1,763
Views
79
CrossRef citations to date
0
Altmetric
Original Articles

Solubilization of myofibrillar proteins in water or low ionic strength media: Classical techniques, basic principles, and novel functionalities

, , &

References

  • Alarcon-Rojo, A., Janacua, H., Rodriguez, J., Paniwnyk, L. and Mason, T. (2015). Power ultrasound in meat processing. Meat Sci. 107:86–93.
  • Bailey, A. J. and Light, N. D. (1989). Connective tissue in meat and meat products. Elsevier Applied Science, Barking, England.
  • Bandman, E. (1999). Solubility of myosin and the binding quality of meat products. Int. Congr Meat Sci Technol. 45:236–245.
  • Bandman, E., Arrizubieta, M.J., Wick, M., Hattori, A., Tablin, F., Zhang, S. and Zhang, Q. (1997). Functional analysis of the chicken sarcomeric myosin rod: Regulation of dimerization, solubility, and fibrillogenesis. Cell Struct. Funct. 22(1):131–137.
  • Banga, I. and Szent-Györgyi, A. (1942). Preparation and properties of myosin A and B. Stud. Inst. Med. Chem. Univ. Szeged. I:5–15.
  • Boland, M. J., Rae, A. N., Vereijken, J. M., Meuwissen, M. P., Fischer, A. R., van Boekel, M. A., Rutherfurd, S. M., Gruppen, H., Moughan, P. J. and Hendriks, W. H. (2013). The future supply of animal-derived protein for human consumption. Trends Food Sci. Tech. 29(1):62–73.
  • Bouton, P., Ford, A., Harris, P., Macfarlane, J. and O'shea, J. (1977). Pressure-heat treatment of post rigor muscle: Effects on tenderness. J. Food Sci. 42(1):132–135.
  • Buckow, R., Sikes, A. and Tume, R. (2013). Effect of high pressure on physicochemical properties of meat. Crit. Rev. Food Sci. 53(7):770–786.
  • Chang, H. S. (1997). Solubility and gelation of chicken breast muscle proteins as affected by salts. Doctoral Dissertations Available from Proquest Paper AAI9721436.
  • Chang, H. S., Feng, Y. and Hultin, H. O. (2001). Role of pH in gel formation of washed chicken muscle at low ionic strength. J. Food Biochem. 25(5):439–457.
  • Cheah, P. and Ledward, D. (1996). High pressure effects on lipid oxidation in minced pork. Meat Sci. 43(2):123–134.
  • Cheftel, J. C. and Culioli, J. (1997). Effects of high pressure on meat: A review. Meat Sci. 46(3):211–236.
  • Chen, Y. C. and Jaczynski, J. (2007). Protein recovery from rainbow trout (Oncorhynchus mykiss) processing byproducts via isoelectric solubilization/precipitation and its gelation properties as affected by functional additives. J. Agric. Food Chem. 55(22):9079–9088.
  • Cho, Y. J., Lee, N. H., Yang, S. Y., Kim, Y. B., Kim, Y. H., Lim, S. D., Jeon, K. H. and Kim, K. S. (2007). Effects of sonication on the water-solubilization of myofibrillar proteins from breast muscle of spent hen. Kor. J. Food Sci. An. 27(4):457–462.
  • Choi, Y. J. and Park, J. W. (2002). Acid‐aided protein recovery from enzyme‐rich pacific whiting. J. Food Sci. 67(8):2962–2967.
  • Chou, Y. T. and Lin, K. W. (2010). Effects of xylooligosaccharides and sugars on the functionality of porcine myofibrillar proteins during heating and frozen storage. Food Chem. 121(1):127–131.
  • Craig, R. and Woodhead, J. L. (2006). Structure and function of myosin filaments. Curr. Opin. Struc. Biol. 16(2):204–212.
  • Dagher, S. M., Hultin, H. O. and Liang, Y. (2000). Solubility of cod muscle myofibrillar proteins at alkaline pH. J. Aquat. Food Prod. T. 9(4):49–59.
  • Dutson, T. R., Pearson, A. M., Merkel, R. A. and Spink, G. C. (1974). Ultrastructural postmortem changes in normal and low quality porcine muscle fibers. J. Food Sci. 39(1):32–37.
  • Fürst, D. O., Osborn, M., Nave, R. and Weber, K. (1988). The organization of titin filaments in the half-sarcomere revealed by monoclonal antibodies in immunoelectron microscopy: A map of ten nonrepetitive epitopes starting at the Z line extends close to the M line. J. Cell Biol. 106(5):1563–1572.
  • Feng, Y. and Hultin, H. O. (1997). Solubility of the proteins of mackerel light muscle at low ionic strength. J. Food Biochem. 21(1):479–496.
  • Feng, Y. and Hultin, H. O. (2001). Effect of pH on the rheological and structural properties of gels of water-washed chicken-breast muscle at physiological ionic strength. J. Agric. Food Chem. 49(8):3927–3935.
  • Foh, M. B. K., Wenshui, X., Amadou, I. and Jiang, Q. (2012). Influence of pH shift on functional properties of protein isolated of tilapia (Oreochromis niloticus) muscles and of soy protein isolate. Food Bioprocess Tech. 5(6):2192–2200.
  • Gülseren, İ., Güzey, D., Bruce, B. D. and Weiss, J. (2007). Structural and functional changes in ultrasonicated bovine serum albumin solutions. Ultrason. Sonochem. 14(2):173–183.
  • Gehring, C. K., Gigliotti, J. C., Moritz, J. S., Tou, J. C. and Jaczynski, J. (2011). Functional and nutritional characteristics of proteins and lipids recovered by isoelectric processing of fish by-products and low-value fish: A review. Food Chem. 124(2):422–431.
  • Ghosh, T., García, A. E. and Garde, S. (2001). Molecular dynamics simulations of pressure effects on hydrophobic interactions. J. Am. Chem. Soc. 123(44):10997–11003.
  • Goll, D. E., Neti, G., Mares, S. W. and Thompson, V. F. (2008). Myofibrillar protein turnover: The proteasome and the calpains. J. Anim. Sci. 86(14 Suppl):E19–35.
  • Gross, M. and Jaenicke, R. (1994). Proteins under pressure. Eur. J. Biochem. 221(2):617–630.
  • Guo, X. Y., Peng, Z. Q., Zhang, Y. W., Liu, B. and Cui, Y. Q. (2015). The solubility and conformational characteristics of porcine myosin as affected by the presence of L-lysine and L-histidine. Food Chem. 170:212–217.
  • Harano, Y. and Kinoshita, M. (2006). On the physics of pressure denaturation of proteins. J. Phys-Condens. Mat. 18(7):L107.
  • Harano, Y., Yoshidome, T. and Kinoshita, M. (2008). Molecular mechanism of pressure denaturation of proteins. J. Chem. Phys. 129(14):145103.
  • Hay, J. D., Currie, R. W., Wolfe, F. H. and Sanders, E. J. (1973). Effect of postmortem aging on chicken muscle fibrils. J. Food Sci. 38(6):981–986.
  • Hayakawa,  , Ito, T., Wakamatsu, J., Nishimura, T. and Hattori, A. (2009). Myosin is solubilized in a neutral and low ionic strength solution containing L-histidine. Meat Sci. 82(2):151–154.
  • Hayakawa,  , Ito, T., Wakamatsu, J., Nishimura, T. and Hattori, A. (2010). Myosin filament depolymerizes in a low ionic strength solution containing L-histidine. Meat Sci. 84(4):742–746.
  • Hayakawa,  , Yoshida, Y., Yasui, M., Ito, T., Iwasaki, T., Wakamatsu, J., Hattori, A. and Nishimura, T. (2012). Heat-induced gelation of myosin in a low ionic strength solution containing L-histidine. Meat Sci. 90(1):77–80.
  • Hermansson, A. M., Harbitz, O. and Langton, M. (1986). Formation of two types of gels from bovine myosin. J. Sci. Food Agr. 37(1):69–84.
  • Hrynets, Y., Ndagijimana, M. and Betti, M. (2014). Transglutaminase-catalyzed glycosylation of natural actomyosin (NAM) using glucosamine as amine donor: Functionality and gel microstructure. Food Hydrocolloids. 36:26–36.
  • Hrynets, Y., Omana, D. A., Xu, Y. and Betti, M. (2010). Effect of acid‐and alkaline‐aided extractions on functional and rheological properties of proteins recovered from mechanically separated turkey meat (MSTM). J. Food Sci. 75(7):E477–E486.
  • Hrynets, Y., Omana, D. A., Xu, Y. and Betti, M. (2011). Comparative study on the effect of acid-and alkaline-aided extractions on mechanically separated turkey meat (MSTM): Chemical characteristics of recovered proteins. Process Biochem. 46(1):335–343.
  • Hu, H., Wu, J., Li-Chan, E. C., Zhu, L., Zhang, F., Xu, X., Fan, G., Wang, L., Huang, X. and Pan, S. (2013). Effects of ultrasound on structural and physical properties of soy protein isolate (SPI) dispersions. Food Hydrocolloids. 30(2):647–655.
  • Huff-Lonergan, E. and Lonergan, S. M. (2005). Mechanisms of water-holding capacity of meat: The role of postmortem biochemical and structural changes. Meat Sci. 71(1):194–204.
  • Huhin, H. O. and Kelleher, S. D. (1999). Process for isolating a protein composition from a muscle source and protein composition. U.S. Patent No. 6005,073.
  • Hultin, H. O., Feng, Y. and Stanley, D. W. (1995). A re‐examination of muscle protein solubility. J. Muscle Foods. 6(2):91–107.
  • Hultin, H. O. and Kelleher, S. (2002). Protein composition and process for isolating a protein composition from a muscle source. U.S. Patent No. 6451,975.
  • Hultin, H. O. and Kelleher, S. D. (2000). High efficiency alkaline protein extraction. U.S.Patent No. 6136,959.
  • Hummer, G., Garde, S., García, A. E., Paulaitis, M. E. and Pratt, L. R. (1998). The pressure dependence of hydrophobic interactions is consistent with the observed pressure denaturation of proteins. Proc. Natl. Acad. Sci. 95(4):1552–1555.
  • Ikkai, T. and Ooi, T. (1966). The effects of pressure on FG transformation of actin.Biochem. 5(5):1551–1560.
  • Ingadottir, B. and Kristinsson, H. G. (2010). Gelation of protein isolates extracted from tilapia light muscle by pH shift processing. Food Chem. 118(3):789–798.
  • Ishioroshi, M., Jima, K. S. and Yasui, T. (1979). Heat‐induced gelation of myosin: Factors of pH and salt concentrations. J. Food Sci. 44(5):1280–1284.
  • Ito, Y., Tatsumi, R., Wakamatsu, J. I., Nishimura, T. and Hattori, A. (2003). The solubilization of myofibrillar proteins of vertebrate skeletal muscle in water. Anim. Sci. J. 74(5):417–425.
  • Ito, Y., Toki, S., Omori, T., Ide, H., Tatsumi, R., Wakamatsu, J.i., Nishuimura, T. and Hattori, A. (2004). Physicochemical properties of water‐soluble myofibrillar proteins prepared from chicken breast muscle. Anim. Sci. J. 75(1):59–65.
  • Jambrak, A. R., Mason, T. J., Lelas, V., Herceg, Z. and Herceg, I. L. (2008). Effect of ultrasound treatment on solubility and foaming properties of whey protein suspensions. J. Food Eng. 86(2):281–287.
  • James, J. M. and DeWitt, C. A. (2004). Gel attributes of beef heart when treated by acid solubilization isoelectric precipitation. J. Food Sci. 69(6):C473–C479.
  • Jung, S., de Lamballerie-Anton, M. and Ghoul, M. (2000). Modifications of ultrastructure and myofibrillar proteins of post-rigor beef treated by high pressure. LWT-Food Sci.Technol. 33(4):313–319.
  • Kaminer, B. and Bell, A. L. (1966). Myosin filamentogenesis: Effects of pH and ionic concentration. J. Mol. Biol. 20(2):391–401.
  • Katayama, S., Haga, Y. and Saeki, H. (2004). Loss of filament-forming ability of myosin by non-enzymatic glycosylation and its molecular mechanism. FEBS Lett. 575(1):9–13.
  • Katayama, S. and Saeki, H. (2004). Cooperative effect of relative humidity and glucose concentration on improved solubility of shellfish muscle protein by the Maillard reaction. Fisheries Sci. 70(1):159–166.
  • Katayama, S. and Saeki, H. (2007). Water solubilization of glycated carp and scallop myosin rods, and their soluble state under physiological conditions. Fisheries Sci. 73(2):446–452.
  • Katayama, S., Shima, J. and Saeki, H. (2002). Solubility improvement of shellfish muscle proteins by reaction with glucose and its soluble state in low-ionic-strength medium. J. Agric. Food Chem. 50(15):4327–4332.
  • Ke, S. and Hultin, H. O. (2005). Role of reduced ionic strength and low pH in gelation of chicken breast muscle protein. J. Food Sci. 70(1):E1–E6.
  • Kelleher, S. D. (2000). Physical characteristics of muscle protein extracts prepared using low ionic strength, acid solubilization/precipitation. Doctoral Dissertations Available from Proquest.Paper AAI9988808.
  • Kelleher, S. D., Feng, Y., Hultin, H. O. and Livingston, M. B. (2004). Role of initial muscle pH on the solubility of fish muscle proteins in water. J. Food Biochem. 28(4):279–292.
  • Khiari, Z., Pietrasik, Z., Gaudette, N. J. and Betti, M. (2014). Poultry protein isolate prepared using an acid solubilization/precipitation extraction influences the microstructure, the functionality and the consumer acceptability of a processed meat product. Food Struct. 2(1):49–60.
  • Korzeniowska, M., Cheung, I. W. Y. and Li-Chan, E. C. Y. (2013). Effects of fish protein hydrolysate and freeze–thaw treatment on physicochemical and gel properties of natural actomyosin from Pacific cod. Food Chem. 138(2):1967–1975.
  • Krishnamurthy, G., Chang, H. S., Hultin, H. O., Feng, Y., Srinivasan, S. and Kelleher, S. D. (1996). Solubility of chicken breast muscle proteins in solutions of low ionic strength. J. Agric. Food Chem. 44(2):408–415.
  • Kristinsson, H. G. and Hultin, H. O. (2003a). Changes in conformation and subunit assembly of cod myosin at low and high pH and after subsequent refolding. J. Agric. Food Chem. 51(24):7187–7196.
  • Kristinsson, H. G. and Hultin, H. O. (2003b). Effect of low and high pH treatment on the functional properties of cod muscle proteins. J. Agric. Food Chem. 51(17):5103–5110.
  • Labeit, S. and Kolmerer, B. (1995). Titins: Giant proteins in charge of muscle ultrastructure and elasticity. Science. 270(5234):293–296.
  • Lee, S. H., Joo, S. T. and Ryu, Y. C. (2010). Skeletal muscle fiber type and myofibrillar proteins in relation to meat quality. Meat Sci. 86(1):166–170.
  • Liang, Y. and Hultin, H. O. (2003). Functional protein isolates from mechanically deboned turkey by alkaline solubilization with isoelectric precipitation. J. Muscle Foods. 14(3):195–205.
  • Lin, T. M. and Park, J. W. (1998). Solubility of salmon myosin as affected by conformational changes at various ionic strengths and pH. J. Food Sci. 63(2):215–218.
  • Liu, J., Ru, Q. and Ding, Y. (2012). Glycation a promising method for food protein modification: Physicochemical properties and structure, a review. Food Res. Int. 49(1):170–183.
  • Ma, H., Zhou, G., Ledward, D. A., Yu, X. and Pan, R. (2011). Effect of combined high pressure and thermal treatment on myofibrillar proteins solubilization of beef muscle. Int. J. Mol. Sci. 12(5):3034–3041.
  • Macfarlane, J. (1974). Pressure‐induced solubilization of meat proteins in saline solution. J. Food Sci. 39(3):542–547.
  • Macfarlane, J. and McKenzie, I. (1976). Pressure‐induced solubilization of myofibrillar proteins. J. Food Sci. 41(6):1442–1446.
  • Maitena, U., Katayama, S., Sato, R. and Saeki, H. (2004). Improved solubility and stability of carp myosin by conjugation with alginate oligosaccharide. Fisheries Sci. 70(5):896–902.
  • Marcos, B. and Mullen, A. M. (2014). High pressure induced changes in beef muscle proteome: Correlation with quality parameters. Meat Sci. 97(1):11–20.
  • Marmon, S. K., Krona, A., Langton, M. and Undeland, I. (2012). Changes in salt solubility and microstructure of proteins from herring (Clupea harengus) after pH-shift processing. J. Agric. Food Chem. 60(32):7965–7972.
  • Marmon, S. K. and Undeland, I. (2013). Effect of alkaline pH-shift processing on in vitro gastrointestinal digestion of herring (Clupea harengus) fillets. Food Chem. 138(1):214–219.
  • Maruyama, K. (1997). Connectin/titin, giant elastic protein of muscle. FASEB J. 11(5):341–345.
  • Matak, K. E., Tahergorabi, R. and Jaczynski, J. (2015). A review: Protein isolates recovered by isoelectric solubilization/precipitation processing from muscle food by-products as a component of nutraceutical foods. Food Res. Int. 77:697–703.
  • Mireles DeWitt, C. A., Nabors, R. L. and Kleinholz, C. W. (2007). Pilot plant scale production of protein from catfish treated by acid solubilization/isoelectric precipitation.J. Food Sci. 72(6):E351–E355.
  • Mohan, M., Ramachandran, D., Sankar, T. V. and Anandan, R. (2007). Influence of pH on the solubility and conformational characteristics of muscle proteins from mullet (Mugil cephalus). Process Biochem. 42(7):1056–1062.
  • Moos, C., Mason, C. M., Besterman, J. M., Feng, I.N. M. and Dubin, J. H. (1978). The binding of skeletal muscle C-protein to F-actin, and its relation to the interaction of actin with myosin subfragment-1.J. Mol. Biol. 124(4):571–586.
  • Nakasawa, T., Takahashi, M., Matsuzawa, F., Aikawa, S., Togashi, Y., Saitoh, T., Yamagishi, A. and Yazawa, M. (2005). Critical regions for assembly of vertebrate nonmuscle myosin II. Biochem. 44(1):174–183.
  • Nayak, R., Kenney, P. B. and Slider, S. (1996). Protein extractability of turkey breast and thigh muscle with varying sodium chloride solutions as affected by calcium, magnesium and zinc chloride. J. Food Sci. 61(6):1149–1154.
  • Nieuwenhuizen, W. F., Weenen, H., Rigby, P. and Hetherington, M. M. (2010). Older adults and patients in need of nutritional support: Review of current treatment options and factors influencing nutritional intake. Clin.Nutr. 29(2):160–169.
  • Nishimura, K., Murakoshi, M., Katayama, S. and Saeki, H. (2010). Changes in solubility and thermal stability of chicken myofibrillar protein by glycosylation. Food Sci. Technol. Res. 17(1):69–75.
  • Nishimura, K., Murakoshi, M., Katayama, S. and Saeki, H. (2011). Antioxidative ability of chicken myofibrillar protein developed by glycosylation and changes in the solubility and thermal stability. Biosci.Biotechnol.Biochem. 75(2):247–254.
  • Nolsøe, H. and Undeland, I. (2009). The acid and alkaline solubilization process for the isolation of muscle proteins: State of the art. Food Bioprocess Tech. 2(1):1–27.
  • Nurkhoeriyati, T., Huda, N. and Ahmad, R. (2011). Gelation properties of spent duck meat surimi‐like material produced using acid–alkaline solubilization methods. J. Food Sci. 76(1):S48–S55.
  • Obermann, W. M. J., van der Ven, P. F. M., Steiner, F., Weber, K. and Fürst, D. O. (1998). Mapping of a myosin-binding domain and a regulatory phosphorylation site in M-protein, a structural protein of the sarcomeric M band. Mol. Biol. Cell. 9(4):829–840.
  • Offer, G. and Trinick, J. (1983). On the mechanism of water holding in meat: The swelling and shrinking of myofibrils. Meat Sci. 8(4):245–281.
  • Oliveira, F. C.d., Coimbra, J. S. d. R., de Oliveira, E. B., Zuñiga, A. D. G. and Rojas, E. E. G. (2016). Food protein-polysaccharide conjugates obtained via the Maillard reaction: A review. Crit. Rev. Food Sci. 57(7):1108–1125.
  • Omana, D. A., Xu, Y., Moayedi, V. and Betti, M. (2010). Alkali-aided protein extraction from chicken dark meat: Chemical and functional properties of recovered proteins. Process Biochem. 45(3):375–381.
  • Özyurt, G., Şimşek, A., Karakaya, B. T., Aksun, E. T. and Yeşilsu, A. F. (2015). Functional, physicochemical and nutritional properties of protein from Klunzinger's ponyfish extracted by the pH shifting method. J. Food Process. Pres. 39(6):1934–1943.
  • Pérez-Mateos, M., Amato, P. M. and Lanier, T. C. (2004). Gelling properties of Atlantic croaker surimi processed by acid or alkaline solubilization. J. Food Sci. 69(4):FCT328–FCT333.
  • Paker, I., Beamer, S., Jaczynski, J. and Matak, K. E. (2015). pH shift protein recovery with organic acids on texture and color of cooked gels. J. Sci. Food Agr. 95(2):275–280.
  • Parsons, N. and Knight, P. (1990). Origin of variable extraction of myosin from myofibrils treated with salt and pyrophosphate. J. Sci. Food Agr. 51(1):71–90.
  • Pearce, K. L., Rosenvold, K., Andersen, H. J. and Hopkins, D. L. (2011). Water distribution and mobility in meat during the conversion of muscle to meat and ageing and the impacts on fresh meat quality attributes—A review. Meat Sci. 89(2):111–124.
  • Pereira, P. M. and Vicente, A. F. (2013). Meat nutritional composition and nutritive role in the human diet. Meat Sci. 93(3):586–592.
  • Raghavan, S. and Kristinsson, H. G. (2007). Conformational and rheological changes in catfish myosin as affected by different acids during acid-induced unfolding and refolding. J. Agric. Food Chem. 55(10):4144–4153.
  • Raghavan, S. and Kristinsson, H. G. (2008). Conformational and rheological changes in catfish myosin during alkali-induced unfolding and refolding. Food Chem. 107(1):385–398.
  • Reed, Z. H. and Park, J. W. (2011). Thermophysical characterization of tilapia myosin and its subfragments. J. Food Sci. 76(7):C1050–C1055.
  • Saeki, H. (1997). Preparation of neoglycoprotein from carp myofibrillar protein by Maillard reaction with glucose: Biochemical properties and emulsifying properties. J. Agric. Food Chem. 45(3):680–684.
  • Saeki, H. (2010). A new approach to the functional improvement of fish meat proteins. In: Handbook of Seafood Quality, Safety and Health Applications, pp. 380–389.Cesarettin, A., Kazuo, M., Fereidoon, S. and Udaya, W., Eds. John Wiley, New York.
  • Saeki, H. (2012). Protein–saccharide interaction. In: Food Proteins and Peptides: Chemistry, Functionality, Interactions, and Commercialization, pp. 230–253, Hettiarachchy, N. S., Sato, K., Marshall, M. R. and Kannan, A., Eds.
  • Saeki, H. and Inoue, K. (1997). Improved solubility of carp myofibrillar proteins in low ionic strength medium by glycosylation. J. Agric. Food Chem. 45(9):3419–3422.
  • Saeki, H. and Tanabe, M. (1999). Change in solubility of carp myofibrillar protein by glycosylation with ribose. Fisheries Sci. 65(6):967–968.
  • Saleem, R., Hasnain, A., Ahmad, R. and Yildiz, F. (2015). Solubilisation of muscle proteins from chicken breast muscle by ultrasonic radiations in physiological ionic medium. Cogent Food Agr. 1(1):1046716.
  • Sanmartín, E., Arboleya, J. C., Villamiel, M. and Moreno, F. J. (2009). Recent advances in the recovery and improvement of functional proteins from fish processing by‐products: Use of protein glycation as an alternative method. Compr. Rev. Food Sci. F. 8(4):332–344.
  • Sato, R., Katayama, S., Sawabe, T. and Saeki, H. (2003). Stability and emulsion-forming ability of water-soluble fish myofibrillar protein prepared by conjugation with alginate oligosaccharide. J. Agric. Food Chem. 51(15):4376–4381.
  • Sato, R., Sawabe, T., Kishimura, H., Hayashi, K. and Saeki, H. (2000). Preparation of neoglycoprotein from carp myofibrillar protein and alginate oligosaccharide: Improved solubility in low ionic strength medium. J. Agric. Food Chem. 48(1):17–21.
  • Sato, R., Sawabe, T. and Saeki, H. (2005). Characterization of fish myofibrillar protein by conjugation with alginate oligosaccharide prepared using genetic recombinant alginate lyase. J. Food Sci. 70(1):C58–C62.
  • Sikes, A., Tobin, A. and Tume, R. (2009). Use of high pressure to reduce cook loss and improve texture of low-salt beef sausage batters. Innov. Food Sci. Emerg. 10(4):405–412.
  • Sikes, A., Tornberg, E. and Tume, R. (2010). A proposed mechanism of tenderising post-rigor beef using high pressure–heat treatment. Meat Sci. 84(3):390–399.
  • Silva, J. L., Oliveira, A. C., Vieira, T. C., de Oliveira, G. A., Suarez, M. C. and Foguel, D. (2014). High-pressure chemical biology and biotechnology. Chem. Rev. 114(14):7239–7267.
  • Sinard, J. H., Stafford, W. F. and Pollard, T. D. (1989). The mechanism of assembly of acanthamoeba myosin-II minifilaments: Minifilaments assemble by three successive dimerization steps. J. Cell Biol. 109(4):1537–1547.
  • Sohn, R. L., Vikstrom, K. L., Strauss, M., Cohen, C., Szent-Gyorgyi, A. G. and Leinwand, L. A. (1997). A 29 residue region of the sarcomeric myosin rod is necessary for filament formation. J. Mol. Biol. 266(2):317–330.
  • Stanley, D. W., Stone, A. P. and Hultin, H. O. (1994). Solubility of beef and chicken myofibrillar proteins in low ionic strength media.J. Agric. Food Chem. 42(4):863–867.
  • Stefansson, G. and Hultin, H. O. (1994). On the solubility of cod muscle proteins in water. J. Agric. Food Chem. 42(12):2656–2664.
  • Straub, F. (1943). Actin, II. Stud. Inst. Med. Chem. Univ. Szeged. 3:23–37.
  • Sun, X. D. and Holley, R. A. (2011). Factors influencing gel formation by myofibrillar proteins in muscle foods. Compr. Rev. Food Sci. F. 10(1):33–51.
  • Szent-Györgyi, A. (1943). The crystallization of myosin and some of its properties and reactions. Stud. Inst. Med. Chem. Univ. Szeged. 3:76–85.
  • Tahergorabi, R., Beamer, S. K., Matak, K. E., and Jaczynski, J. (2011). Effect of isoelectric solubilization/precipitation and titanium dioxide on whitening and texture of proteins recovered from dark chicken-meat processing by-products. LWT-Food Sci. Technol. 44(4):896–903.
  • Tahergorabi, R. and Jaczynski, J. (2014). Isoelectric solubilization/precipitation as a means to recover protein and lipids from seafood by-products. In: Seafood Processing by-Products, pp. Kim, S. K., Perera, U., Rajapakse, N. and Kim, S. Eds. Springer, New York.
  • Tahergorabi, R., Matak, K. E. and Jaczynski, J. (2015). Fish protein isolate: Development of functional foods with nutraceutical ingredients. J. Funct. Foods. 18:746–756.
  • Tahergorabi, R., Sivanandan, L. and Jaczynski, J. (2012). Dynamic rheology and endothermic transitions of proteins recovered from chicken-meat processing by-products using isoelectric solubilization/precipitation and addition of TiO2. LWT-Food Sci.Technol. 46(1):148–155.
  • Takahashi, K. and Hattori, A. (1989). α-Actinin is a component of the Z-filament, a structural backbone of skeletal muscle Z-disks. J. Biochem. 105(4):529–536.
  • Takai, E., Yoshizawa, S., Ejima, D., Arakawa, T. and Shiraki, K. (2013). Synergistic solubilization of porcine myosin in physiological salt solution by arginine.Int. J. Biol. Macromol. 62:647–651.
  • Takeda, H., Iida, T., Okada, A., Ootsuka, H., Ohshita, T., Masutani, E., Katayama, S. and Saeki, H. (2007). Feasibility study on water solubilization of spawned out salmon meat by conjugation with alginate oligosaccharide. Fisheries Sci. 73(4):924–930.
  • Tanabe, M. and Saeki, H. (2001). Effect of Maillard reaction with glucose and ribose on solubility at low ionic strength and filament-forming ability of fish myosin.J. Agric. Food Chem. 49(7):3403–3407.
  • Taylor, R. G., Geesink, G. H., Thompson, V. F., Koohmaraie, M. and Goll, D. E. (1995). Is Z-sisk degradation responsible for postmortem tenderization? J. Anim. Sci. 73:1351–1367.
  • Thawornchinsombut, S. and Park, J. W. (2004). Role of pH in solubility and conformational changes of Pacific whiting muscle proteins. J. Food Biochem. 28(2):135–154.
  • Tian, J., Wang, Y., Zhu, Z., Zeng, Q. and Xin, M. (2015). Recovery of tilapia (oreochromis niloticus) protein isolate by high-intensity ultrasound-aided alkaline isoelectric solubilization/precipitation process. Food Bioprocess Tech. 8(4):758–769.
  • Tokifuji, A., Matsushima, Y., Hachisuka, K. and Yoshioka, K. (2013). Texture, sensory and swallowing characteristics of high-pressure-heat-treated pork meat gel as a dysphagia diet. Meat Sci. 93(4):843–848.
  • Tsunashima, Y. and Akutagawa, T. (2004). Structure transition in myosin association with the change of concentration: Solubility equilibrium under specified KCl and pH condition. Biopolymers. 75(3):264–277.
  • Undeland, I., Kelleher, S. D. and Hultin, H. O. (2002). Recovery of functional proteins from herring (clupea harengus) light muscle by an acid or alkaline solubilization process.J. Agric. Food Chem. 50(25):7371–7379.
  • Vann, D. G. and Mireles DeWitt, C. A. (2007). Evaluation of solubilized proteins as an alternative to phosphates for meat enhancement. J. Food Sci. 72(1):C072–C077.
  • Wang, Y., Wang, R., Chang, Y., Gao, Y., Li, Z. and Xue, C. (2015). Preparation and thermo-reversible gelling properties of protein isolate from defatted Antarctic krill (euphausia superba) byproducts. Food Chem. 188:170–176.
  • Warriss, P. (2000). Post-mortem changes in muscle and its conversion into meat. Meat Science: An introductory text. 2:93–105.
  • Weber, G. (1992). Protein Interactions. Chapman and Hall, New York.
  • Wong, B. T., Day, L. and Augustin, M. A. (2011). Deamidated wheat protein–dextran Maillard conjugates: Effect of size and location of polysaccharide conjugated on steric stabilization of emulsions at acidic pH. Food Hydrocolloids. 25(6):1424–1432.
  • Xiong, Y. L. (1994). Myofibrillar protein from different muscle fiber types: Implications of biochemical and functional properties in meat processing. Crit. Rev. Food Sci. 34(3):293–320.
  • Xiong, Y. L. (2005). Role of myofibrillar proteins in water-binding in brine-enhanced meats. Food Res. Int. 38(3):281–287.
  • Xiong, Y. L. and Brekke, C. J. (1991). Protein extractability and thermally induced gelation properties of myofibrils isolated from pre‐and postrigor chicken muscles. J. Food Sci. 56(1):210–215.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.