1,741
Views
52
CrossRef citations to date
0
Altmetric
Original Articles

An overview of advanced technologies for selection of probiotics and their expediency: A review

&

References

  • Backhed, F., Ding, H., Wang, T., Hooper, L. V., Koh, G. Y., Nagy, A., Semenkovich, C. F. and Gordon, J. I. (2004). The gut microbiotaas an environmental factor that regulates fat storage. Proc. Natl. Acad. Sci. USA 101:15718–15723.
  • Banan-Mwine, E. D. and Lee, B. H. (2015). New perspectives on probiotics in health and disease. Food Sci. Human Well 15:1–29.
  • Bested, A. C., Logan, A. C. and Selhub, E. M. (2013). Intestinal microbiota, probiotics and mental health: From Metchnikoff to modern advances: Part I - autointoxication revisited. Gut. Pathog. 5:1–16.
  • Bustin, S. A., Zaccara, S. and Nolan, T. (2012). An introduction to the real-time polymerase chain reaction. In: Filion, M. N. (ed) Quantitative Real-Time PCR in Applied Microbiology. Caister Academic Press, UK, pp. 3–25.
  • Bottari, B., Santarelli, M., Neviani, E. and Gatti, M., 2010. Natural whey starter for Parmigiano Reggiano: culture-independent approach. J. Appl. Microbiol. 108:1676–1684.
  • Caglar, E., Kargul, B. and Tanboga, I. (2005). Bacteriotherapy and probiotics role on oral health. Oral Dis. 11:131–137.
  • Caglar, E., Topcuoglu, N., Ozbey, H., Sandalli, N. and Kulekci, G. (2015). Early colonization of Lactobacillus reuteri after exposure to Probiotics. J. Clin. Pediatr. Dent. 39:326–330.
  • Casey, P., Casey, G. D., Gardiner, G. E., Tangney, M., Stanton, C., Ross, R. P., Hill, C. and Fitzgerald, G. F. (2004). Isolation and characterization of anti-Salmonella lactic acid bacteria from the porcine gastrointestinal tract. Lett. Appl. Microbiol. 39:431–438.
  • Castoldi M et al. (2013) Expression profiling of MicroRNAs by quantitative real-time PCR. In: Nolan, T, Bustin, S. A. (ed.) PCR technology: current innovations. CRC Press, Boca Raton, Taylor & Francis Group, pp. 601–608.
  • Chen, S., Cao, Y., Ferguson, L. R., Shu, Q. and Garg, S. (2012). Flow cytometric assessment of the protectants for enhanced in vitro survival of probiotic lactic acid bacteria through simulated human gastro-intestinal stresses. Appl. Microbiol. Biotechnol. 95:345–356.
  • Chong, E. S. L. (2014). A potential role of probiotics in colorectal cancer prevention: review of possible mechanisms of action. World J. Microbiol. Biotechnol. 30:351–374.
  • Claassen, E. (2014). Cost-benefit relation of diet and probiotics in iatrogenic bowel irregularity (IBI). Front. Pharmacol. 14:5. doi: 10.3389/fphar.2014.00014.
  • Cocolin, L., Manzano, M., Cantoni, C. and Comi, C. (2001). Denaturing gradient gel electrophoresis analysis of the 16S rRNA gene V1 region to monitor dynamic changes in the bacterial population during fermentation of Italian sausages. Appl. Environ. Microbiol. 67:5113–5121.
  • Coeuret, V., Gueguen, M. and Vernoux, J. P. (2004). Numbers and strains of lactobacilli in some probiotic products. Int. J. Food Microbiol. 97:147–156.
  • Collado, C. M. and Hernandez, M. (2007). Identification and differentiation of Lactobacillus, Streptococcus and Bifidobacterium species in fermented milk products with bifidobacteria. Microbiol. Res. 16:86–92.
  • Collado, M., Moreno, Y., Cobo, J. and Hern´andez, M. (2006). Microbiological evaluation and molecular characterization of bifidobacteria strains in commercial fermented milks. Eur. Food Res. Tech. 222:112–117.
  • Collins, M. D., Rodrigues, U., Ash, C., Aguirre, M., Farrow, J. A. E. and Martinez-Murcia, A. (1991). Phylogenetic analysis of the genus Lactobacillus and related lactic acid bacteria as determined by reverse transcriptase sequencing of 16S rRNA. FEMS. Microbiol. Lett. 77:5–12.
  • Costa, D. J., Marteau, P., Amouyal, M., Poulsen, L. K., Hamelmann, E., Cazaubiel, M., Housez, B., Leuillet, S., Stavnsbjerg, M., Molimard, P., Courau, S. and Bousquet, J. (2014). Efficacy andsafety of the probiotic Lactobacillus paracasei LP-33 in allergic rhinitis: A double-blind, randomized, placebo-controlled trial (GA2LEN Study). Eur. J. Clin. Nutr. 68:602–607.
  • Davis, C. (2014). Enumeration of probiotic strains: Review of culture-dependent and alternative techniques to quantify viable bacteria. J. Microbiol. Methods 103:9–17.
  • Dherbecourt, J., Thierry, A., Madec, M. N. and Lortal, S. (2006). Comparison of amplified ribosomal DNA restriction analysis, peptidoglycan hydrolase and biochemical profiles for rapid dairy Propionibacteria species identification. Res. Microbiol. 157:905–913.
  • Donelli, G., Vuotto, C. and Mastromarino, P. (2013). Phenotyping and genotyping are both essential to identify and classify a probiotic microorganism. Microb. Ecol. Health Dis. 24:1–8.
  • Duca, A. D., Cesar E. D. and Abreu, P. C. (2015). Bacterial community of pond's water, sediment and in the guts of tilapia (Oreochromis niloticus) juveniles characterized by fluorescent in situ hybridization technique. Aqua. Res. 46:707–715.
  • Franz, C., Specht, I., Haberer, P. and Holzapfel, W. H. (2001). Bile salt hydrolase activity of enterococci isolated from food: screening and quantitative determination. J. Food Prot. 64:725–729.
  • Fujimoto, J., Matsuki, T., Sasamoto, M., Tomii, Y. and Watanabe, K. (2008). Identification and quantification of Lactobacillus casei strain Shirota in human feces with strain-specific primers derived from randomly amplified polymorphic DNA. Int. J. Food Microbiol. 126:210–215.
  • Fuller, R. (1989). Probiotics in man and animals. J. Appl. Bacteriol. 66:365–378.
  • Galdeano, C. M., Ivanna, N. N., Esteban, C., Alejandra, M. B. and Gabriela, P. (2015). Role of probiotics and functional foods in health: Gut immune stimulation by two probiotic strains and a potential probiotic yoghurt. Endocr. Metab. Immune Disord. Drug Targets. 15:37–45.
  • Gancheva, A., Pot, B., Vanhonacker, K., Hoste, B. and Kersters, K. (1999). A polyphasic approach towards the identification of strains belonging to Lactobacillus acidophilus and related species. Syst. Appl. Microbiol. 22:573–585.
  • Giraffa, G., Gatti, M., Rossetti, L., Senini, L. and Neviani, E. (2000). Molecular diversity within Lactobacillus helveticus as revealed by genotypic characterization. Appl. Environ. Microbiol. 66:1259–1265.
  • Gomez, Z. A., Urraza, D. P. and Antoni DG (2000) Characterization of Bifidobacterium strains using box primers. Anaerobe. 6:169–177.
  • Gosiewski, T., Chmielarczyk, A., Strus, M., Brzychczy, W. M. and Heczko, P. B. (2012). The application of genetics methods to differentiation of three Lactobacillus species of human origin. Ann. Microbiol. 62:1437–1445.
  • Gotteland, M., Andrews, M., Toledo, M., Muñoz, L., Caceres, P., Anziani, A., Wittig, E., Speisky, H. and Salazar, G. (2008). Modulation of Helicobacter pylori colonization with cranberry juice and Lactobacillus johnsonii La1 in children. Nutr. 24:421–426.
  • Gungor, O. E., Kirzioglu, Z. and Kivanc, M. (2015). Probiotics: can they be used to improve oral health? Benef. Microbes. 1–10.
  • Goyal, S., Raj, T., Banerjee, C., Imam, J. and Shukla, P. (2013). Isolation and characterization of probiotic microorganisms from curd and chili sauce. Int J Probiot. Prebiot. 8:91–94.
  • Hajela, N., Ramakrishna, B. S., Nair, B. G., Abraham, P., Gopalan, S. and Ganguly, N. K. (2015). Gut microbiome, gut function, and probiotics: Implications for health. Ind. J. Gastroenterol. 34:93–107.
  • Han, K. S., Kim, Y., Choi, S., Oh, S., Park, S., Kim S. H. and Whang, K. Y. (2005). Rapid identification of Lactobacillus acidophilus by restriction analysis of the 16S-23S rRNA intergenic spacer region and flanking 23S rRNA gene. Biotechnol. Lett. 27:1183–1188.
  • Hellyer, T. J. and Nadeau, J. G. (2004). Strand displacement amplification: a versatile tool for molecular diagnostics. Expert Rev. Mol. Diagn. 4:251–261.
  • Henao, M. J., Elinav, E., Thaiss, C. A., Licona, L. P. and Flavell, R. A. (2013). Role of the intestinal microbiome in liver disease. J. Autoimmu. 46:66–73.
  • Henri, D. S., Desmasures, N. and Gueguen, M. (2008). Diversity and dynamics of lactobacilli populations during ripening of RDO Camembert cheese. Can. J. Microbiol. 54:218–228.
  • Herbel, S. R., Vanjen, W., Wieler, L. H. and Guenther, S. (2013). Timely approaches to identify probiotic species of the genus. Lactobacillus. Gut. Pathogens. 5:1–13.
  • Hill, C., Guarner, F., Reid, G., Gibson, G. R., Merenstein, D. J., Pot, B., Morelli, L., Canani, R. B., Flint, H. J., Salminen, S., Calder, P. C. and Sanders, M. E. (2014). Expert consensus document. The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nature Reviews. Gastroenterol. Hepatol. 11:506–514.
  • Hoque, M. Z., Akter, F., Hossain, K. M., Rahman, M. S. M., Billah, M. M. and Islam, K. M. D. (2010). Isolation, Identification and Analysis of Probiotic Properties of Lactobacillus Spp. From Selective Regional Yoghurts. World J. Dairy Food Sci. 5:39–46.
  • Hutt, P., Koll, P., Stsepetova, J., Alvarez, B., Mandar, R, Krogh, A. K., Marcotte, H., Hammarstrom, L. and Mikelsaar, M. (2011). Safety and persistence of orally administered human Lactobacillus sp. strains in healthy adults. Benef. Microbes. 2:79–90.
  • Ivanov, I. I. and Honda, K. (2012). Intestinal commensal microbes as immune modulators. Cell Host Microbe. 12:496–508.
  • Jain, M., Gupta, K. and Jain, P. (2014). Significance of Probiotics and Prebiotics in Health and Nutrition. Malaya J. Biosci. 1:181–195.
  • Janssen, P., Coopman, R., Huys, G., Swings, J., Bleeker, M., Vos, P., Zabeau, M. and Kersters, K. (1996). Evaluation of the DNA fingerprinting method AFLP as a new tool in bacterial taxonomy. Microbiol. 142:1881–1893.
  • John, B. G., Barbara, A. W., Michael, J. G. and Deirdre, M. (2016). Visualization of microbe dietary remnant interactions in digesta from pigs, by fluorescence in situ hybridization and staining methods; effects of a dietary arabinoxylan-rich wheat fraction. Food Hydrocoll. 52:952–962.
  • Jothika, M., Vanajassun, P. P. and Someshwar, B. (2015). Effectiveness of probiotic, chlorhexidine and fluoride mouthwash against Streptococcus mutans—Randomized, single-blind, in vivo study. J. Int. Soc. Prev. Community. Dent. 5:44–48.
  • Juste, A., Thommad, B. and Lievens, B., (2008). Recent advances in molecular techniques to study microbial communities in food-associated matrices and processes. Food Microbiol. 25:745–761.
  • Klijn, N., Weerkamp, A. H. and De Vos, W. M. (1991). Identification of mesophilic lactic acid bacteria by using polymerase chain reaction-amplified variable regions of 16S rRNA and specific DNA probes. Appl. Environ. Microbiol. 57:3390–3393.
  • Kumar, M., Ghosh, M. and Ganguli, A. (2012). Mitogenic response and probiotic characteristics of lactic acid bacteria isolated from indigenously pickled vegetables and fermented beverages. World J. Microbiol. Biotechnol. 28:703–711.
  • Kwon, H. K., Kim, G. C., Kim, Y., Hwang, W., Jash, A., Sahoo, A., Kim, J. E., Nam, J. H. and Im, S. H. (2013). Amelioration of experimental autoimmune encephalomyelitis by probioticmixture is mediated by a shift in T helper cell immune response. Clin. Immunol. 146:217–227.
  • Lahtinen, S. J., Gueiumonde, M., Ouwehand, A. C., Reinikainen, J. P. and Salminen, S. J. (2006). Comparison of four methods to enumerate probiotic bifidobacteria in a fermented food product. Food Microbiol. 23:571–577.
  • Lalitha, T. A. (2011). Probiotics and oral health. J. Oral Res. Rev. 3:20–26.
  • Lara, M. J. S., Llorente, C. G., Diaz, J. P. and Gil, A. (2015). The Role of Probiotic Lactic Acid Bacteria and Bifidobacteria in the Prevention and Treatment of Inflammatory Bowel Disease and Other Related Diseases: A Systematic Review of Randomized Human Clinical Trials. BioMed. Res. Int. 1–15.
  • Lee, N. K., Kim, S. Y., Han, K. J., Eom, S.J. and Paik, H. D. (2014). Probiotic potential of Lactobacillus strains with anti-allergic effects from kimchi for yogurt starters. LWT–Food Sci. Tech. 58:130–134.
  • Lee, I. (2014). Critical pathogenic steps to high risk Helicobacter pylori gastritis and gastric carcinogenesis. World J. Gastroenterol. 20:6412–6419.
  • Levy, C. and Lindor, K. D. (2006). Primary sclerosing cholangitis: Epidemiology, natural history, and prognosis. Semin. Liver Dis. 26:22–30.
  • Lilly, D. M. and Stillwell, R. H. (1965). Probiotics: Growth-promoting factors produced by microorganisms. Sci. 147:747–748.
  • Liu, W., Baq, Q., Jirimutu,  , Qing, M., Siriguleng,  , Chen, X., Sun, T., Li, M., Zhang, J., Yu, J., Bilige, M., Sun, T. and Zhang, H. (2012). Isolation and identification of lactic acid bacteria from Tarag in Eastern Inner Mongolia of China by 16S rRNA sequences and DGGE analysis. Microbiol. Res. 167:110–115.
  • Logan, A. C., Rao, A. V. and Irani, D. (2003). Chronic fatigue syndrome: lactic acid bacteria may be of therapeutic value. Med. Hypotheses. 60:915–923.
  • Luo, Y., Ma, B. C., Zou, L. K., Cheng, J. G., Cai, Y. H., Kang, J. P., Li, B., Gao, X. H., Wang, P. and Xiao, J. J. (2012). Identification and characterization of lactic acid bacteria from forest musk deer feces. Afr. J. Microbiol. Res. 6:5871–5881.
  • Madar, M., Slizova, M., Czerwinski, J., Hrckovan, G., Mudronova, D., Gancarcikova, S., Popper, M., Pistl, J., Soltys. J. and Nemcova, R. (2015). Histo-FISH protocol to detect bacterial compositions and biofilms formation in vivo. Benef. Microbes. Vol. 6. DOI: https://doi.org/10.3920/BM2015.0016. 1876–2883.
  • Makino, H., Kushiro, A., Ishikawa, E., Muylaert, D., Kubota, H. and Sakai, T. (2011). Transmission of intestinal Bifidobacterium longum subsp. longum strains from mother to infant, determined by multilocus sequencing typing and amplified fragment length polymorphism. Appl. Environ. Microbiol. 77:678–893.
  • Maldonado, G. C., Lemme-Dumit, J. M., Thieblemont, N., Carmuega, E., Weill, R. and Perdigon, G. (2015). Stimulation of innate immune cells induced by probiotics: Participation of tolllike receptors. J. Clin. Cell Immunol. 6:1–9.
  • Margolles, A., Mayo, B. and Ruas, M. P. (2009). Screening, identification, and characterization of Lactobacillus and Bifidobacterium strains. In: Handbook of probiotics and prebiotics, pp. 45–58. Nomoto, K., Salminen, S., Lee, Y. K., Eds., Hoboken, Wiley, New Jersey.
  • Martin, R., Miquel, S., Ulmer, J., Langella, P. and Bermudez-Humaran, L. G. (2014). Gut ecosystem: How microbes help us. Benef. Microbes. 5:219–233.
  • McFarland, L. V. (2014). Use of probiotics to correct dysbiosis of normal microbiota following disease or disruptive events: A systematic review. BMJ Open. 4:1–18.
  • Metchnikoff, E. (1907). The Prolongation of Life. Optimistic Studies London, pp. 16–183.
  • Mokarram, R. R., Mortazavi, S. A., Najafi, M. B. H. and Shahidi, F. (2009). The influence of multi stage alginate coating on survivability of potential probiotic bacteria in simulatedgastric and intestinal juice. Food Res. Int. 42:1040–1045.
  • Mortazavian, A. M., Ehsani, M. R., Azizi, A., Razavi, S. H., Mousavi, S. M., Sohrabvandi, S. and Reinheimer, J. A. (2008). Viability of calcium-alginate-microencapsulated probiotic bacteria in Iranian yogurt drink (Doogh) during refrigerated storage and under simulated gastrointestinal conditions. Aust. J. Dairy Tech. 63:24–29.
  • Miller, D. M., Dudley, E. G. and Roberts, R. F. (2012). Technical note: development of a quantitative PCR method for monitoring strain dynamics during yogurt manufacture. J. Dairy Sci. 95:4868–4872.
  • Narbona, L. E., Uberos, F. J., Armada, M. M. I., Couce, P. M. L., Rodriguez, M. G. and Saenz, de P. M. (2014). Nutrition and Metabolism Group of the Spanish Neonatology Society: Recommendations and evidence fordietary supplementation with probiotics in very low birth weight infants. An. Pediatr. 81:1–8.
  • Neish, A. S. (2009). Microbes in gastrointestinal health and disease. Gastroenterol. 136:65–80.
  • Norberto, C., Tapia, C., Rodriguez, L. G., Jeong, M. S., Ramirez, Y. L., Becerra, V. B., Eva, J. H., Juan, L., Flores. R., Arrese, M., Sanchez, N. M. and Uribe, M. (2015). Current evidence on the use of probiotics in liver diseases. J. Func. Food. 17:137–151.
  • Olive, D. M. and Bean, P. (1999). Principles and applications of methods for DNA-based typing of microbial organisms. J. Clin. Microbiol. 37:1661–1669.
  • Pal, K., Szen, O., Kiss, A. and Naar, Z. (2012). Comparison and evaluation of molecular methods used for identification and discrimination of lactic acid bacteria. J. Sci. Food Agric. 92:1931–1936.
  • Panigrahi, P. (2014). Probiotics and prebiotics in neonatal necrotizing enterocolitis: New oppurtunities for translational research. Pathphys. 21:35–46.
  • Parker, R. (1974). Probiotics, the other half of the antibiotic story. Anim. Nutr. Health. 28:240–255.
  • Patel, S. (2015). Emerging trends in nutraceutical applications of whey protein and its derivatives. J. Food Sci. Technol. 1–12.
  • Patel, S. and Goyal, A. (2013). Evolving roles of probiotics in cancerprophylaxis and therapy. Antimicrob. Proteins. 5:59–66.
  • Patel, S., Shukla, R. and Goyal, A. (2015). Probiotics in valorization of innate immunity across various animal models. J. Func. Foods. 14:549–561.
  • Paturi, G., Butts, C. A., Hewitt, K. L. B., Hedderley, D., Stoklosinski, H. and Ansell, J. (2015). Differential effects of probiotics, prebiotics, and synbiotics on gut microbiota and gene expression in rats. J. Func. Foods. 13:204–213.
  • Pierre, W. and Denis, R. L. (2005). Review of molecular methods for identification, characterization and detection of Bifidobacteria. INRA, EDP Sci. 85:23–32.
  • Postellec, F., Falentin, H., Pavan, S., Combrisson, J. and Sohier, D. (2011). Recent advances in quantitative PCR (qPCR) applications in fold microbiology. Food Microbiol. 28:848–861.
  • Prasanna, P. H. P., Grandison, A. S. and Charalampopoulos, D. (2014). Bifidobacteria in milk products: An overview of physiological and biochemical properties, exopolysaccharide production, selection criteria of milk products and health benefits. Food Res. Int. 55:247–262.
  • Pundir, R. K., Rana, S., Kashyap, N. and Kaur, A. (2013). Probiotic potential of lactic acid bacteria isolated from food samples: an in vitro study. J. App. Pharm. Sci. 3:85–93.
  • Raghuwanshi, S., Misra, S., Sharma, R. and Bisen, P. S. (2015). Indian perspective for probiotics: A review. Ind. J. Dairy Sci. 68:195–205.
  • Randazzo, C. L., Heilig, H., Restuccia, C., Giudici, P. and Caggia, C. (2005). Bacterial population in traditional sourdough evaluated by molecular methods. J. Appl. Microbiol. 99:251–258.
  • Rebolledo, M., Rojas, E. and Salgado, F. (2013). Effect of two probiotics containing Lactobacillus rhamnosus and Lactobacillus johnsonii variety on the in vitro growth of Streptococcus mutans. Int. J. odontostomatol. 7:415–419.
  • Reid, G. (2015). The growth potential for dairy probiotics. Int. Dairy J. 49:16–22.
  • Renouf, V., Miot, S. C. and Lonvaud, F. A. (2006). Lactic acid bacteria evolution during winemaking: Use of rpoB gene as a target for PCR-DGGE analysis. Food Microbiol. 23:136–145.
  • Riaz, Q. U. and Masud, T. (2013). Recent trends and applications of encapsulating materials for probiotic stability. Crit. Rev. Food Sci. Nutr. 53:231–244.
  • Rodtong, S. and Tannock, G. W. (1993). Differentiation of Lactobacillus strains by ribotyping. Appl. Environ. Microbiol. 59:3480–3484.
  • Roy, D., Ward, P. and Champagne, G. (1996). Differentiation of bifidobacteria by use of pulsed-field gel electrophoresis and polymerase chain reaction. Int. J. Food Microbiol. 29:11–29.
  • Sadana, G., Sikri, C. and Sadana, S. (2015). Role of probiotics in general and oral health: a review. Ind. J. Compr. Dent. Care. 5:571–57.
  • Satokari, R. M. et al. (2003). Molecular approaches for the detection and identification of bifidobacteria and lactobacilli in the human gastrointestinal tract. Syst. Appl. Microbiol. 26:572–584.
  • Savadago, A., Ouattara, C. A. T., Bassole, I. H. N. and Traore, S. A. (2006). Bacteriocins and lactic acid bacteria—A mini review. Afr. J. Biotech. 5:678–683.
  • Saxer, S., Schwenninger, S. M. and Lacroix, C. (2013). Characterization of the microflora of industrial Mexican cheeses produced without added chemical preservatives. LWT—Food Sci. Technol. 10:0023–6438.
  • Schillinger, U. (1999). Isolation and identification of lactobacilli from novel-type probiotic and mild yoghurts and their stability during refrigerated storage. Int. J. Food Microbiol. 47:79–87.
  • Schulz, C., Koch, N., Schutte, K., Pieper, D. H. and Malfertheiner, P. (2015). H. pylori and its modulation of gastrointestinal microbiota. J. Dig. Dis. 16:109–117.
  • Sharma, P., Tomar, S. K., Goswami, P., Sangwan, V. and Singh, R. (2014). Antibiotic resistance among commercially available probiotics. Food Res. Int. 57:176–195.
  • Shehata, I. (2012). Molecular identification of probiotics Lactobacillus strain isolates by: Amplified Ribosomal DNA Restriction Analysis (ARDRA). Sci. J. Microbiol. 6(12):1–8.
  • Siepert, B., Reinhardt, N., Kreuzer, S., Bondzio, A., Twardziok, S. and Brockmann, G. (2014). Enterococcus faecium NCIMB 10415 supplementation affects intestinal immune-associated gene expression in post-weaning piglets. Vet. Immunol. Immunopathol. 157:65–77.
  • Singh, A. K., Pandey, S. K., Saha, G. and Gattupalli, N. K. (2015). Pyrroloquinoline quinone (PQQ) producing Escherichia coli Nissle 1917 (EcN) alleviates age associated oxidative stress and hyperlipidemia, and improves mitochondrial function in ageing rats. Exp. Gerontol. 66:1–9.
  • Singh, K., Kallali, B., Kumar, A. and Thaker, V. (2011). Probiotics: A review. Asian. Pac. J. Trop. Biomed. 1:287–290.
  • Sisto, A., De Bellis, P., Visconti, A., Morelli L. and Lavermicocca, P. (2009). Development of a PCR assay for the strain-specific identification of probiotic strain Lactobacillus paracasei. Int. J. Food Microbiol. 136:59–65.
  • Soukoulis, C., Yonekura, L., Gan, H. H., Behboudi, J. S., Parmenter, C. and Fisk, I. (2014). Probiotic edible films as a new strategy for developing functional bakery products: The case of pan bread. Food Hydrocoll. 39:231–242.
  • Srutkova, D., Spanova, A., Spano, M., Drab, V., Schwarzer, M. and Kozakova, H. (2011). Efficiency of PCR-based methods in discriminating Bifidobacterium longum ssp. longum and Bifidobacterium longum ssp. infantis strains of human origin. J. Microbiol. Meth. 87:10–16.
  • Stefan, K. and Rossitza, V. D. (2014). Bacterial vaginosis - local Lactobacillus casei var rhamnosus doderlein monotherapy. Int. J. Probiot. Prebiot. 9:129–133.
  • Stender, H., Fiandaca, M., Hyldig-Nielsen, J. and Coull, J., (2002). PNA for rapid microbiology. J. Microbiol. Meth. 48:1–17.
  • Strus, M., Chmielarczyk, A., Kochan, P., Adamski, P., Chelmicki, Z. and Chelmicki, A. (2012). Studies on the effects of probiotic Lactobacillus mixture given orally on vaginal and rectal colonization and on parameters of vaginal health in women with intermediate vaginal flora. Eur. J. Obstet. Gynecol. Reprod. Biol. 163:210–215.
  • Svec, P., Kukletova, M. and Sedlacek, I. (2010). Comparative evaluation of automated ribotyping and RAPD-PCR for typing of Lactobacillus spp. occurring in dental caries. A Van Leeuw. 98:85–92.
  • Taylor, S. (2013). A map to more reliable RT-qPCR results using MIQE guidelines. Am. Lab. 18:20–21.
  • Tian, Q., Wang, T. T., Tang, X., Han, M. Z., Leng, X. J. and Mao, X. Y. (2015). Developing a potential prebiotic of yogurt: Growth of Bifidobacterium and yogurt cultures with addition of glycomacropeptide hydrolysate. Int. J. Food Sci. Tech. 50:120–127.
  • Touchefeu, Y., Montassier, E., Nieman, K., Gastinne, T., Potel, G., Brule, V. S., Le, V. F. and de La, C. M. F. (2014). Systematic review: The role of the gut microbiota inchemotherapy or radiation induced gastrointestinalmucositis - Current evidence and potential clinical applications. Aliment. Pharmacol. Ther. 40:409–421.
  • Tracy, B. P., Gaida, S. M. and Papoutsakis, E. T. (2010). Flow cytometry for bacteria: Enabling metabolic engineering, synthetic biology and the elucidation of complex phenotypes. Curr. Opin. Biotechnol. 21:85–99.
  • Tripathi, M. K. and Giri, S. K. (2014). Probiotic functional foods: Survival of probiotics during processing and storage. J. Func. Food. 9:225–241.
  • Tynkkynen, S., Satokari, R., Saarela, M., Mattila-Sandholm, T. and Saxelin, M. (1999). Comparison of ribotyping, randomly amplified polymorphic DNA Analysis, and pulsed-field gel electrophoresis in typing of Lactobacillus rhamnosus and L. casei strains. Appl. Environ. Microbiol. 65:3908–3914.
  • Vaneechoutte, M., Rossau, R., De Vos, P., Gillis, M., Janssens, D. and Paepe, N, (1992). Rapid identification of bacteria of the Coma- monadaceae with amplified ribosomal DNA-restriction analysis (ARDRA). FEMS. Microbiol. Lett. 72:227–233.
  • Venema, K. and Maathuis, A. J. H. (2003). A PCR-based method for identification of bifidobacteria from the human alimentary tract at the species level. FEMS Microbiol. Lett. 224:143–149.
  • Ventura, M. and Zink, R. (2002). Rapid identification, differentiation, and proposed new taxonomic classification of Bifidobacterium lactis. Appl. Environ. Microbiol. 68:6429–6434.
  • Vieira, A. T., Teixeira, M. M. and Martins, F. S. (2013). The role ofprobiotics and prebiotics in inducing gut immunity. Front. Immunol. 4(445):1–12.
  • Vincent, D., Roy, D., Mondou, F. and Dery, C. (1998). Characterization of bifidobacteria by random DNA amplification. Int. J. Food Microbiol. 43:185–193.
  • Walter, J., Tannock, G. W., Tilsala-Timisjarvi, A., Rodtong, A., Loach, D. M. and Munro,  . (2000). Detection and identification of gastrointestinal Lactobacillus species by using denaturing gradient gel electrophoresis and species-specific PCR primers. Appl. Environ. Microbiol. 66:297–303.
  • West, N. P., Horn, P. L., Pyne, D. B., Gebski, V. J., Lahtinen, S. J., Fricker, P. A. and Cripps, A.W. (2014). Probiotic supplementation for respiratory and gastrointestinal illness symptoms in healthy physically active individuals. Clin. Nutr. 33:581–587.
  • Zhang, H., Sun, J., Liu, X., Hong, C., Zhu, Y., Liu, A., et al. (2013). Lactobacillus paracasei subsp. paracasei LC01 positively modulates intestinal microflora in healthy young adults. J. Microbiol. 51:777–782.
  • Zhong, W., Millsap, K., Bialkowska-Hobrzanska, H. and Reid, G. (1998). Differentiation of Lactobacillus species by molecular typing. Appl. Enviro. Microbiol. 64:2418–2423.
  • Zwirglmaier, K. (2005). Fluorescent in situ hybridization (FISH)–The next generation. FEMS. Microbiol. Lett. 246:151–158.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.