2,533
Views
17
CrossRef citations to date
0
Altmetric
Research Article

Methods for measuring water activity (aw) of foods and its applications to moisture sorption isotherm studies

, &

References

  • Abdullah, N., Nawawi, A., and Othman, I. (2000). Fungal spoilage of starch-based foods in relation to its water activity (a(w)). J. Stored Prod. Res. 36(1):47–54.
  • Al-Mahasneh, M., Amer, M. B., and Rababah, T. (2012). Modeling moisture sorption isotherms in roasted green wheat using least square regression and neural-fuzzy techniques. Food Bioprod. Process. 90(2):165–170.
  • Al-Muhtaseb, A., McMinn, W., and Magee, T. (2002). Moisture sorption isotherm characteristics of food products: a review. Food Bioprod. Process. 80(2):118–128.
  • Argyropoulos, D., and Müller, J. (2014). Effect of convective-, vacuum-and freeze drying on sorption behaviour and bioactive compounds of lemon balm (Melissa officinalis L.). J. Appl. Res. Med. Aromatic Plants 1(2):59–69.
  • Bazardeh, M. E., and Esmaiili, M. (2014). Sorption isotherm and state diagram in evaluating storage stability for sultana raisins. J. Stored Prod. Res. 59:140–145.
  • Bell, L. N., and Labuza, T. P. (2000). Moisture sorption: practical aspects of isotherm measurement and use. American Association of Cereal Chemists.
  • Bispo, J. A. C., Bonafe, C. F. S., Santana, K. M. O. V., and Santos, E. C. A. (2015). A comparison of drying kinetics based on the degree of hydration and moisture ratio. LWT–Food Sci. Technol. 60(1):192–198.
  • Caballero-Cerón, C., Guerrero-Beltrán, J. A., Mújica-Paz, H., Torres, J. A., and Welti-Chanes, J. (2015). Moisture Sorption Isotherms of Foods: Experimental Methodology, Mathematical Analysis, and Practical Applications, in: Gutiérrez-Lopez, G. F., Alamilla-Beltrán, L., del Pilar Buera, M., Welti-Chanes, J., Parada-Arias, E., Barbosa-Cánovas, G. V. (Eds.), Water Stress in Biological, Chemical, Pharmaceutical and Food Systems. Springer.
  • Cardoso, J. M., and da Silva Pena, R. (2014). Hygroscopic behavior of banana (Musa ssp. AAA) flour in different ripening stages. Food Bioprod. Process. 92(1):73–79.
  • Carter, B. P., Galloway, M. T., Campbell, G. S., and Carter, A. H. (2015). The critical water activity from dynamic dewpoint isotherms as an indicator of pre-mix powder stability. J. Food Meas. Charact.
  • Carter, B. P., and Schmidt, S. J. (2012). Developments in glass transition determination in foods using moisture sorption isotherms. Food Chem. 132(4):1693–1698.
  • Chen, C. (2000). A rapid method to determine the sorption isotherms of peanuts. J. Agr. Eng. Res. 75(4):401–408.
  • Chen, C. (2002). Sorption isotherms of sweet potato slices. Biosystems Eng. 83(1):85–95.
  • Chen, C., and Weng, Y.-K. (2010). Moisture sorption isotherms of oolong tea. Food Bioprocess Technol. 3(2):226–233.
  • Chen, H.-Y., and Chen, C. (2014). Equilibrium relative humidity method used to determine the sorption isotherm of autoclaved aerated concrete. Build. Environ. 81:427–435.
  • Chirife, J. (1995). An update on water activity measurements and prediction in intermediate and high moisture foods: the role of some non-equilibrium situations, in: Barbosa-Cánovas, G. V., Welti-Chanes, J. (Eds.), Food Preservation by Moisture Control: Fundamentals and Applications. Technomic Publishing, Lancaster, Pennsylvania.
  • Chisté, R. C., Cardoso, J. M., Silva, D. A. D., and Pena, R. D. S. (2015). Hygroscopic behaviour of cassava flour from dry and water groups. Ciência Rural 45(8):1515–1521.
  • Clemente, G., Bon, J., Benedito, J., and Mulet, A. (2009). Desorption isotherms and isosteric heat of desorption of previously frozen raw pork meat. Meat Sci. 82(4):413–418.
  • de Souza, T. C. L., de Souza, H. A. L., and Pena, R. D. S. (2013). A rapid method to obtaining moisture sorption isotherms of a starchy product. Starch-Stärke 65(5–6):433–436.
  • Decagon Devices. (2015). AquaLab Vapor Sorption Analyzer (VSA) Manual. Decagon Devices, Washington, USA.
  • Demarchi, S. M., Ruiz, N. A. Q., De Michelis, A., and Giner, S. A. (2013). Sorption characteristics of rosehip, apple and tomato pulp formulations as determined by gravimetric and hygrometric methods. LWT-Food Sci. Technol. 52(1):21–26.
  • Eim, V. S., Rosselló, C., Femenia, A., and Simal, S. (2011). Moisture sorption isotherms and thermodynamic properties of carrot. Int. J. Food Eng. 7(3).
  • Farahani, H., Wagiran, R., and Hamidon, M. N. (2014). Humidity sensors principle, mechanism, and fabrication technologies: A comprehensive review. Sensors 14(5):7881–7939.
  • Fasina, O. (2008). Physical properties of peanut hull pellets. Bioresource Technol. 99(5):1259–1266.
  • Fieldsend, A. (2007). Influence of oil content on the equilibrium moisture content of evening primrose (Oenothera SPP.) seeds. Acta Agron. Hung. 55(4):485–489.
  • Gal, S. (1981). Recent developments in techniques for obtaining complete sorption isotherms, in: Rockland, L. B., Stewart, G. F. (Eds.), Water Activity: Influences on Food Quality. Academic Press, New York.
  • García-Pérez, J., Cárcel, J., Clemente, G., and Mulet, A. (2008). Water sorption isotherms for lemon peel at different temperatures and isosteric heats. LWT-Food Sci. Technol. 41(1):18–25.
  • Giner, S. A., and Gely, M. C. (2005). Sorptional parameters of sunflower seeds of use in drying and storage stability studies. Biosystems Eng. 92(2):217–227.
  • Haque, M. A., Sudeepa, M., Shimizu, N., and Kimura, T. (2006). Performance of an accelerated method for the determination of equilibrium moisture content. Food Sci. Technol. Res. 12(1):1–7.
  • Huang, Y., Hocking, A. D., Jensen, N., Richardson, K. C., and Miskelly, D. (2009). Microbiological quality of Australian breadcrumbs. Food Aus. 61(12):527–531.
  • Iaccheri, E., Laghi, L., Cevoli, C., Berardinelli, A., Ragni, L., Romani, S., and Rocculi, P. (2015). Different analytical approaches for the study of water features in green and roasted coffee beans. J. Food Eng. 146:28–35.
  • Igathinathane, C., Womac, A. R., Pordesimo, L. O., and Sokhansanj, S. (2008). Mold appearance and modeling on selected corn stover components during moisture sorption. Bioresource Technol. 99(14):6365–6371.
  • Igathinathane, C., Womac, A. R., Sokhansanj, S., and Pordesimo, L. O. (2005). Sorption equilibrium moisture characteristics of selected corn stover components. Trans. Am. Soc. Agr. Eng. 48(4):1449–1460.
  • Irigoyen, R. T., and Giner, S. (2014). Drying-toasting kinetics of presoaked soybean in fluidised bed. Experimental study and mathematical modelling with analytical solutions. J. Food Eng. 128:31–39.
  • Jonquières, A., Perrin, L., Durand, A., Arnold, S., and Lochon, P. (1998). Modelling of vapour sorption in polar materials: comparison of Flory–Huggins and related models with the ENSIC mechanistic approach. J. Membr. Sci. 147(1):59–71.
  • Kartika, I. A., Yuliani, S., Kailaku, S., and Rigal, L. (2012). Moisture sorption behaviour of jatropha seed (Jatropha curcas) as a source of vegetable oil for biodiesel production. Biomass Bioenerg. 36:226–233.
  • Lazouk, M.-A., Savoire, R., Kaddour, A., Castello, J., Lanoisellé, J.-L., Van Hecke, E., and Thomasset, B. (2015). Oilseeds sorption isoterms, mechanical properties and pressing: Global view of water impact. J. Food Eng. 153:73–80.
  • Li, Z., Zhang, H., Zheng, W., Wang, W., Huang, H., Wang, C., MacDiarmid, A. G., and Wei, Y. (2008). Highly sensitive and stable humidity nanosensors based on LiCl doped TiO2 electrospun nanofibers. J. Am. Chem. Soc. 130(15):5036–5037.
  • Martins, M. G., Martins, D. E. G., and da Silva Pena, R. (2015). Drying kinetics and hygroscopic behavior of pirarucu (Arapaima gigas) fillet with different salt contents. LWT-Food Sci. Technol. 62(1):144–151.
  • Mulet, A., Garcıa-Pascual, P., Sanjuán, N., and Garcıa-Reverter, J. (2002). Equilibrium isotherms and isosteric heats of morel (Morchella esculenta). J. Food Eng. 53(1):75–81.
  • Nguyen, T. A., Verboven, P., Daudin, J. D., and Nicolaı¨, B. M. (2004). Measurement and modelling of water sorption isotherms of ‘Conference’pear flesh tissue in the high humidity range. Postharvest Biology Technol. 33(3):229–241.
  • Noriega, M. D. P., Estrada, O., and López, I. (2014). Computational model to design plastic multi-layer films for food packaging to assure a shelf life at the best cost. J. Plas. Film Sheet. 30(1):48–76.
  • Odamtten, G. T., and Kampelmacher, E. H. (1986). Influence of packaging material on moisture sorption and the multiplication of some toxigenic and non-toxigenic Aspergillus spp. infecting stored cereal grains, cowpea and groundnut. Int. J. Food Microbiol. 3(2):57–70.
  • Pixton, S., and Warburton, S. (1973). The influence of the method used for moisture adjustment on the equilibrium relative humidity of stored products. J. Stored Prod. Res. 9(3):189–197.
  • Sablani, S., Kasapis, S., and Rahman, M. (2007). Evaluating water activity and glass transition concepts for food stability. J. Food Eng. 78(1):266–271.
  • Sandoval, A. J., Guilarte, D., Barreiro, J. A., Lucci, E., and Müller, A. J. (2011). Determination of Moisture Sorption Characteristics of Oat Flour by Static and Dynamic Techniques with and Without Thymol as an Antimicrobial Agent. Food Biophys. 6(3):424–432.
  • Sawhney, I. K., Patil, G. R., Kumar, B., and Grover, S. (1997). Influence of water activity adjustment on sorption characteristics, acceptability and microbial stability of khoa. J. Food Sci. Technol. 34(2):123–127.
  • Schiraldi, A., Fessas, D., and Signorelli, M. (2012). Water Activity in Biological Systems-A Review. Pol. J. Food Nutr. Sci. 62(1):5–13.
  • Schmidt, S. J., and Lee, J. W. (2012). Comparison between water vapor sorption isotherms obtained using the new dynamic dewpoint isotherm method and those obtained using the standard saturated salt slurry method. Int. J. Food Properties 15(2):236–248.
  • Shands, J., and Labuza, T. (2009). Comparison of the dynamic dew point isotherm method to the static and dynamic gravimetric methods for the generation of moisture sorption isotherms. IFT annual meeting poster. Anaheim, CA.
  • Sharma, R., and Joshi, V. K. (2014). Development and evaluation of bell pepper (Capsicum annuum L.) based instant chutney powder. Indian J. Nat. Prod. Resour. 5(3):262–267.
  • Srivastava, R. (2012). Humidity Sensor: An Overview. Int. J. Green Nanotechnology 4(3):302–309.
  • Suntaro, K., Tirawanichakul, S., and Tirawanichakul, Y. (2014). Determination of Isosteric Heat and Entropy of Sorption of Air Dried Sheet Rubber Using Artificial Neural Network Approach. Appl. Mech. Mater. 541–542:374–379.
  • Troller, J. (2012). Water activity and food. Elsevier.
  • Underwood, R., Cuccaro, R., Bell, S., Gavioso, R., Ripa, D. M., Stevens, M., and de Podesta, M. (2012). A microwave resonance dew-point hygrometer. Meas. Sci. Technol. 23(8):085905.
  • Vaxelaire, J., Mousques, P., Bongiovanni, J., and Puiggali, J. (2000). Desorption isotherms of domestic activated sludge. Environmen. Technol. 21(3):327–335.
  • Wolf, W., Spiess, W., and Jung, G. (1985). Standardization of isotherm measurements (COST-project 90 and 90 bis). Properties of water in foods. Springer, Netherlands.
  • Yamazoe, N., and Shimizu, Y. (1986). Humidity sensors: principles and applications. Sensors Actuators 10(3):379–398.
  • Yan, Z., Sousa-Gallagher, M. J., and Oliveira, F. A. (2008). Sorption isotherms and moisture sorption hysteresis of intermediate moisture content banana. J. Food Eng. 86(3):342–348.
  • Yang, Z., Zhu, E., and Zhu, Z. (2015). Water desorption isotherm and drying characteristics of green soybean. J. Stored Prod. Res. 60:25–30.
  • Yu, X. (2007). Investigation of moisture sorption properties of food materials using saturated salt solution and humidity generating techniques. University of Illinois at Urbana-Champaign.
  • Yu, X., Martin, S. E., and Schmidt, S. J. (2008). Exploring the problem of mold growth and the efficacy of various mold inhibitor methods during moisture sorption isotherm measurements. J. Food Sci. 73(2):E69–E81.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.