2,613
Views
47
CrossRef citations to date
0
Altmetric
Original Articles

Effect of processing on nutritive values of milk protein

, &

Reference

  • Alkanhal, H. A., Al-Othman, A. A. and Hewedi, F. M. (2001). Changes in protein nutritional quality in fresh and recombined ultra-high temperature treated milk during storage. Int. J. Food Sci. Nutr. 52:509–514.
  • Almaas, H., Cases, A. L., Devold, T. G. and Holm, H. (2006). In vitro digestion of bovine and caprine milk by human gastric and duodenal enzymes. Int. Dairy J. 16:961–968.
  • Asp, N. G. and Bjorck, I. (1989). Nutritional properties of extruded foods. In: Extrusion Cooking, pp. 399–434. Mercier, C., Linko, P. and Harper, J. M., Eds., American Association of Cereal Chemists, St. Paul.
  • Bellamy, W., Wakabayashi, R. H., Takase, M. and Kawase, K. (1993). Role of cell binding in the antibacterial mechanism of lactoferrin. J. Appl.Bacteriol. 75:478–484.
  • Bertrand-Harb, C., Ivanova, I. V., Dalgalarrondo, M. and Haertlé, T. (2003). Evolution of β-lactoglobulin and α-lactalbumin content during yoghurt fermentation. Int. Dairy J. 13:39–45.
  • Bhandari, B., D'Arcy, B. and Young, G. (2001). Flavour retention during high temperature short time extrusion cooking process: a review. Int. J. Food Sci. Technol. 36:453–461.
  • Bjorck, I., Noguchi, A., Asp, N. G. and Cheftel, J. C. (1983). Protein nutritional value of a biscuit processed by extrusion cooking: effects on available lysine. J. Agr. Food Chem. 31:488–492.
  • Blomstrand, E. (2006). A role for Branched-chain amino acids in reducing central fatigue. J.Nutr. 136:544S–547S.
  • Brassart, D. and Schiffrin, E. J. (1997). The use of probiotics to reinforce mucosal defence mechanisms. Trends Food Sci. Technol. 8:321–326.
  • Bu, G. H., Luo, Y. K., Zheng, Z. and Zheng, H. (2009). Effect of heat treatment on the antigenicity of bovine α-lactalbumin and β-lactoglobulin in whey protein isolate. Food Agr.Immunol. 20:195–206.
  • Bu, G. H., Luo, Y. K., Zhang, Y. and Chen, F. S. (2010). Effects of fermentation by lactic acid bacteria on the antigenicity of bovine whey proteins. J. Sci. Food Agr. 90:2015–2020.
  • Bu, G., Luo, Y., Chen, F. and Liu, K. (2013). Milk processing as a tool to reduce cow's milk allergenicity: a mini-review. Dairy Sci. Technol. 93:211–223.
  • Burton-Freeman, B. M. (2008). Glycomacropeptide (GMP) is not critical to whey-induced satiety, but may have a unique role in energy intake regulation through cholecystokinin (CCK). Physiol.Behav. 93:379–387.
  • Buttriss, J. (1997). Nutritional properties of fermented milk products. Int. J. Dairy Technol. 50:21–27.
  • Carpenter, K. J. and Duckworth, J. (1950). The nutritive value of herring ‘alkali-reduction’ meal for chicks. J.Agr.Sci. 40(1–2):44–49.
  • Carvalho, C.W.P. and Mitchelle, J. R. (2000). Effect of sugar on the extrusion of maize grits and wheat flour. Int. J. Food Sci. Technol. 35:569–576.
  • Castells, M., Marin, S., Sanchis, V.&Ramos, A. J. (2005). Fate of mycotoxins in cereals during extrusion cooking: A review. Food Addit.Contam. 22:150–157.
  • Catchpole, O., Tallon, S., Dyer, P. and Montanes, F. (2012). Integrated supercritical fluid extraction and bioprocessing. Am. J.Biochem.Biotechnol. 8(4):263–287.
  • Chatterton, D.E.W., Rasmussen, J. T., Heegaard, C. W. and Sørensen, E. S. (2004). In vitro digestion of novel milk protein ingredients for use in infant formulas: research on biological functions. Trends Food Sci. Technol. 15:373–383.
  • Cheftel, J. C. (1986). Nutritional effects of extrusion-cooking. Food Chem. 20:263–283.
  • Chen, S. T., Chiou, S. H., Chu, Y. H. and Wang, K. T. (1987). Rapid hydrolysis of proteins and peptides by means of microwave technology and its application to amino acid analysis. Int.J.Pept.Prot.Res. 30(4):572–576.
  • Chiou, S. H. and Wang, K. T. (1989). Peptide and protein hydrolysis by microwave irradiation. J.Chromatog. 491(2):424–431.
  • Chobert, J. M., Briand, L., Dufour, E., Dib, R., Dalgalarrondo, M. and Haertle, T. (1997). How to increase β-lactoglobulin susceptibility to pectic hydrolysis. J. Food Biochem. 20:439–462.
  • Cross, M. L., Stevenson, L. M. and Gill, H. S. (2001). Anti-allergy properties of fermented foods: an important immunoregulatory mechanism of lactic acid bacteria? Int.Immunopharmacol. 1:891–901.
  • Dakin, H. D. and Dudley, H. W. (1913). The racemization of proteins and their derivatives resulting from tautomeric change. Part II. The racemization of casein. J. Biol.Chem. 15(2):263–269.
  • deGroot, A. P. and Slump, P. (1969). Effects of severe alkali treatment of proteins on amino acid composition and nutritive value. J.Nutr. 98(1):45–56.
  • Dent, M. P., O'Hagan, S., Braun, W. H. and Schaetti, P. (2007). A 90-day subchronic toxicity study and reproductive toxicity studies on ACE inhibition of lactotri-peptide. Food Chem.Toxicol. 45:1468–1477.
  • deOnis, M., Monteiro, C., Akre, J. and Clugston, G. (1993). The worldwide magnitude of protein-energy malnutrition: an overview from the WHO global database on child growth. Bull.World Health Organ. 71(5):703–712.
  • Dupont, D., Mandalari, G., Molle´, D. and Jardin, J. (2010). Food processing increases casein resistance to simulated infant digestion. Mol. Nutr.Food Res. 54:1677–1689.
  • El-Mecherfi, K. E., Saidi, D., Kheroua, O. and Boudraa, G. (2011). Combined microwave and enzymatic treatments for β-lactoglobulin and bovine whey proteins and their effect on the IgE immunoreactivity. Eur. Food Res.Technol. 233:859–867.
  • FAO/WHO/UNU. (2007). Protein and amino acid requirements in human nutrition: report of a joint WHO/FAO/UNU Expert Consultation. WHO Tech. Rep. Ser. N. 935, Geneva, Switzerland.
  • Farnfield, M. M., Carey, K.A, Gran, P. and Trenerry, M. K. (2009). Whey protein ingestion activates mTOR-dependent signalling after resistance exercise in young men: a double-blinded randomized controlled trial. Nutrients. 1:263–275.
  • Fauquant, J., Vieco, E., Brule, G. and Maubois, J. L. (1985). Clarification of sweet cheese whey by thermocalcic aggregation of residual fat. Dairy Sci. Technol. 65:1–20.
  • Fellows, P. (2000). Extrusion. In: Food Processing Technology: Principles and Practice, pp. 294–308. Woodhead Publishing Ltd., Cambridge.
  • Finot, P. A. (1997). Effects of processing and storage on the nutritional value of food proteins. In: Food Proteins and their Applications, pp. 551–577. Damodaran, S. and Paraf, A., Eds., Marcel Dekker, New York.
  • Fiocchi, A., Brozek, J., Schünemann, H. and Bahna, S. L. (2010). World Allergy Organization (WAO) diagnosis and rationale for action against Cow's milk allergy (DRACMA) guidelines. Pediat. Allergy Immunol. 21:1–125.
  • Fiocchi, A., Restani, P., Riva, E. and Mirri, G. P. (1998). Heat treatment modifies the allergenicity of beef and bovine serum albumin. Allergy. 53:798–802.
  • FitzGerald, R. J. and Meisel, H. (2003). Biofunctional peptides from milk proteins: mineral binding and cytomodulatory effects. Bentham Sci. 9(16):1289–1295.
  • Fox, P. F. and Flynn, A. (1992). Biological properties of milk proteins. In: Advanced Dairy Chemistry, Vol. 1: Proteins, pp. 255–284. Fox, P. F., Eds., Elsevier, London.
  • Friedman, M. (1996). Nutritional value of proteins from different food sources. A review. J. Agr.Food Chem. 44:6–29.
  • Fritsche, R. (2003). Role for technology in dairy allergy. Aust. J. Dairy Technol. 58:89–91.
  • Ganote, C. E., Peterson, D. R. and Carone, F. A. (1974). The nature of d-serine–induced nephrotoxicity. Am. J.Pathol. 77:269–282.
  • Garcıa-Risco, M. R., Recio, I., Molina, E. and Lopez-Fandino,R. (2003). Plasmin activity in pressurized milk. J. Dairy Sci. 86:728–734.
  • Gobbetti, M., Stepaniak, L., De Angelis, M. and Corsetti, A. (2002). Latent bioactive peptides in milk proteins: proteolytic activation and significance in dairy processing. Crit. Rev. Food Sci. Nutr. 42:223–239.
  • Goullieux, A. and Pain, J. P. (2005). Ohmic heating. In: Emerging Technologies for Food Processing, pp. 469–505. Sun, D. W. Eds., Elsevier Academic Press, USA.
  • Guerzoni, M. E., Vannini, L., Chaveslopez, C. and Lanciotti, R. (1999). Effect of high pressure homogenization on microbial and Chemico-physical characteristics of goat cheeses. J. Dairy Sci. 82:851–862.
  • Hanson, L. A. and Mansson, I. (1961). Immune electrophoretic studies of bovine milk and milk products. ActaPaediatr. 50:484–490.
  • Hargrove, R. E. and Alford, J. A. (1978). Growth rate and feed efficiency of rats fed yogurt and other fermented milks. J. Dairy Sci. 61:11–19.
  • Havck, B. W. and Huber, G. R. (1989). Single screw vs. twin screw extrusion. Am. Assoc.Cereal Chem. 34:930–939.
  • Hayashi, R. and Kameda, I. (1980). Racemization of amino acid residues during alkali-treatment of protein and its adverse effect on pepsin digestibility. Agr.Biol.Chem. 44(4):891–895.
  • Hayes, M. G., Fox, P. F., and Kelly, A. L. (2005). Potential applications of high pressure homogenisation in processing of liquid milk. J. Dairy Res. 72:25–33.
  • Hayes, M. G. and Kelly, A. L. (2003). High pressure homogenisation of milk (B) effects on indigenous enzymatic activity. J. Dairy Res. 70:307–313.
  • Henderson, L. M. and Snell, E. E. (1948). A uniform medium for determination of amino acids with various microorganisms. Ibid. 172:15.
  • Heppell, L.M.J, Cant, A. J. and Kilshaw, P. J. (1984). Reduction in the antigenicity of whey proteins by heat treatment: a possible strategy for producing a hypoallergenic infant milk formula. Brit. J.Nutr. 51:29–36.
  • Heyman, M. (1999). Evaluation of the impact of food technology on the allergenicity of cow's milk proteins. Proc.Nutr.Soc. 58:587–592.
  • Huppertz, T., Fox, P. F. and Kelly, A. L. (2004). Plasmin activity and proteolysis in high pressure-treated bovine milk. Le Lait. 84:297–304.
  • Izquierdo, F. J., Alli, I., Gomez, R., Ramaswamy, H. S. and Yaylayan, V. (2005). Effects of high pressure and microwave on pronase and α-chymotrypsin hydrolysis of β-lactoglobulin. Food Chem. 92:713–719.
  • Jedrychowski, L. and Wroblewska, B. (1999). Reduction of the antigenicity of whey proteins by lactic acid fermentation. Food Agr.Immunol. 11:91–99.
  • Kleber, N. and Hinrichs, J. (2007). Antigenic response of β-lactoglobulin in thermally treated bovine skim milk and sweet whey. Milchwissenschaft. 62:121–124.
  • Kleber, N., Maier, S. and Hinrichs, J. (2007). Antigenic response of bovine β-lactoglobulin influenced by ultrahigh pressure treatment and temperature. Innovative Food Sci. Emer.Technol. 8:39–45.
  • Kleber, N., Weyrich, U. and Hinrichs, J. (2006). Screening for lactic acid bacteria with potential to reduce antigenic response of β-lactoglobulin in bovine skim milk and sweet whey. Innovative Food Sci. &Emerg.Technol. 7:233–238.
  • Korhonen, H. and Pihlanto, A. (2006). Bioactive peptides: Production and functionality–a review. Int.Dairy J. 16:945–960.
  • Korhonen, H., Pihlanto, A., Rantamaki, P. and Tupasela, T. (1998). Impact of processing on bioactive proteins and peptides. Trends Food Sci. Technol. 9:307–319.
  • Kotula, K. T., Nikazy, J. N., McGinnis, N., Lowe, C. M. and Briggs, G. M. (1987). Protein quality of cheddar cheese compared with casein and fabricated cheese in the rat. J. Food Sci. 52(5):1245–1248.
  • Kurosaki, T., Maeno, M., Mennear, J. H. and Bernard, B. K. (2005). Studies of the toxicological potential of tri-peptides (L-valyl-L-prolyl-L-proline and L-Isoleucyl-L-prolyl-L-proline): VI. Effects of Lactobacillus helveticus-fermented milk powder on fertility and reproductive performance of rats. Int. J.Toxicol. S24:61–84.
  • Laffineur, E., Genetet, N. and Leonil, J. (1996). Immunomodulatory activity of β-Casein permeate medium fermented by lactic acid bacteria. J. Dairy Sci. 79:2112–2120.
  • Lee, Y. K. and Salminen, S. (1995). The coming of age of probiotics. Trends Food Sci. Technol. 6:241–245.
  • Lubec, G., Wolf, C. and Bartosch, B. (1989). Amino acid isomerization and microwave exposure. Lancet. 334:1392–1393.
  • Maeno, M., Nakamura, Y., Mennear, J. H. and Bernard, B. K. (2005). Studies of the toxicological potential of tri-peptides (L-valyl-L-prolyl-L-proline and L-isoleucyl-L-prolyl-L-proline): III. Single- and/or repeated-dose toxicity of tripeptides- containing Lactobacillus helveticus-fermented milk powder and casein hydrolysate in rats. Int. J.Toxicol. 24:S13–S23.
  • Marconi, E., Panfili, G., Bruschi, L., Vivanti, V. and Pizzoferrato, L. (1995). Comparative study on microwave and conventional methods for protein hydrolysis in food. Amino Acids. 8:201–208.
  • Marshall, V. W. and Tamine, A. Y. (1997). Starter cultures employed in the manufacture of biofermented milks. Int. J. Dairy Technol. 50:35–41.
  • Matthey, F. P. and Hanna, M. A. (1997). Physical and functional properties of twin-screw extruded whey protein Concentrate-corn starch blends. Food Sci. Technol. 30:359–366.
  • Maubois, J. L. (2002). Membrane microfiltration: a tool for a new approach in dairy technology. Aust. J. Dairy Technol. 57:92–96.
  • Maubois, J. L., Fauquant, J., Famelart, M. H. and Caussin, F. (2001). Milk microfiltrate a convenient starting material for fractionation of whey proteins and derivatives. In: Proceedings of 3rd International Whey Conference, pp: 59–72. The importance of whey and whey components in food and nutrition. München. Germany.
  • Maubois, J. L. and Ollivier, G. (1992). New Applications of Membrane Processes.IDF Spl. Iss.9201, pp. 15–22. Brussels, Belgium.
  • Maynard, F., Weingand, A., Hau, J. and Jost, R. (1998). Effect of high-pressure treatments on the tryptic hydrolysis of bovine β-lactoglobulin AB. Int. Dairy J. 8:125–133.
  • McArdle, F. J. and Desrosier, W. (1955). Influences of ionizing radiation on the protein components of selected foods. Food Technol. Campaign 9(11):527–532.
  • Meisel, H., Goepfert, A. and Gunther, S. (1997). ACE-inhibitory activities in milk products. Milchwissenschaft. 52:307–311.
  • Meisel, H. and Hagemeister, H. (1984). Influence of different technological treatments of milk on digestion in the stomach. II. Gastric passage of different milk constituents. Milchwissenschaft. 39(5):262–266.
  • Metta, V. C. and Johnson, B. C. (1956). The effect of radiation sterilization on the nutritive value of foods I. Biological value of milk and beef proteins. J.Nutr. 59(4):479–490.
  • Mizuno, S., Mennear, J. H., Matsuura, K. and Bernard, B. K. (2005). Studies of the toxicological potential of tri-peptides (L-valyl-L-prolyl-L-proline and L-isoleucyl-L-prolyl-L-proline): V.A 13-week toxicity study of tri-peptides-containing casein hydrolysate in male and female rats. Int. J.Toxicol. 24:S41–S59.
  • Morifuji, M., Kaga, J., Kawanaka, K. and Higuchi, M. (2009). Branched chain amino acid containing dipeptide, identified from whey protein hydrolysate, stimulate glucose uptake rate in L6 myotubes and isolated skeletal muscles. J.Nutr.Sci. Vitaminol. 55 (1):81–86.
  • Nagpal, R., Behare, P., Rana, R. and Kumar, A. (2011). Bioactive peptides derived from milk proteins and their health beneficial potentials: an update. Food Funct. 2:18–27.
  • Nakamura, Y., Bando, I., Mennear, J. H. and Bernard, B. (2005). Studies of the toxicological potential of tri-peptides (L-valyl-L-prolyl-L-proline and L-isoleucyl-Lprolyl- L-proline): IV. Assessment of the repeated-dose toxicological potential of synthesized L-valyl-L-prolyl-L-proline in male and female rats and dogs. Int. J.Toxicol. 24:S25–S39.
  • Nakamura, Y., Yamamoto, N., Sakai, K. and Okubo, A. (1995). Purification and characterization of angiotensin I-converting enzyme inhibitors from sour milk. J. Dairy Sci. 78:777–783.
  • Nowak-Wegrzyn, A., Bloom, K. A., Sicherer, S. H. and Shreffler, W. G. (2008). Tolerance to extensively heated milk in children with cow's milk allergy. J. Allergy Clin.Immunol. 122(2):342–347.
  • Onwulata, C. I., Konstance, R. P., Cooke, P. H. and FarrelJr., H. M. (2003). Functionality of extrusion-texturized whey proteins. J. Dairy Sci. 86:3775–3782.
  • Onwulata, C. I., Konstance, R. P., Smith, P. W. and Holsinger, V. H. (1998). Physical properties of extruded products as affected by cheese whey. J. Food Sci. 63(5):1–5.
  • Onwulata, C. I., Konstance, R. P., Smith, P. W. and Holsinger, V. H. (2001). Co-extrusion of dietary fiber and milk proteins in expanded corn products. Food Sci. Technol. 34:424–429.
  • Ostergaard, B. (2003). Adding value to whey by Pro-Frac. Eur. Dairy Mag. 8:20–22.
  • Pahud, J. J., Monti, J. C. and Jost, R. (1985). Allergenicity of whey protein: its modification by tryptic in-vitro hydrolysis of the protein. J.Pediat.Gastroenterol.Nutr. 4:408–413.
  • Patchornik, A. and Sokolovsky, M. (1964). Chemical interactions between lysine and dehydroa1anine in modified bovine pancreatic ribonuclease. J. Am.Chem.Soc. 86:1860–1861.
  • Patel, J. R., Patel, A. A. and Singh, A. K. (2016). Production of a protein-rich extruded snack base using tapioca starch, sorghum flour and casein. J. food Sci. Technol. 53(1):71–87.
  • Pellegrino, L., Masotti, F., Cattaneo, S. and Hogenboom, J. A. (2013). Nutritional quality of milk proteins. In: Advanced Dairy Chemistry Vol. 1A: Proteins: Basic Aspects, pp. 515–538. Fox, P. F. Ed. IV, Springer Science + Business Media New York, London.
  • Peñas, E., Préstamo, G., Baeza, M. L. and Martínez-Molero, M. I. (2006). Effects of combined high pressure and enzymatic treatments on the hydrolysis and immunoreactivity of dairy whey proteins. Int. Dairy J. 16:831–839.
  • Pereda, J., Ferragut, V., Buffa, M. and Guamis, B. (2008). Proteolysis of ultra-high pressure homogenised treated milk during refrigerated storage. Food Chem. 111:696–702.
  • Pereda, J., Ferragut, V., Quevedo, J. M., and Guamis, B. (2007). Effects of Ultra-high pressure homogenisation on microbial and physicochemical shelf life of milk. J. Dairy Sci. 90:1081–1093.
  • Phelan, M., Aherne, A., FitzGerald, R. J. and O'Brien, N. M. (2009). Casein-derived bioactive peptides: Biological effects, industrial uses, safety aspects and regulatory status. Int. Dairy J. 19:643–654.
  • Pollock, G. E. and Frommhagen, L. H. (1968). The extent of racemization of some amino acids in dilute alkali-treated protein and soil humic and fulvic acid. Anal.Biochem. 24(1):18–26.
  • Polydera, A. C., Stoforos, N. G. and Taoukis, P. S. (2005). Quality degradation kinetics of pasteurised and high pressure processed fresh Navel orange juice: Nutritional parameters and shelf life. Innovative Food Sci. Emerg. Technol. 6(1):1–9.
  • Ponstein-SimarroDoorten, A. Y., VD Wiel, J. A. G. and Jonker, D. (2009). Safety evaluation of an IPP tri-peptide-containing milk protein hydrolysates. Food Chem.Toxicol. 47:55–61.
  • Puerta, A., Diez-Masa, J. C. and de-Frutos, M. (2006). Immunochromatographic determination of β-lactoglobulin and its antigenic peptides in hypoallergenic formulas. Int. Dairy J. 16:406–414.
  • Ramasarma, G. B., Henderson, L. M. and Elvehjem, C. A. (1949). Purified amino acids as a source of nitrogen for the growing rat. J.Nutr. 38(2):177–194.
  • Renner, E. (1993). Nutritional aspects of cheese. In Cheese: Chemistry, Physics and Microbiology, Vol. 1–General Aspects, pp. 557–579. Fox, P. F.Eds, Chapman and Hall, Rugby.
  • Rigo, J., Boehm, G., Georgi, G. and Jelinek, J. (2001). An infant formula free of glycomacropeptide prevents hyperthreoninemia in formula-fed preterm infants. J.Pediat.Gastroenterol.Nutr. 32:127–130.
  • Rokka, T., Syvaoja, E.-L., Tuominen, J. and Korhonen, H. (1997). Release of bioactive peptides by enzymatic proteolysis of lactobacillus gg fermented UHT-milk. Milchwissenschaft. 52:675–678.
  • Roudot-Algaron, F., LeBars, D., Kerhoas, L. and Einhorn, J. (1994). Phosphopeptides from comte cheese: Nature and origin. J. Food Sci. 59:544–547.
  • Rytkönen, J., Karttunen, T. J., Karttunen, R. and Valkonen, K. H. (2002). Effect of heat denaturation on beta-lactoglobulin-induced gastrointestinal sensitization in rats: denatured β-Lg induces a more intensive local immunologic response than native β-Lg. Pediat. Allergy Immunol. 13:269–277.
  • Sanders, M. E. (1994). Lactic acid bacteria as promoters of human health. In: Functional Foods, pp. 294–322. Goldberg, I., Eds., Chapman and Hall, New York.
  • Sastry, S. K. and Barach, J. T. (2000). Ohmic and inductive heating. J. Food Sci. Suppl. 65(4):42–46.
  • Scheidegger, D., Pecora, R. P., Radici, P. M. and Kivatinitz, S. C. (2010). Protein oxidative changes in whole and skim milk after ultraviolet or fluorescent light exposure. J. Dairy Sci. 93:5101–5109.
  • Schmidt, D. G., Meijer, R. J., Slangen, C. J. and van Beresteijn, E. C. (1995). Raising the pH of the pepsin-catalyzed hydrolysis of bovine whey proteins increases the antigenicity of the hydrolysates. Clin. Exp. Allergy 25(10):1007–1017.
  • Serra, M., Trujillo, A. J., Quevedo, J. M., and Guamis, B. (2007). Acid coagulation properties and suitability for yogurt production of cows' milk treated by High-pressure homogenisation. Int. Dairy J. 17:782–790.
  • Sharma, S., Kumar, P., Betzel, C. and Singh, T. P. (2001). Structure and function of proteins involved in milk allergies. J. Chromatogr. B. 756:183–187.
  • Sieber, R., Eyer, H. and Luginbuhl, W. (1997). L'homoge´ne´isation du lait. Le Laitier Roman 123(15):7–9.
  • Silber, B. Y. and Schmitt, J. A. (2010). Effects of tryptophan loading on human cognition, mood, and sleep. Neurosci. Biobehav. Rev. 34(3):387–407.
  • Singh, H. and Havea, P. (2003). Thermal denaturation, aggregation and gelation of whey proteins. In: Advanced Dairy Chemistry Vol. 1: Proteins, pp. 1263.Fox, P. F.Ed. III, Elsevier Science Publishers, London.
  • Singh, R. K., Nielsen, S. S. and Chambers, J. V. (1991). Elected characteristics of extruded blends of milk protein raffinate or non-fat dry milk with corn flour. J. Food Process.Preservation. 15:285–302.
  • Singh, T. K., Fox, P. F. and Healy, A. (1997). Isolation and identification of further peptides in the diafiltration retentate of water-soluble fraction of cheddar cheese. J. Dairy Res. 64:433–443.
  • Skudder, P. J. (1988). Development of the ohmicheating process for continuous sterilization of particulate food products. In: Process International Symposium on Progress in Food Preservation Process 1:271–280. Brussels, Belgium.
  • Stapelfeldt, H., Petersen, P. H., Kristiansen, K. R., Qvist, K. B. and Skibsted, L. H. (1996). Effect of high hydrostatic pressure on the enzymic hydrolysis of β-lactoglobulin B by trypsin, thermolysin and pepsin. J. Dairy Res. 63(1):111–118.
  • Sternberg, M. and Kim, C. Y. (1977). Nutritional and medical consequences. In: Protein Crosslinking, pp. 73–84.Friedman, M., Ed., Plenum Press, New York.
  • Sun, H., Kawamura, S., Himoto, J. and Itoh, K. (2008). Effects of ohmic heating on microbial counts and denaturation of proteins in milk. Food Sci. Technol.Res. 14(2):117–123.
  • Svedburg, T. and Brohult, S. (1939). Splitting of protein molecules by ultra-violet light and α-rays. Nature. 143:938–939.
  • Tomé, D. (1995). Influence of processing on nutritive value of milk proteins. IDF Nutr, lett. 4:5–8.
  • Tomé, D. (2010). Quantity and quality of proteins: the role of milk protein in meeting amino acid and protein requirements for humans. Proc. Symposium of Nutrient Density/Nutritional Aspects of Dairy, Amsterdam, May 21, 1994.
  • Tomé, D. and Bos, C. (2000). Dietary protein nitrogen utilization. J.Nutr. 130:1868S–1873S.
  • Touloupis, C. and Vassiliadis, A. (1977). Lysinoalanine formation in wool after treatments with some phosphate salts. In Protein Crosslinking. Nutritional and Medical Consequences, pp. 187–195. Friedman, M. Ed., Plenum Press, New York.
  • Udenigwe, C. C. and Aluko, R. E. (2012). Food Protein-derived bioactive peptides: Production, processing, and potential health benefits. J. Food Sci. 71:R11–24.
  • Villamiel, M. and de Jong, P. (2000). Influence of High-intensity ultrasound and heat treatment in continuous flow on fat, proteins, and native enzymes of milk. J. Agr.Food Chem. 48:472–478.
  • Walstra, P., Wouters, J. and Geurts, T. (2006). Milk components. In: Dairy Science and Technology, pp. 73. CRC press, FL.
  • WHO. (2002). Joint FAO/WHO/UNU Expert Consultation on Protein and Amino Acid Requirements in Human Nutrition. Geneva, Switzerland.
  • Winston, W. S. and Sirkar,K. K. (1992). Overview. In Membrane Handbook, pp. 3–15. Winston,W. S. and Sirkar,K. K. Eds., Van Nostrand Reinhold, New York.
  • Wu, J. P. and Ding, X. L. (2002). Characterization of inhibitory and stability of soy protein-derived angiotensin-I-converting enzyme inhibitory peptides. Food Res, Int. 35:367–375.
  • Zamora, A., Ferragut, V., Jaramillo, P. D., and Guamis, B. (2007). Effects of Ultra-high pressure homogenisation on the Cheese-making properties of milk. J. Dairy Sci. 90:13–23.
  • Zeece, M., Huppertz, T. and Kelly, A. (2008). Effect of high-pressure treatment on in-vitro digestibility of β-Lactoglobulin. Innovative Food Sci. Emerg.Technol. 9:62–69.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.