, M. P. (1994). The structure and function of proline-rich regions in proteins. Biochem. J. 297(2):249.
  • Xiao, J., Mao, F., Yang, F., Zhao, Y., Zhang, C. and Yamamoto, K. (2011). Interaction of dietary polyphenols with bovine milk proteins: Molecular structure–affinity relationship and influencing bioactivity aspects. Mol. Nutr. Food Res. 55(11):1637–1645.
  • Xie, Y., Kosińska, A., Xu, H. and Andlauer, W. (2013). Milk enhances intestinal absorption of green tea catechins in in vitro digestion/caco-2 cells model. Food Res. Int. 53(2):793–800.
  • Yashin, A., Yashin, Y. and Nemzer, B. (2011). Determination of antioxidant activity in tea extracts, and their total antioxidant content. Am. J. Biomed. Sci. 3:322–335.
  • Ye, J., Fan, F., Xu, X. and Liang, Y. (2013). Interactions of black and green tea polyphenols with whole milk. Food Res. Int. 53(1):449–455.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.