2,156
Views
66
CrossRef citations to date
0
Altmetric
Original Articles

Therapeutic potential of dairy bioactive peptides: A contemporary perspective

, , , &

References

  • Addeo, F., Chianes, L., Salzano, A., Sacchi, R., Cappuccio, U., Ferranti, P. and Malorni, A. (1992). Characterization of the 12% tricholoroacetic acid-insoluble oligopeptides of parmigiano-reggiano cheese. J Dairy Res. 59:401–411.
  • Ardo, Y., Pripp, A. H. and Lillevang, S. K. (2009). Impact of heat-treated Lactobacillus helveticus on bioactive peptides in low-fat, semi-hard cheese. Aust. J. Dairy Technol. 64:58–62.
  • Ashar, M. N. and Chand, R. (2004). Fermented milk containing ACE inhibitory peptides reduces blood pressure in middle-aged hypertensive subjects. Milchwissenschaft. 59:363–366.
  • Bahadoran, Z., Karimi, Z., Houshiar-rad, A., Mirzayi, H. R. and Rashidkhani, B. (2013). Is dairy intake associated to breast cancer? A case control study of Iranian women. Nutr. Cancer. 65:1164–1170.
  • Bellamy, W., Takase, M., Wakabayashi, H., Kawase, K. and Tomita, M. (1992). Antibacterial spectrum of lactoferricin B, a potent bactericidal peptide derived from the N-terminal region of bovine lactoferrin. J. Appl. Bacteriol. 73:472–479.
  • Bernard, H., Meisel, H., Creminon, C. and Wal, J. M. (2000). Post-translational phosphorylation affects the IgE binding activity of caseins. FEBS Lett. 467:239–244.
  • Bosselaers, I. M., Caessens, P. R., Van Boekel, M. S. and Alink, G. M. (1994). Differential effects of milk proteins, BSA and soy protein on 4NQO – or MNNG-induced SCEs in V79 cells. Food Chem. Toxicol. 32:905–911.
  • Cassand, P., Abdelali, H., Bouley, C., Denariaz, G. and Narbone, J. F. (1994). Inhibitory effect of dairy products on the mutagenicities of chemicals and dietary mutagens. J. Dairy Res. 61:545–552.
  • Chobert, J. M., El-Zahar, K., Sitohy, M., Dalgalarrondo, M., Métro, F., Haertlé, C. and Haertlé, T. (2005). Angiotensin I-converting enzyme (ACE)-inhibitory activity of tryptic peptides of ovine β lactoglobulin and of milk yogurts obtained by using different starters. Le Lait. 85:141–152.
  • Contreras, M. M., Carron, R., Montero, M. J., Ramos, M. and Recio, I. (2009). Novel casein-derived peptides with antihypertensive activity. Int. Dairy J. 19:566–573.
  • Custódio, M. F., Goular, A. J., Marques, D. P., Giordano, R. C., Giordano, R. L. C. and Monti, R. (2005). Hydrolysis of cheese whey proteins with trypsin, chymotrypsin and carboxypeptidase A. Alim. Nutr. Araraquara. 16:105–109.
  • Del-Mar-Contreras, M., Hernández-Ledesma, B., Amigo, L., Martín-Álvarez, P. J. and Recio, I. (2011). Production of antioxidant hydrolyzates from a whey protein concentrate with thermolysin: Optimization by response surface methodology. Food Sci. Technol. 44:9–15.
  • Dionysius, D. A., Marschke, R. J., Wood, A. J., Milne, J., Beattie, T. R., Jiang, H., Treloar, T., Alewood, P. F. and Grieve, P. A. (2000). Identification of physiologically functional peptides in dairy products. Austr. J. Dairy Technol. 55:103.
  • Donkor, O. N., Henriksson, A., Vasiljevic, T. and Shah, N. P. (2007). Proteolytic activity of dairy lactic acid bacteria and probiotics as determinant of viability and in vitro angiotensin-converting enzyme inhibitory activity in fermented milk. Le Lait. 87:21–38.
  • El-Aziem, A., Sekena, H., Saleh, A. Z., and Farrag, A. F. (2007). Impact of whey proteins on the genotoxic effects of aflatoxins in rats. Int. J. Dairy Sci. 2:128.
  • Elias, R. J., Kellerby, S. S. and Decker, E. A. (2008). Antioxidant activity of proteins and peptides. Criti. Rev. Food Sci. Nutr. 48(5):430–441.
  • Erdmann, K., Cheung, B. W. Y. and Schröder, H. (2008). The possible roles of food-derived bioactive peptides in reducing the risk of cardiovascular disease. J. Nutr. Biochem. 19:643–654.
  • Ferreira, I. M., Pinho, O., Mota, M. V., Tavares, P., Pereira, A., Goncalves, M. P., Torres, D., Rocha, C. and Teixeira, J. A. (2007). Preperation of ingredient containing an ACE-inhibitory peptide by tryptic hydrolysis of whey protein concentrates. Intl Dairy J. 17:481–487.
  • FitzGerald, R. J. and Meisel, H. (2000). Milk protein-derived peptide inhibitors of angiotensin-I-converting enzyme. Br. J. Nutr. 84:S33–S37.
  • FitzGerald, R. J. and Meisel, H. (2003). In: Advanced Dairy Chemistry, Vol. 1 Proteins, 3rd ed., pp. 675–698. Fox, P. F. and McSweeney, P. L. H., Eds., Kluwer, New York, NY.
  • FitzGerald, R. J. and Murray, B. A. (2006). Bioactive peptides and lactic fermentations. Int. J. Dairy Technol. 59:118–125.
  • FitzGerald, R. J., Murray, B. A. and Walsh, D. J. (2004). Hypotensive peptides from milk proteins. J. Nutr. 134:980S–988S.
  • Frenkel, K. (1992). Carcinogen-mediated oxidant formation and DNA damage. Pharmacol. Ther. 53:127–166.
  • Fuglsang, A., Rattray, F. P., Nilsson, D. and Nyborg, N. C. B. (2003). Lactic acid bacteria: Inhibition of angiotensin converting enzyme in vitro and in vivo. Anton Leeuw. 83:27–34.
  • Gagnaire, V., Molle, D., Herrouin, M. and Leonil, J. (2001). Peptides identified during Emmental cheese ripening: Origin and proteolytic systems involved. J. Agric. Food Chem. 49:4402–4413.
  • Ganapathy, V. and Leibach, F. H. (1999). Protein digestion and assimilation. In: Textbook of Gastroenterology, pp. 456–467. Yamada, T., Ed., Lippincott Williams and Wilkins, Philadelphia, PA.
  • Gauthier, S. F., Pouliot, Y. and Saint, S. D. (2006). Immuno-modulatpry peptides obtained by the enzymatic hydrolysis of whey protein. Int. Dairy J. 16:1315–1323.
  • Gill, H. S., Doull, F., Rutherfurd, K. J. and Cross, M. L. (2000). Immunoregulatory peptides in bovine milk. Br. J. Nutr. 84:S111–S117.
  • Gobbetti, M., Ferranti, P., Smacchi, E., Goffredi, F. and Addeo, F. (2000). Production of angiotensin-I-converting-enzyme-inhibitory peptides in fermented milks started by Lactobacillus delbrueckii subsp. bulgaricus SS1 and Lactococcus lactis subsp. cremoris FT4. Appl. Environ. Microbiol. 66:3898–3904.
  • Gobbetti, M., Minervini, F. and Rizzello, C. G. (2004). Angiotensin iconverting enzyme-inhibitory and antimicrobial bioactive peptides. Int. J. Dairy Technol. 57:172–188.
  • Gobbetti, M., Minervini, F. and Rizzello, C. G. (2007). Bioactive peptides in dairy products.In: Handbook of Food Products Manufacturing, pp. 489–517. Hui, Y. H., Ed., John Wiley, Hoboken, NJ.
  • Gobbetti, M., Stepaniak, L., De Angelis, M., Corsetti, A. and Di Cagno, R. (2002). Latent bioactive peptides in milk proteins: Proteolytic activation and significance in dairy processing. Crit. Rev. Food Sci. Nutr. 42:223–239.
  • Gomez, R. J. A., Taborda, G., Amigo, L., Recio, I. and Ramos, M. (2006). Identification of ACE inhibitory in different Spanish cheese by tandam mass spectrometery. Eur. Food Res. Technol. 223:561–595.
  • Griffiths, M. W. and Tellez, A. M. (2013). Lactobacillus helveticus: The proteolytic system. Front Microbiol. 4:30–41.
  • Guzel-Seydim, Z. B., Wyffels, J., Seydim, A. C. and Greene, A. K. (2005). Turkish kefir and kefir grains: Microbial enumeration and electron microscopic observation. Int. J. Dairy Technol. 58:25–29.
  • Haque, E. and Chand, R. (2008). Antihypertensive and antimicrobial bioactive peptides from milk proteins. Eur. Food Res. Technol. 227:7–15.
  • Harvey, R. A. and Ferrier, D. R. (2011). Bioenergetics and oxidative phosphorylation. In: Lippincott's Illustrated Reviews: Biochemistry, pp. 69–82. Lipppincotts Williams and Wilkins, Philadelphia, PA.
  • Hayes, M., Ross, R. P., Fitzgerald, G. F. and Stanton, C. (2007). Putting microbes to work: Dairy fermentation, cell factories, and bioactive peptides. Part I: Overview. Biotechnol. J. 2:426–434.
  • Herna´ndez, L. B., Amigo, L., Ramos, M. and Recio, I. (2004). Angiotensin converting enzyme inhibitory activity in commercial fermented products. Formation of peptides under simulated gastrointestinal digestion. J. Agric. Food Chem. 52:1504–1510.
  • Hernández, D., Cardell, E. and Zárate, V. (2005). Antimicrobial activity of lactic acid bacteria isolated from Tenerife cheese: Initial characterization of plantaricin TF711, a bacteriocin like substance produced by Lactobacillus plantarum TF711. J. Appl. Microbiol. 99:77–84.
  • Hoskin, D. W. and Ramamoorthy, A. (2008). Studies on anticancer activities of antimicrobial peptides. Biochimica et Biophysica Acta. 1778:357–375.
  • Imig, J. D. (2004). ACE inhibition and bradykinin-mediated renal vascular responses. Hypertension. 43:533–535.
  • Jabbari, S., Hasani, R., Kafilzadeh, F. and Janfeshan, S. (2012). Antimicrobial peptides from milk proteins: A prospectus. Ann. Biol. Res. 3:5313–5318.
  • Jakala, P. and Vapaatalo, H. (2010). Antihypertensive peptides from milk proteins. Pharmaceuticals. 3:251–272.
  • Jelen, P. and Lutz, S. (1998). Functional milk and dairy products. In: Functional Foods, pp.357–380. Mazza, G., Ed., Technomic Publishing, Lancaster, UK.
  • Jolles, P., Fiat, A. M., Migliore-Samour, D., Drouet, L. and Caen, J. (1992). Peptides from milk proteins implicated in antithrombosis and immunomodulation. In: New Perspectives in Infant Nutrition, Symposium, Antwerp, Renner, B. and Sawatzki, G., Eds., Thieme Medical Publishers, New York, pp. 160–172.
  • Kawase, M., Hashimoto, H., Hosoda, M., Morita, H. and Hosono, A. (2000). Effect of administration of fermented milk containing whey protein concentrate to rats and healthy men on serum lipids and blood pressure. J. Dairy Sci. 83:255–253.
  • Kilara, A. and Panyam, D. (2003). Peptides from milk proteins and their properties. Crit. Rev. Food Sci. Nutr. 43:607–633.
  • Kilpi, E. E. R., Kahala, M. M., Steele, J. L., Pihlanto, A. M. and Joutsjoki, V. V. (2007). Angiotensin I-converting enzyme inhibitory activity in milk fermented by wild-type and peptidase-deletion derivatives of Lactobacillus helveticus CNRZ32. Int. Dairy J. 17:976–984.
  • Koh, I. Y. Y., Eyrich, V. A., Marti-Renom, M. A., Przybylski, D., Madhusudhan, M. S., Eswar, N., Graña, O., Pazos, F., Valencia, A., Sali, A. and Rost, B. (2003). EVA: Evaluation of protein structure prediction servers. Nucleic Acids Res. 31:3311–3315.
  • Kontou, N., Theodora, P., Panagiotakos, D., Dimopoulos, M. A. and Linos, A. (2011). The mediterranean diet in cancer prevention: A review. J. Med. Food. 14:1065–1078.
  • Korhonen, H. and Pihlanto, A. (2003). Bioactive peptides: Novel applications for milk proteins. Appl. Biotechnol. Food Sci. Policy. 1:133–144.
  • Korhonen, H. and Pihlanto, L. A. (2006). Bioactive peptides: Production and functionality. Int. Dairy J. 16:945–960.
  • Kumar, M., Kumar, A., Nagpal, R., Mohania, D., Behare, P., Verma, V., Kumar, P., Poddar, D., Aggarwal, P. K., Henry, C. J., Jain, S. and Yadav, H. (2010). Cancer-preventing attributes of probiotics: An update. Int. J. Food Sci. Nutr. 61:473–496.
  • Lahov, E. and Regelson, W. (1996). Antibacterial and immunostimulating casein-derived substances from milk: Casecidin, isracidin peptides. Food Chem. Toxicol. 34:131–145.
  • LeBlanc, A. M., Matar, C., LeBlanc, N. and Perdigón, G. (2005). Effects of milk fermented by Lactobacillus helveticus R389 on a murine breast cancer model. Breast Cancer Res. 7:R477–R486.
  • Li, G., Le, G., Shi, Y. and Shrestha, S. (2004). Angiotensin I-converting enzyme inhibitory peptides derived from food proteins and their physiological and pharmacological effects. Nutr. Res. 24:469–486.
  • Lindmark-Månson, H. and Åkesson, B. (2000). Antioxidative factors in milk. Br. J. Nutr. 84:103–110.
  • Lopez, E. I., Gomez-Ruiz, J. A., Amigo, L. and Recio, I. (2006a). Identification of antibacterial peptides from ovine as 2-casein. Int. Dairy J. 16:1072–1080.
  • Lopez, E. I. and Recio, I. (2006). Antibacterial activity of peptides and folding variants from milk proteins. Int. Dairy J. 16:1294–1305.
  • Lopez-Exposito, I., Gomez-Ruiz, J. A., Amigo, L. and Recio, I. (2006b). Identification of antibacterial peptides from ovine as2-casein. Int. Dairy J. 16:1072–1080.
  • Lorenzen, P. C. and Meisel, H. (2005). Influence of trypsin action in yoghurt milk on the release of caseinophosphopeptide-rich fractions and physical properties of the fermented products. Int. J. Dairy Technol. 58:119–124.
  • Maeno, M., Yamamoto, N. and Takano, T. (1996). Identification of antihypertensive peptides from casein hydrolysate produced by a proteinase from Lactobacillus helveticus CP790. J. Dairy Sci. 79:1316–1321.
  • Majumder, K. and Wu, J. (2009). Angiotensin I converting enzyme inhibitory peptides from simulated in vitro gastrointestinal digestion of cooked eggs. J. Agric. Food Chem. 57:471–477.
  • Manso, M. A. and Lo´pez-Fandino, R. (2003). Angiotensin I converting enzyme-inhibitory activity of bovine; ovine; and caprine kappa-casein macropeptides and their tryptic hydrolysates. J. Food Protect. 66:1686–1692.
  • McCann, K. B., Shiell, B. J., Michalski, W. P., Lee, A., Wan, J. and Roginski, H. (2006). Isolation and characterization of a novel antibacterial peptide from bovine α S1-Casein. Int. Dairy J. 16:316–323.
  • Meisel, E. (1993). Diagnosis and clinical aspects of supraventricular tachycardia. Z Gesamte Innate Med. 48:414–424.
  • Meisel, H. and FitzGerald, R. J. (2003). Biofunctional peptides from milk proteins: Mineral binding and cytomodulatory effects. Curr. Pharm. Des. 9:1289–1295.
  • Miquel, E., Gomez, J. A., Alegria, A., Barbera, R., Farre, R. and Recio, I. (2005). Identification of casein phosphopeptides released after simulated digestion of milk-based infant formulas. J. Agric. Food Chem. 53:3426–3433.
  • Mizuno, S., Nishimura, S., Matsuura, K., Gotou, T. and Yamamoto, N. (2004). Release of short and proline-rich antihypertensive peptides from casein hydrolysate with an Aspergillus oryzae protease. J. Dairy Sci. 87:3183–3188.
  • Moller, N. P., Scholz-Ahrens, K. E., Roos, N. and Schrezenmeir, J. (2008). Bioactive peptides and proteins from foods: Indication for health effects. Eur. J. Nutr. 47:171–182.
  • Murakami, M., Tonouchi, H., Takahashi, R., Kitazawa, H., Kawai, Y., Negishi, H. and Saito, T. (2004). Structural analysis of a new antihypertensive peptide (β-lactosin B) isolated from a commercial whey product. J. Dairy Sci. 87:1967–1974.
  • Nakamura, Y., Yamamoto, N., Sakai, K., Okubo, A., Yamazaki, S. and Takano, T. (1995). Purification and chracterization of angiotensin I-converting enzyme inhibitors from sour milk. J. Dairy Sci. 78:777–783.
  • Nakamura, Y., Yamamoto, N., Sakai, K. and Takano, T. (1995). Antihypertensive effect of sour milk and peptides isolated from it that are inhibitors to angiotensin I-converting enzyme. J. Dairy Sci. 78:1253–1257.
  • Narva, M., Halleen, J., Väänänen, K. and Korpela, R. (2004). Effects of Lactobacillus helveticus fermented milk on bone cells in vitro. Life Sci. 75:1727–1734.
  • Pan, D., Luo, Y. and Tanokura, M. (2005). Antihypertensive peptides from skimmed milk hydrolysate digested by cell free extract of Lactobacillus helveticus JCM1004. Food Chem. 91:123–129.
  • Parodi, P. W. (2007). A role for milk proteins and their peptides in cancer prevention. Curr. Pharm. Des. 13:813–828.
  • Pauletti, G. M., Gangwar, S., Knipp, G. T., Nerurkar, M. M., Okumu, F. W., Tamura, K., SiahaanT. J. and Borchard, R. T. (1996). Structural requirements for intestinal absorption of peptide drugs. J. Control Rel. 41:3–17.
  • Pellegrini, A. (2003). Antimicrobial peptides from food proteins. Curr. Pharm. Des. 9:1225–1238.
  • Pena, R. E. A. and Xiong, Y. L. (2002). Antioxidative activity of soy protein hydrolysates in a liposomal system. J. Food Sci. 67:2952–2956.
  • Pena, R. E. A., Xiong, Y. L. and Arteaga, G. E. (2004). Fractionation and characterization for antioxidant activity of hydrolyzed whey protein. J. Sci. Food Agric. 84:1908–1918.
  • Pritchard, S. R., Phillips, M. and Kailasapathy, K. (2010). Identification of bioactive peptides in commercial Cheddar cheese. Food Res. Int. 43:1545–1548.
  • Qian, Z. Y., Jolles, P., Migliore-Samour, D., Schoentgen, F. and Fiat, A. M. (1995). Sheep k-casein peptides inhibit platelet aggregation. Biochimica et Biophysica Acta. 1244:411–417.
  • Recio, I., Quiros, A., Hernandes-Ledesma, B., Gomez-Ruiz, J.A., Miguel, M., Amigo, L., Lopez-Exposito, I., Ramos, M. and Alexandre, A. (2005). Bioactive peptides identified in enzyme hydrolysates from milk caseins and procedure for their obtention. European Patent 2005011373.
  • Recio, I. and Visser, S. (2000). Antibacterial and binding characteristics of bovine, ovine and caprine lactoferrins: A comparative study. Int. Dairy J. 10:597–605.
  • Rival, S. G., Boeriu, C. G. and Wichers, H. J. (2001). Caseins and casein hydrolysates. 2. Antioxidative properties and relevance to lipoxygenase inhibition. J. Agric. Food Chem. 49:295–302.
  • Rokka, T., Syväoja, E. L., Tuominen, J. and Korhonen, H. (1997). Release of bioactive peptides by enzymatic proteolysis of Lactobacillus GG fermented UHT-milk. Milchwissenschaft. 52:307–311.
  • Roufik, S., Gauthier, S. F. and Turgeon, S. L. (2006). In vitro digestibility of bioactive peptides derived from bovine β-lactoglobulin. Int. Dairy J. 16:294–302.
  • Rutherfurd, K. J. and Gill, H. S. (2000). Peptides affecting coagulation. Br. J. Nutr. 84:S99–S102.
  • Sadat, L., Cakir-Kiefer, C., N'Negue, M. A., Gaillard, J. L., Girardet, J. M. and Miclo, L. (2011). Isolation and identification of antioxidative peptides from bovine α-lactalbumin. Int. Dairy J. 21:214–221.
  • Saito, T., Nakamura, T., Kitazawa, H., Kawai, Y. and Itoh, T. (2000). Isolation and structural analysis of antihypertensive peptides that exist naturally in Gouda cheese. J. Dairy Sci. 83:1434–1440.
  • Sasaki, H. and Kume, H. (2007). Nutritional and physiological effects of peptides from whey: Milk whey proteins/peptides, natural beneficial modulators of inflammation. IDF Bull. 417:43–50.
  • Satake, M., Enjoh, M., Nakamura, Y., Takano, T., Kawamura, Y., Arai, S. and Shimizu, M. (2002). Transepithelial transport of a bioactive tri-peptide, Val-Pro-Pro in human intestinal Caco-2 cell monolayers. Biosci. Biotech. Biochem. 66:378–384.
  • Schlimme, E. and Meisel, H. (1995). Bioactive peptides derived from milk proteins. Structural, physiological and analytical aspects. Die Nahrung. 39:1–20.
  • Seppo, I., Jauhiainen, T., Poussa, T. and Korpela, R. (2003). A fermented milk high in bioactive peptides has a blood pressure-lowering effect in hypertensive subjects. Am. J. Clin. Nutr. 77(3):26–30.
  • Shah, N. (2007). Functional cultures and health benefits. Int. Dairy J. 17:1262–1277.
  • Shahidi, F. and Zhong, Y. (2008). Bioactive peptides. J. AOAC Int. 91:914–931.
  • Sharma, S., Singh, R. and Rana, S. (2011). Bioactive peptides: A review. Int. J. Bioautom. 15:223–250.
  • Shen, W. C., Wan, J. and Ekrami, H. (1992). Enhancement of polypeptide and protein absorption by macromolecular carriers via endocytosis and transcytosis. Adv. Drug Deliv. Rev. 8:93–113.
  • Shimizu, M. (2004). Food-derived peptides and intestinal functions. BioFactors. 21:43–47.
  • Shimizu, M. (2007). Food-derived peptides and intestinal functions. Curr. Pharm. Des. 13:885–895.
  • Sienkiewicz, S. E., Jarmo1owska, B., Krawczuk, S., Kostyra, E., Kostyra, H. and Bielikowicz, K. (2009). Transport of bovine milk-derived peptides across a Caco-2 monolayer. Int. Dairy J. 19:252–257.
  • Silva, S. V. and Malcata, F. X. (2005). Caseins as source of bioactive peptides. Int. Dairy J. 15:1–15.
  • Simos, Y., Metsios, A., Verginadis, I., D'Alessandro, A. G., Loiudice, P., Jirillo, E., Charalampidis, P., Kouimanis, V., Boulaka, A., Martemucci, G. and Karkabounas, S. (2011). Antioxidant and anti-platelet properties of milk from goat, donkey and cow: An in vitro, ex vivo and in vivo study. Inter. Dairy J. 21:901–906.
  • Smacchi, E. and Gobbetti, M. (1998). Peptides from several Italian cheeses inhibitory to proteolytic enzymes of lactic acid bacteria, Pseudomonas fluorescens ATCC 948 and to the angiotensin I-converting enzyme. Enzyme Microb. Technol. 22:687–694.
  • Sugai, R. (1998). ACE inhibitors and functional foods. IDF Bull. 336:17–20.
  • Sun, H., Liu, D., Li, S. and Qin, Z. (2009). Trans-epithelial transport characteristics of the antihypertensive peptide, Lys-Val-Leu-Pro-Val-Pro, in human intestinal Caco-2 cell monolayers. Biosci. Biotechnol. Biochem. 73:293–298.
  • Szwajkowska, M., Wolanciuk, A., Barłowska, J., Król, J. and Litwińczuk, Z. (2011). Bovine milk proteins as the source of bioactive peptides influencing the consumers' immune system – a review. Anim. Sci. Pap. Rep. 29:269–280.
  • Tauzin, J., Miclo, L. and Gaillard, J. (2002). Angiotensin I-converting enzyme inhibitory peptides from tryptic hydrolysate of bovine αs2-casein. FEBS Lett. 531:369–374.
  • Tavares, T. G., Contreras, M. M., Amorim, M., Martín-Álvarez, P. J., Pintado, M. E., Recio, I. and Malcata, F. X. (2011). Optimisation, by response surface methodology, of degree of hydrolysis and antioxidant and ACE-inhibitory activities of whey protein hydrolysates obtained with cardoon extract. Int. Dairy J. 21:926–933.
  • Tellez, A., Corredig, M., Brovko, L. Y. and Griffiths, M. W. (2010). Characterization of immune-active peptides obtained from milk fermented by Lactobacillus helveticus. J. Dairy Res. 77:129–136.
  • Tomita, M., Bellamy, W., Takase, M., Yamanchi, K., Wakabayashi, H. and Kawase, K. (1991). Antibacterial peptides generated by pepsin digestion of bovine lactoferrin. J. Dairy Sci. 74:4137–4144.
  • Tsukita, S., Furuse, M. and Itoh, M. (2001). Multifunctional strands in tight junctions. Nature Rev. Mol. Cell Biol. 2:285–293.
  • Unal, R. N. and Besler, T. (2008). Beslenmede sütün önemi.Klasmat matbaacilik, Ankara. Saglik Bakanligi Yayin. 727:1–40.
  • Unal, G. and Akalin, A. S. (2012). Antioxidant and angiotensin-converting enzyme inhibitory activity of yoghurt fortified with sodium calcium caseinate or whey protein concentrate. Dairy Science and Technology 92(6):627–639.
  • Van Boekel, M. S., Weerens, C. M., Holstra, A., Scheidtweiler, C. E. and Alink, G. M. (1993). Antimutagenic effects of casein and its digestion products. Food Chem. Toxicol. 31:731–737.
  • Vermeirssen, V., van Camp, J. and Verstraete, W. (2004). Bioavailability of angiotensin I-converting enzyme inhibitory peptides. Br. J. Nutr. 92:357–366.
  • Vermeirssen, V., Van, C. J., Devos, L. and Verstraete, W. (2003). Release of angiotensin I converting enzyme (ACE) inhibitory activity during in vitro gastrointestinal digestion: From batch experiment to semi-continuous model. J. Agric. Food Chem. 51:5680–5687.
  • Vorland, L. H., Ulvatne, H., Andersen, J., Haukland, H., Rekdal, O., Svendsen, J. S. and Gutteberg, T. J. (1998). Lactoferricin of bovine origin is more active than lactoferricins of human, murine and caprine origin. Scand. J. Infect Dis. 30(5):513–517.
  • Wakabayashi, H., Takase, M. and Tomita, M. (2003). Lactoferricin derived from milk protein lactoferrin. Curr. Pharm. Des. 9:1277–1287.
  • Willett, W. C. (1995). Diet, nutrition and avoidable cancer. Environ. Health Persects. 103:165–70.
  • Wolf, J. S., Li, G., Varadhachary, A., Petrak, K., Schneyer, M., Li, D., O'Malley, B. W. (2007). Oral lactoferrin results in t-cell dependent tumor inhibition of head and neck squamous cell carcinoma in vivo. Clin. Cancer Res. 13(5):1601–1610.
  • Woodley, J. F. (1994). Enzymatic barriers for GI peptide and protein delivery. Crit. Rev. Ther. Drug Carrier Syst. 11:61–95.
  • Yamamoto, N., Maeno, M. and Takano, T. (1999). Purification and characterization of an antihypertensive peptide from a yogurt-like product fermented by Lactobacillus helveticus CPN4. J. Dairy Sci. 82:1388–1393.
  • Yun-Zhong, F., Sheng, Y. and Wu, G. (2002). Free radicals, antioxidants, and nutrition. Nutrition. 18:872–879.
  • Zhu, X. L., Watanbe, K., Shiraishi, K., Ueki, T., Noda, Y., Matsui, T. and Matsumoto, K. (2008). Identification of ACE-inhibitory peptides in salt-free soy sauce that are transportable across caco-2 cell monolayers. Peptides. 29:338–344.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.