2,904
Views
250
CrossRef citations to date
0
Altmetric
Articles

Nanomaterials in food and agriculture: An overview on their safety concerns and regulatory issues

, , &

References

  • Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K. and Walter, P. (1997). Molecular Biology of the Cell. Garland Science, New York, 2002.
  • Alfadul, S. and Elneshwy, A. (2010). Use of nanotechnology in food processing, packaging and safety – Review. African J. Food, Agric. Nutr. Dev. 10:2720–2739. doi:10.4314/ajfand.v10i6.58068.
  • Alger, H., Momcilovic, D., Carlander, D. and Duncan, T. V. (2014). Methods to evaluate uptake of engineered nanomaterials by the alimentary tract. Compr. Rev. Food Sci. Food Saf. 13:705–729. doi:10.1111/1541-4337.12077
  • Ames, B. N., McCann, J. and Yamasaki, E. (1975). Methods for detecting carcinogens and mutagens with the salmonella/mammalian-microsome mutagenicity test. Mutat. Res. Mutagen. Relat. Subj. 31:347–363. doi:https://doi.org/10.1016/0165-1161(75)90046-1.
  • An, H., Liu, Q., Ji, Q. and Jin, B. (2010). DNA binding and aggregation by carbon nanoparticles. Biochem. Biophys. Res. Commun. 393:571–576. doi:10.1016/j.bbrc.2010.02.006.
  • Arora, A. and Padua, G. W. (2010). Review: Nanocomposites in food packaging. J. Food Sci. 74: R43–R49. doi:10.1111/j.1750-3841.2009.01456.x.
  • Asare, N., Instanes, C., Sandberg, W. J., Refsnes, M., Schwarze, P., Kruszewski, M. and Brunborg, G. (2012). Cytotoxic and genotoxic effects of silver nanoparticles in testicular cells. Toxicology 291:65–72. doi:10.1016/j.tox.2011.10.022.
  • Ashutosh, K. and Alok, D. (2013). Manual on Critical Issues In Nanotechnology R&D Management: An Asia-Pacific Perspective: “Chapter 1: Nano-safety, Standardization and Certification” [WWW Document].
  • Ashutosh, K., Najafzadeh, M., Jacob, B. K., Dhawan, A. and Anderson, D. (2015). Zinc oxide nanoparticles affect the expression of p53, Ras p21 and JNKs: An ex vivo/in vitro exposure study in respiratory disease patients. Mutagenesis 30:237–245. doi:10.1093/mutage/geu064
  • Azad, M. B., Chen, Y. and Gibson, S. B. (2009). Regulation of autophagy by reactive oxygen species (ROS): Implications for cancer progression and treatment. Antioxid. Redox Signal. 11:777–790. doi:10.1089/ars.2008.2270
  • Baer, D. R., Gaspar, D. J., Nachimuthu, P., Techane, S. D. and Castner, D. G. (2010). Application of surface chemical analysis tools for characterization of nanoparticles. Anal. Bioanal. Chem. 396:983–1002. doi:10.1007/s00216-009-3360-1
  • Bakand, S., Hayes, A. and Dechsakulthorn, F. (2012). Nanoparticles: A review of particle toxicology following inhalation exposure. Inhal. Toxicol. 24:125–135. doi:10.3109/08958378.2010.642021.
  • Bandyopadhyay, S., Peralta-Videa, J. R. and Gardea-Torresdey, J. L. (2013). Advanced analytical techniques for the measurement of nanomaterials in food and agricultural samples: A review. Environ. Eng. Sci. 30:118–125. doi:10.1089/ees.2012.0325
  • Barchowsky, A. and O'Hara, K. A. (2003). Metal-induced cell signaling and gene activation in lung diseases. Free Radic. Biol. Med. 34:1130–1135. doi:10.1016/S0891-5849(03)00059-5.
  • Barnes, C. A., Elsaesser, A., Arkusz, J., Smok, A., Palus, J., Leśniak, A., Salvati, A., Hanrahan, J. P., Jong, W. H. de, Dziubałtowska, E., Stepnik, M., Rydzyński, K., McKerr, G., Lynch, I., Dawson, K. A. and Howard, C. V. (2008). Reproducible comet assay of amorphous silica nanoparticles detects no genotoxicity. Nano Lett. 8:3069–3074. doi:10.1021/nl801661w
  • Baweja, L., Gurbani, D., Shanker, R., Pandey, A. K., Subramanian, V. and Dhawan, A. (2011). C60-fullerene binds with the ATP binding domain of human DNA topoiosmerase II alpha. J. Biomed. Nanotechnol. 7:177–178.
  • Bennat, C. and Müller-Goymann, C. C. (2000). Skin penetration and stabilization of formulations containing microfine titanium dioxide as physical UV filter. Int. J. Cosmet. Sci. 22:271–283. doi:10.1046/j.1467-2494.2000.00009.x
  • Benyamini, H., Shulman-Peleg, A., Wolfson, H. J., Belgorodsky, B., Fadeev, L. and Gozin, M. (2006). Interaction of C60-fullerene and carboxyfullerene with proteins: Docking and binding site alignment. Bioconjug. Chem. 17:378–386. doi:10.1021/bc050299g
  • Bergamaschi, E., Bussolati, O., Magrini, A., Bottini, M., Migliore, L., Bellucci, S., Iavicoli, I. and Bergamaschi, A. (2006). Nanomaterials and lung toxicity: Interactions with airways cells and relevance for occupational health risk assessment. Int. J. Immunopathol. Pharmacol. 19(4 Suppl):3–10.
  • Berhanu, D., Dybowska, A., Misra, S. K., Stanley, C. J., Ruenraroengsak, P., Boccaccini, A. R., Tetley, T. D., Luoma, S. N., Plant, J. A. and Valsami-Jones, E. (2009). Characterisation of carbon nanotubes in the context of toxicity studies. Environ. Health 8(Suppl 1):S3. doi:10.1186/1476-069X-8-S1-S3
  • Berry, C. C. (2005). Possible exploitation of magnetic nanoparticle-cell interaction for biomedical applications. J. Mater. Chem. 15:543–547. doi:10.1039/b409715g
  • Berton-Carabin, C. C. and Schroën, K. (2015). Pickering emulsions for food applications: Background, trends, and challenges. Annu. Rev. Food Sci. Technol. 6:263–297.
  • Böckmann, J., Lahl, H., Eckert, T. and Unterhalt, B. (2000). Blood titanium levels before and after oral administration titanium dioxide, Die Pharmazie. 55(2):140–3.
  • Borm, P. J. A. and Kreyling, W. (2004). Toxicological hazards of inhaled nanoparticles: Potential implications for drug delivery. J. Nanosci. Nanotechnol. 4:521–531. doi:10.1166/jnn.2004.081.
  • Bowman, D. M., Van Calster, G. and Friedrichs, S. (2010). Nanomaterials and regulation of cosmetics. Nat. Nanotechnol. 5:92.
  • Cadenas, E. and Davies, K. J. (2000). Mitochondrial free radical generation, oxidative stress, and aging. Free Radic. Biol. Med. 29:222–230. doi:10.1016/S0891-5849(00)00317-8.
  • Chan, G. H., Zhao, J., Schatz, G. C. and Duyne, R. P. Van (2008). Localized surface plasmon resonance spectroscopy of triangular aluminum nanoparticles. J. Phys. Chem. C 112:13958–13963. doi:10.1021/jp804088z.
  • Chattopadhyay, S. and Dash, S. (2014). Chitosan-modified cobalt oxide nanoparticles stimulate TNF-α-mediated apoptosis in human leukemic cells. JBIC J. 19:399–414. doi:10.1007/s00775-013-1085-2.
  • Chaudhry, Q., Watkins, R. and Castle, L. (2010). Nanotechnologies in the food arena: new opportunities, new questions, new concerns. Nanotechnologies Food 1–17.
  • Chen, Z., Wang, Y., Ba, T., Li, Y., Pu, J., Chen, T., Song, Y., Gu, Y., Qian, Q., Yang, J. and Jia, G. (2014). Genotoxic evaluation of titanium dioxide nanoparticles in vivo and in vitro. Toxicol. Lett. 226:314–319. doi:https://doi.org/10.1016/j.toxlet.2014.02.020.
  • Choi, S. S., Kim, J. S., Valerio, L. G. and Sadrieh, N. (2013). In silico modeling to predict drug-induced phospholipidosis. Toxicol. Appl. Pharmacol. 269:195–204. doi:10.1016/j.taap.2013.03.010.
  • Commission, E. (2004). Towards a European strategy for nanotechnology.https://cordis.europa.eu/pub/nanotechnology/docs/nano_com_en_new.pdf.
  • Commission, E.-E. others (2005). Nanosciences and Nanotechnologies: An Action Plan for Europe 2005–2009. European Commission, Brussels.
  • Committee, E. S. others (2011). Guidance on the risk assessment of the application of nanoscience and nanotechnologies in the food and feed chain. EFSA J. 9:2140.
  • Conner, S. D. and Schmid, S. L. (2003). Regulated portals of entry into the cell. Nature 422:37–44. doi:10.1038/nature01451.
  • Corredor, C., Borysiak, M. D., Wolfer, J., Westerhoff, P. and Posner, J. D. (2015). Colorimetric detection of catalytic reactivity of nanoparticles in complex matrices. Environ. Sci. Technol. 49:3611–3618. doi:10.1021/es504350j.
  • Crosera, M., Bovenzi, M., Maina, G., Adami, G., Zanette, C., Florio, C. and Filon Larese, F. (2009). Nanoparticle dermal absorption and toxicity: A review of the literature. Int. Arch. Occup. Environ. Health. 82(9):1043–5. doi:10.1007/s00420-009-0458-x.
  • Cushen, M., Kerry, J., Morris, M., Cruz-Romero, M. and Cummins, E. (2012). Nanotechnologies in the food industry: Recent developments, risks and regulation. Trends Food Sci. Technol. 24(1), March 2012:30–46. doi:10.1016/j.tifs.2011.10.006.
  • Dasgupta, N., Ranjan, S., Chakraborty, A. R., Ramalingam, C., Shanker, R. and Kumar, A. (2016). Nano agriculture and water quality management, In: Sustainable Agriculture Reviews: Nanoscience in Food and Agriculture. Ranjan, S., Nandita, D. and Lichtfouse, E., Eds., Springer, Berlin Heidelberg. 1–42.
  • Dasgupta, N., Ranjan, S., Mundekkad, D., Ramalingam, C., Shanker, R. and Kumar, A. (2015a). Nanotechnology in agro-food: From field to plate. Food Res. Int. 69:381–400. doi:10.1016/j.foodres.2015.01.005.
  • Dasgupta, N., Ranjan, S., Rajendran, B., Manickam, V., Ramalingam, C., Avadhani, G. and Ashutosh, K. (2015b). Thermal co-reduction approach to vary size of silver nanoparticle: Its microbial and cellular toxicology. Environ. Sci. Pol. Res. 23(5):4149–4163.
  • De Berardis, B., Civitelli, G., Condello, M., Lista, P., Pozzi, R., Arancia, G. and Meschini, S. (2010). Exposure to ZnO nanoparticles induces oxidative stress and cytotoxicity in human colon carcinoma cells. Toxicol. Appl. Pharmacol. 246:116–127. doi:10.1016/j.taap.2010.04.012.
  • Dehalu, V., Weigel, S., Rebe, S., Grombe, R., Löbenberg, R. and Delahaut, P. (2012). Production and characterization of antibodies against crosslinked gelatin nanoparticles and first steps toward developing an ELISA screening kit. Anal. Bioanal. Chem. 403:2851–2857. doi:10.1007/s00216-012-5793-1.
  • Deng, X., Jia, G., Wang, H., Sun, H., Wang, X., Yang, S., Wang, T. and Liu, Y. (2007). Translocation and fate of multi-walled carbon nanotubes in vivo. Carbon N.Y. 45:1419–1424. doi:10.1016/j.carbon.2007.03.035.
  • Dhawan, A., Sanker, R., Das, M. and Gupta, K. C. (2011). Guidance for safe handling of nanomaterials. J. Biomed. Nanotechnol. 7:218–224.
  • Dhawan, A. and Sharma, V. (2010). Toxicity assessment of nanomaterials: Methods and challenges. Anal. Bioanal. Chem. 398(2):589–60. doi:10.1007/s00216-010-3996-x.
  • Dhawan, A., Sharma, V. and Parmar, D. (2009). Nanomaterials: A challenge for toxicologists. Nanotoxicology 3:1–9. doi:10.1080/17435390802578595.
  • Dobrovolskaia, M. A. and McNeil, S. E. (2007). Immunological properties of engineered nanomaterials. Nat Nano 2:469–478. doi:10.1038/nnano.2007.223.
  • Dobrzyńska, M. M., Gajowik, A., Radzikowska, J., Lankoff, A., Dušinská, M. and Kruszewski, M. (2014). Genotoxicity of silver and titanium dioxide nanoparticles in bone marrow cells of rats in vivo. Toxicology 315:86–91. doi:https://doi.org/10.1016/j.tox.2013.11.012.
  • Dockery, D. W., Pope, C. A., Xu, X., Spengler, J. D., Ware, J. H., Fay, M. E., Ferris, B. G. and Speizer, F. E. (1993). An association between air pollution and mortality in six U.S. cities. N. Engl. J. Med. 329:1753–1759. doi:10.1097/00043764-199502000-00008.
  • Donaldson, K., Aitken, R., Tran, L., Stone, V., Duffin, R., Forrest, G. and Alexander, A. (2006). Carbon nanotubes: A review of their properties in relation to pulmonary toxicology and workplace safety. Toxicol. Sci. 92(1):5–22. doi:10.1093/toxsci/kfj130.
  • Dorbeck-Jung, B. and Shelley-Egan, C. (2013). Meta-regulation and nanotechnologies: The challenge of responsibilisation within the European commission's code of conduct for responsible nanosciences and nanotechnologies research. Nanoethics 7:55–68.
  • Duan, J., Yu, Y., Li, Y., Yu, Y. and Sun, Z. (2013). Cardiovascular toxicity evaluation of silica nanoparticles in endothelial cells and zebrafish model. Biomaterials 34:5853–5862. doi:10.1016/j.biomaterials.2013.04.032.
  • Elder, A., Lynch, I., Grieger, K., Chan-Remillard, S., Gatti, A., Gnewuch, H., Kenawy, E., Korenstein, R., Kuhlbusch, T., Linker, F., Matias, S., Monteiro-Riviere, N., Pinto, V. R. S., Rudnitsky, R., Savolainen, K. and Shvedova, A. (2009). human health risks of engineered nanomaterials critical knowledge gaps in nanomaterials risk assessment. In: Nanomaterials: Risks and Benefits. Eds., Igor Linkov and Jeffery Steevens Springer Netherlands. pp. 3–29. doi:10.1007/978-1-4020-9491-0_1.
  • Ellinger-Ziegelbauer, H. and Pauluhn, J. (2009). Pulmonary toxicity of multi-walled carbon nanotubes (Baytubes (R)) relative to alpha-quartz following a single 6 h inhalation exposure of rats and a 3 months post-exposure period. Toxicology 266:16–29.
  • Fabricius, A.-L., Duester, L., Meermann, B. and Ternes, T. (2014). ICP-MS-based characterization of inorganic nanoparticles—Sample preparation and off-line fractionation strategies. Anal. Bioanal. Chem. 406:467–479. doi:10.1007/s00216-013-7480-2.
  • Fadeel, B. and Garcia-Bennett, A. E. (2010). Better safe than sorry: Understanding the toxicological properties of inorganic nanoparticles manufactured for biomedical applications. Adv. Drug Deliv. Rev. 6(5):535–42. doi:10.1016/j.addr.2009.11.008.
  • Ferin, J., Oberdörster, G. and Penney, D. P. (1992). Pulmonary retention of ultrafine and fine particles in rats. Am. J. Respir. Cell Mol. Biol. 6:535–542. doi:10.1165/ajrcmb/6.5.535.
  • Ferreira, A.J., Cemlyn-Jones, J. and Robalo Cordeiro, C. (2013). Nanoparticles, nanotechnology and pulmonary nanotoxicology. Rev. Port. Pneumol. 19:28–37. doi:10.1016/j.rppneu.2012.09.003.
  • Figueira, T. R., Barros, M. H., Camargo, A. A., Castilho, R. F., Ferreira, J. C. B., Kowaltowski, A. J., Sluse, F. E., Souza-Pinto, N. C. and Vercesi, A. E. (2013). Mitochondria as a source of reactive oxygen and nitrogen species: From molecular mechanisms to human health. Antioxid. Redox Signal. 18:2029–74. doi:10.1089/ars.2012.4729.
  • Finette, B. A., Kendall, H. and Vacek, P. M. (2002). Mutational spectral analysis at the HPRT locus in healthy children. Mutat. Res. - Fundam. Mol. Mech. Mutagen. 505:27–41. doi:10.1016/S0027-5107(02)00119-7.
  • Grieger, K. D., Hansen, S. F. and Baun, A. (2009). The known unknowns of nanomaterials: Describing and characterizing uncertainty within environmental, health and safety risks. Nanotoxicology 3:222–233.
  • Guo, C., Xia, Y., Niu, P., Jiang, L., Duan, J., Yu, Y., Zhou, X., Li, Y. and Sun, Z. (2015). Silica nanoparticles induce oxidative stress, inflammation, and endothelial dysfunction in vitro via activation of the MAPK/Nrf2 pathway and nuclear factor-κB signaling. Int. J. Nanomedicine 10:1463.
  • Guo, Y.-Y., Zhang, J., Zheng, Y.-F., Yang, J. and Zhu, X.-Q. (2011). Cytotoxic and genotoxic effects of multi-wall carbon nanotubes on human umbilical vein endothelial cells in vitro. Mutat. Res. 721:84–191. doi:10.1016/j.mrgentox.2011.01.014.
  • Gupta, S., B, P., B, S., Patil, S., Briggs, R. and Jain, J. and Seal, S. (2005). TEM/AFM Investigation of size and surface properties of nanocrystalline Ceria. J. Nanosci. Nanotechnol. 5:1101–1107.
  • He, Q., Yuan, W., Liu, J. and Zhang, Z. (2008). Study on in vivo distribution of liver-targeting nanopaticles encapsulating thymidine kinase gene (TK gene) in mice. J. Mater. Sci. Mater. Med. 19:559–565. doi:10.1007/s10856-007-3182-7.
  • Heinemann, M. and Schäfer, H. G. (2009). Guidance for handling and use of nanomaterials at the workplace. Hum. Exp. Toxicol. 28:407–411. doi:10.1177/0960327109105149.
  • Helfenstein, M., Miragoli, M., Rohr, S., Müller, L., Wick, P., Mohr, M., Gehr, P. and Rothen-Rutishauser, B. (2008). Effects of combustion-derived ultrafine particles and manufactured nanoparticles on heart cells in vitro. Toxicology 253:70–78. doi:10.1016/j.tox.2008.08.018.
  • Hellsten, E. (2005). Nanosciences and nanotechnologies: An action plan for Europe 2005-2009. Dialog zur Bewertung von Synth. Nanopartikeln Arbeits-und Umweltbereichen. Bonn. https://ec.europa.eu/research/industrial_technologies/pdf/policy/action_plan_brochure_en.pdf
  • Heng, B. C., Zhao, X., Tan, E. C., Khamis, N., Assodani, A., Xiong, S., Ruedl, C., Ng, K. W. and Loo, J. S. C. (2011). Evaluation of the cytotoxic and inflammatory potential of differentially shaped zinc oxide nanoparticles. Arch. Toxicol. 85:1517–1528. doi:10.1007/s00204-011-0722-1.
  • Hirose, A. (2013). International trend of guidance for nanomaterial risk assessment. Yakugaku Zasshi 133:175–180. doi:10.1248/yakushi.12-00244-4.
  • Hossain, M. Z. and Kleve, M. G. (2011). Nickel nanowires induced and reactive oxygen species mediated apoptosis in human pancreatic adenocarcinoma cells. Int. J. Nanomedicine 6:1475–1485. doi:10.2147/ijn.s21697.
  • Hradil, J., Pisarev, A., Babic, M. and Horak, D. (2007). Dextran-modified iron oxide nanoparticles. China Particuology 5:162–168. doi:10.1016/j.cpart.2007.01.003.
  • Huang, J., Li, Q., Sun, D., Lu, Y., Su, Y., Yang, X., Wang, H., Wang, Y., Shao, W., He, N., Hong, J. and Chen, C. (2007). Biosynthesis of silver and gold nanoparticles by novel sundried Cinnamomum camphora leaf. Nanotechnology 18:105104. doi:10.1088/0957-4484/18/10/105104.
  • Huang, Q., Yu, H. and Ru, Q. (2010). Bioavailability and delivery of nutraceuticals using nanotechnology. J. Food Sci. 75:R50–R57. doi:10.1111/j.1750-3841.2009.01457.x.
  • Hussain, S. M., Hess, K. L., Gearhart, J. M., Geiss, K. T. and Schlager, J. J. (2005). In vitro toxicity of nanoparticles in BRL 3A rat liver cells. In: Toxicology in Vitro. 19(7), October 2005, pp. 975–983. doi:10.1016/j.tiv.2005.06.034.
  • Hwang, M., Lee, E. J., Kweon, S. Y., Park, M. S., Jeong, J. Y., Um, J. H., Kim, S. A., Han, B. S., Lee, K. H. and Yoon, H. J. (2012). Risk assessment principle for engineered nanotechnology in food and drug. Toxicol. Res. 28:73–79. doi:10.5487/TR.2012.28.2.073.
  • Ismail, I. H., Wadhra, T. I. and Hammarsten, O. (2007). An optimized method for detecting gamma-H2AX in blood cells reveals a significant interindividual variation in the gamma-H2AX response among humans. Nucleic Acids Res. 35: doi:10.1093/nar/gkl1169.
  • Jani, P., Halbert, G. W., Langridge, J. and Florence, A. T. (1990). Nanoparticle uptake by the rat gastrointestinal mucosa: Quantitation and particle size dependency. J. Pharm. Pharmacol. 42:821–826. doi:10.1111/j.2042-7158.1990.tb07033.x.
  • Jasmine, L., Muralikrishnan, S., Ng, C.-T., Yung, L.-Y. L. and Bay, B.-H. (2010). Nanoparticle-induced pulmonary toxicity. Exp. Biol. Med. 235:1025–1033. doi:10.1258/ebm.2010.010021.
  • Jeannet, N., Fierz, M., Schneider, S., Künzi, L., Baumlin, N., Salathe, M., Burtscher, H. and Geiser, M. (2015). Acute toxicity of silver and carbon nanoaerosols to normal and cystic fibrosis human bronchial epithelial cells. Nanotoxicology 10(3):279–9.
  • Jeong, S.-H., Choi, H., Kim, J. Y. and Lee, T.-W. (2015). Silver-based nanoparticles for surface plasmon resonance in organic optoelectronics. Part. Part. Syst. Charact. 32:64–175. doi:10.1002/ppsc.201400117.
  • Jiang, W., Kim, B. Y. S., Rutka, J. T. and Chan, W. C. W. (2008). Nanoparticle-mediated cellular response is size-dependent. Nat. Nanotechnol. 3:145–150. doi:10.1038/nnano.2008.30.
  • Jin, P., Chen, Y., Zhang, S. and Chen, Z. (2012). Interactions between Al12X (X = Al, C, N and P) nanoparticles and DNA nucleobases/base pairs: Implications for nanotoxicity. J. Mol. Model. 18:559–568. doi:10.1007/s00894-011-1085-5.
  • Jones, C. F. and Grainger, D. W. (2009). In vitro assessments of nanomaterial toxicity. Adv. Drug Deliv. Rev. 61(6):438–56. doi:10.1016/j.addr.2009.03.005.
  • Jugan, M.-L., Barillet, S., Simon-Deckers, A., Herlin-Boime, N., Sauvaigo, S., Douki, T. and Carriere, M. (2012). Titanium dioxide nanoparticles exhibit genotoxicity and impair DNA repair activity in A549 cells. Nanotoxicology 6(5):501–13. doi:10.3109/17435390.2011.587903.
  • Kain, J., Karlsson, H. L. and Möller, L. (2012). DNA damage induced by micro- and nanoparticles–interaction with FPG influences the detection of DNA oxidation in the comet assay. Mutagenesis 27:491–500. doi:10.1093/mutage/ges010.
  • Kalpana, S., Anshul, S. and Rao, N. H. (2013). Nanotechnology in food processing sector-An assessment of emerging trends. J. Food Sci. Technol. 50(5):831–4. doi:10.1007/s13197-012-0873-y.
  • Kalpana, S., Rashmi, H. B. and Rao, N. H. (2010). Nanotechnology patents as R & D indicators for disease management strategies in agriculture. J. Intellect. Prop. Rights 15:197–205.
  • Kansara, K., Patel, P., Shah, D., Shukla, R. K., Singh, S., Kumar, A. and Dhawan, A. (2015). TiO2 nanoparticles induce DNA double strand breaks and cell cycle arrest in human alveolar cells. Environ. Mol. Mutagen. 56:204–217. doi:10.1002/em.21925.
  • Kansara, K., Patel, P., Shah, D., Vallabani, N. V. S., Shukla, R. K., Singh, S., Kumar, A. and Dhawan, A. (2014). TiO2 nanoparticles induce cytotoxicity and genotoxicity in human alveolar cells. Mol. Cytogenet. 7:P77. doi:10.1186/1755-8166-7-S1-P77.
  • Karimi, M. A., Mohammadi, S. Z., Mohadesi, A., Hatefi-Mehrjardi, A., Mazloum-Ardakani, M., Sotudehnia Korani, L. and Askarpour Kabir, A. (2011). Determination of silver(I) by flame atomic absorption spectrometry after separation/preconcentration using modified magnetite nanoparticles. Sci. Iran. 18:790–796. doi:https://doi.org/10.1016/j.scient.2011.06.008.
  • Karlsson, H. L. (2010). The comet assay in nanotoxicology research. Anal. Bioanal. Chem. 398(2):651–66. doi:10.1007/s00216-010-3977-0.
  • Karlsson, H. L., Gustafsson, J., Cronholm, P. and Möller, L. (2009). Size-dependent toxicity of metal oxide particles-a comparison between nano- and micrometer size. Toxicol. Lett. 188:112–118. doi:10.1016/j.toxlet.2009.03.014.
  • Kennedy, I. M., Wilson, D. and Barakat, A. I. (2009). Uptake and inflammatory effects of nanoparticles in a human vascular endothelial cell line. Res. Rep. Health. Eff. Inst. 3–32.
  • Kettiger, H., Schipanski, A., Wick, P. and Huwyler, J. (2013). Engineered nanomaterial uptake and tissue distribution: From cell to organism. Int. J. Nanomedicine. 8:3255–6. doi:10.2147/IJN.S49770.
  • Khan, M. I., Mohammad, A., Patil, G., Naqvi, S. A. H., Chauhan, L. K. S. and Ahmad, I. (2012). Induction of ROS, mitochondrial damage and autophagy in lung epithelial cancer cells by iron oxide nanoparticles. Biomaterials 33, 1477–1488. doi:10.1016/j.biomaterials.2011.10.080.
  • Khanna, P., Ong, C., Bay, B. H. and Baeg, G. H. (2015). Nanotoxicity: An interplay of oxidative stress, inflammation and cell death. Nanomaterials 5:163–1180. doi:10.3390/nano5031163.
  • Kim Ahn, E. K., Jee, B. K., Yoon, H. K., Lee, K. H. and Lim, Y. (2009). Nanoparticulate-induced toxicity and related mechanism in vitro and in vivo. J. Nanoparticle Res. 11:55–65.
  • Kim, H. R., Kim, M. J., Lee, S. Y., Oh, S. M. and Chung, K. H. (2011). Genotoxic effects of silver nanoparticles stimulated by oxidative stress in human normal bronchial epithelial (BEAS-2B) cells. Mutat. Res. 726:129–35. doi:10.1016/j.mrgentox.2011.08.008.
  • Kim, J. S., Song, K. S., Sung, J. H., Ryu, H. R., Choi, B. G., Cho, H. S., Lee, J. K. and Yu, I. J. (2012). Genotoxicity, acute oral and dermal toxicity, eye and dermal irritation and corrosion and skin sensitisation evaluation of silver nanoparticles. Nanotoxicology 7(5):953–60. doi:10.3109/17435390.2012.676099.
  • Kim, S., Choi, J. E., Choi, J., Chung, K.-H., Park, K., Yi, J. and Ryu, D.-Y. (2009). Oxidative stress-dependent toxicity of silver nanoparticles in human hepatoma cells. Toxicol. In Vitro 23:1076–1084. doi:10.1016/j.tiv.2009.06.001.
  • Kingsley, J. D., Ranjan, S., Dasgupta, N. and Saha, P. (2013). Nanotechnology for tissue engineering: Need, techniques and applications. J. Pharm. Res. 7:200–204. doi:10.1016/j.jopr.2013.02.021.
  • Kisin, E. R., Murray, A. R., Keane, M. J., Shi, X.-C., Schwegler-Berry, D., Gorelik, O., Arepalli, S., Castranova, V., Wallace, W. E., Kagan, V. E. and Shvedova, A. A. (2007). Single-walled carbon nanotubes: Geno- and cytotoxic effects in lung fibroblast V79 cells. J. Toxicol. Environ. Health. A 70:2071–2079. doi:10.1080/15287390701601251.
  • Kreyling, W. G., Semmler, M., Erbe, F., Mayer, P., Takenaka, S., Schulz, H., Oberdörster, G. and Ziesenis, A. (2002). Translocation of ultrafine insoluble iridium particles from lung epithelium to extrapulmonary organs is size dependent but very low. J. Toxicol. Environ. Health. A 65:1513–30. doi:10.1080/00984100290071649.
  • Kumar, A., Pandey, A. K., Singh, S. S., Shanker, R. and Dhawan, A. (2011a). Engineered ZnO and TiO2 nanoparticles induce oxidative stress and DNA damage leading to reduced viability of escherichia coli. Free Radic. Biol. Med. 51:1872–1881. doi:10.1016/j.freeradbiomed.2011.08.025.
  • Kumar, A., Pandey, A. K., Singh, S. S., Shanker, R. and Dhawan, A. (2011b). Cellular uptake and mutagenic potential of metal oxide nanoparticles in bacterial cells. Chemosphere 83:1124–1132. doi:10.1016/j.chemosphere.2011.01.025.
  • Künzli, N. and Tager, I. B. (2005). Air pollution: From lung to heart. Swiss Med. Wkly. doi: 2005/47/smw-11025
  • Kunzmann, A., Andersson, B., Thurnherr, T., Krug, H., Scheynius, A. and Fadeel, B. (2011). Toxicology of engineered nanomaterials: Focus on biocompatibility, biodistribution and biodegradation. Biochim. Biophys. Acta - Gen. Subj. doi:10.1016/j.bbagen.2010.04.007.
  • Lam, C.-W., James, J. T., McCluskey, R. and Hunter, R. L. (2004). Pulmonary toxicity of single-wall carbon nanotubes in mice 7 and 90 days after intratracheal instillation. Toxicol. Sci. 77:126–134. doi:10.1093/toxsci/kfg243.
  • lbanese, A. and Chan, W. C. W. (2011). Effect of gold nanoparticle aggregation on cell uptake and toxicity. In: ACS Nano. 5(7), pp. 5478–5489. doi:10.1021/nn2007496.
  • Lee, J. C., Son, Y. O., Pratheeshkumar, P. and Shi, X. (2012). Oxidative stress and metal carcinogenesis. Free Radic. Biol. Med. 53(4):742–57. doi:10.1016/j.freeradbiomed.2012.06.002.
  • Lee, J., Kim, J., Park, E., Jo, S. and Song, R. (2008). PEG-ylated cationic CdSe/ZnS QDs as an efficient intracellular labeling agent. Phys. Chem. Chem. Phys. 10:1739–1742. doi:10.1039/b801317a.
  • Lefebvre, D. E., Venema, K., Gombau, L., Valerio, L. G. Jr, Raju, J., Bondy, G. S., Bouwmeester, H., Singh, R. P., Clippinger, A. J. and Collnot, E.-M. others (2015). Utility of models of the gastrointestinal tract for assessment of the digestion and absorption of engineered nanomaterials released from food matrices. Nanotoxicology 9:523–542.
  • Legramante, J. M., Valentini, F., Magrini, A., Palleschi, G., Sacco, S., Iavicoli, I., Pallante, M., Moscone, D., Galante, A., Bergamaschi, E., Bergamaschi, A. and Pietroiusti, A. (2009). Cardiac autonomic regulation after lung exposure to carbon nanotubes. Hum. Exp. Toxicol. 28:369–375. doi:10.1177/0960327109105150.
  • Leroueil, P.R., Berry, S. A., Duthie, K., Han, G., Rotello, V. M., McNerny, D. Q., Baker, J. R., Orr, B. G. and Holl, M. M. B. (2008). Wide varieties of cationic nanoparticles induce defects in supported lipid bilayers. Nano Lett. 8:420–424. doi:10.1021/nl0722929.
  • Lewis, D. J., Bruce, C., Bohic, S., Cloetens, P., Hammond, S. P., Arbon, D., Blair-Reid, S., Pikramenou, Z. and Kysela, B. (2010). Intracellular synchrotron nanoimaging and DNA damage/genotoxicity screening of novel lanthanide-coated nanovectors. Nanomedicine 5:1547–1557. doi:10.2217/nnm.10.96.
  • Li, H. L. (2008). Pharmacokinetics and biodistribution of nanoparticles. In: Molecular Pharmaceutics. 5(4), pp. 496–50. doi:10.1021/mp800049w.
  • Li, J. J., Muralikrishnan, S., Ng, C.-T., Yung, L.-Y. L. and Bay, B.-H. (2010). Nanoparticle-induced pulmonary toxicity. Exp. Biol. Med. (Maywood) 235:1025–1033. doi:10.1258/ebm.2010.010021.
  • Li, Y., Chen, D. H., Yan, J., Chen, Y., Mittelstaedt, R. sA., Zhang, Y., Biris, A. S., Heflich, R. H. and Chen, T. (2012). Genotoxicity of silver nanoparticles evaluated using the Ames test and in vitro micronucleus assay. Mutat. Res. Toxicol. Environ. Mutagen. 745:4–10. doi: https://doi.org/10.1016/j.mrgentox.2011.11.010.
  • Li, Z., Hulderman, T., Salmen, R., Chapman, R., Leonard, S. S., Young, S. H., Shvedova, A., Luster, M. I. and Simeonova, P. P. (2007). Cardiovascular effects of pulmonary exposure to single-wall carbon nanotubes. Environ. Health Perspect. 115:377–382. doi:10.1289/ehp.9688.
  • Lidén, G. (2011). The European commission tries to define nanomaterials. Ann. Occup. Hyg. 55:1–5.
  • Love, S. A., Maurer-Jones, M. A., Thompson, J. W., Lin, Y.-S. and Haynes, C. L. (2012). Assessing nanoparticle toxicity. Annu. Rev. Anal. Chem. 5:181–205. doi:10.1146/annurev-anchem-062011-143134.
  • Luo, C., Urgard, E., Vooder, T. and Metspalu, A. (2011). The role of COX-2 and Nrf2/ARE in anti-inflammation and antioxidative stress: Aging and anti-aging. Med. Hypotheses 77:174–178. doi:https://doi.org/10.1016/j.mehy.2011.04.002.
  • Maclurcan, D. and Radywyl, N. (2011). Nanotechnology and Global Sustainability. CRC United States of America.
  • Macnaghten, P., Kearnes, M. B. and Wynne, B. (2005). Nanotechnology, governance, and public deliberation: What role for the social sciences?. Sci. Commun. 27:268–291.
  • Maddinedi, S. B., Mandal, B. K., Ranjan, S. and Dasgupta, N. (2015). Diastase assisted green synthesis of size-controllable gold nanoparticles. RSC Adv. 5:26727–26733. doi:10.1039/C5RA03117F.
  • Maenosono, S., Yoshida, R. and Saita, S. (2009). Evaluation of genotoxicity of amine-terminated water-dispersible FePt nanoparticles in the Ames test and in vitro chromosomal aberration test. J. Toxicol. Sci. 34(3):349–5. doi:10.2131/jts.34.349.
  • Magdolenova, Z., Collins, A., Kumar, A., Dhawan, A., Stone, V. and Dusinska, M. (2014). Mechanisms of genotoxicity: A review of in vitro and in vivo studies with engineered nanoparticles. Nanotoxicology 8:233–78. doi:10.3109/17435390.2013.773464.
  • Magnuson, B. A., Jonaitis, T. S. and Card, J. W. (2011). A brief review of the occurrence, use, and safety of food-related nanomaterials. J. Food Sci. 76(6):R126–33. doi:10.1111/j.1750-3841.2011.02170.x.
  • Ma-Hock, L., Treumann, S., Strauss, V., Brill, S., Luizi, F., Mertler, M., Wiench, K., Gamer, A. O., van Ravenzwaay, B. and Landsiedel, R. (2009). Inhalation toxicity of multiwall carbon nanotubes in rats exposed for 3 months. Toxicol. Sci. 112:468–481. doi:10.1093/toxsci/kfp146.
  • Mailänder, V. and Landfester, K. (2009). Interaction of nanoparticles with cells. Biomacromolecules 10:2379–2400. doi:10.1021/bm900266r
  • Manke, A., Wang, L. and Rojanasakul, Y. (2013). Mechanisms of nanoparticle-induced oxidative stress and toxicity. Biomed. Res. Int. 2013, 1–15. doi:10.1155/2013/942916.
  • Marrani, D. (2013). Nanotechnologies and novel foods in European law. Nanoethics 7:177–188. doi:10.1007/s11569-013-0176-4.
  • Martin, A. L., Bernas, L. M., Rutt, B. K., Foster, P. J. and Gillies, E. R. (2008). Enhanced cell uptake of superparamagnetic iron oxide nanoparticles functionalized with dendritic guanidines. Bioconjug. Chem. 19:2375–2384. doi:10.1021/bc800209u.
  • Maruszewski, K. (2014). Regulatory Aspects of Nanomaterials [WWW Document]. Available from http://www.science24.com/paper/30253. Accessed December 27, 2015.
  • Maynard, A. D., Warheit, D. B. and Philbert, M. A. (2011). The new toxicology of sophisticated materials: Nanotoxicology and beyond. Toxicol. Sci. 120(suppl_1): S109–S129. doi:10.1093/toxsci/kfq372.
  • McClements, D. J. (2015). Encapsulation, protection, and release of hydrophilic active components: Potential and limitations of colloidal delivery systems. Adv. Colloid Interface Sci. 219:27–53. doi:https://doi.org/10.1016/j.cis.2015.02.002.
  • McClements, D. J., Decker, E. A., Park, Y. and Weiss, J. (2009). Structural design principles for delivery of bioactive components in nutraceuticals and functional foods. Crit. Rev. Food Sci. Nutr. 49:577–606. doi:10.1080/10408390902841529.
  • Mihranyan, A., Ferraz, N. and Stromme, M. (2012). Current status and future prospects of nanotechnology in cosmetics. Prog. Mater. Sci. 57(5), June 2012, :875–910 doi:10.1016/j.pmatsci.2011.10.001.
  • Mitchell, L. A., Gao, J., Wal, R. V., Gigliotti, A., Burchiel, S. W. and McDonald, J. D. (2007). Pulmonary and systemic immune response to inhaled multiwalled carbon nanotubes. Toxicol. Sci. 100:203–214. doi:10.1093/toxsci/kfm196.
  • Monica, J. C. and Calster, G. V. (2010). A nanotechnology legal framework. In: Nanotechnology Environmental Health and Safety. Eds., Matthew Hull and Diana Bowman publisher: Elsevier, USA. pp. 97–140. doi:10.1016/B978-0-8155-1586-9.10004-0.
  • Montes-Burgos, I., Walczyk, D., Hole, P., Smith, J., Lynch, I. and Dawson, K. (2010). Characterisation of nanoparticle size and state prior to nanotoxicological studies. J. Nanoparticle Res. 12:47–53. doi:10.1007/s11051-009-9774-z
  • Morris, V. J. (2011). Emerging roles of engineered nanomaterials in the food industry. Trends Biotechnol. 29(10):509–1. doi:10.1016/j.tibtech.2011.04.010.
  • Mortelmans, K. and Zeiger, E. (2000). The Ames Salmonella/microsome mutagenicity assay. Mutat. Res. Mol. Mech. Mutagen. 455:29–60. doi:https://doi.org/10.1016/S0027-5107(00)00064-6.
  • Muller, J., Huaux, F., Moreau, N., Misson, P., Heilier, J. F., Delos, M., Arras, M., Fonseca, A., Nagy, J. B. and Lison, D. (2005). Respiratory toxicity of multi-wall carbon nanotubes. Toxicol. Appl. Pharmacol. 207:221–231. doi:10.1016/j.taap.2005.01.008.
  • Murdock, R. C., Braydich-Stolle, L., Schrand, A. M., Schlager, J. J. and Hussain, S. M. (2008). Characterization of nanomaterial dispersion in solution prior to in vitro exposure using dynamic light scattering technique. Toxicol. Sci. 101:239–253. doi:10.1093/toxsci/kfm240.
  • Nandita, D., Ranjan, S., Mundra, S., Ramalingam, C. and Kumar, A. (2015). Fabrication of food grade vitamin E nanoemulsion by low energy approach, characterization and its application. Int. J. Food Prop. 19:700–708. doi:10.1080/10942912.2015.1042587.
  • Nel, A. E., Mädler, L., Velegol, D., Xia, T., Hoek, E. M. V., Somasundaran, P., Klaessig, F., Castranova, V. and Thompson, M. (2009). Understanding biophysicochemical interactions at the nano-bio interface. Nat. Mater. 8:543–557. doi:10.1038/nmat2442.
  • Nemmar, A., Vanbilloen, H., Hoylaerts, M. F., Hoet, P. H., Verbruggen, A. and Nemery, B. (2001). Passage of intratracheally instilled ultrafine particles from the lung into the systemic circulation in hamster. Am. J. Respir. Crit. Care Med. 164:1665–8. doi:10.1164/ajrccm.164.9.2101036.
  • Oberdörster, G., Oberdörster, E. and Oberdörster, J. (2005). Nanotoxicology: An emerging discipline evolving from studies of ultrafine particles. Environ. Health Perspect. 113(7):823–39. doi:10.1289/.ehp.7339.
  • Oberdörster, G., Sharp, Z., Atudorei, V., Elder, A., Gelein, R., Kreyling, W. and Cox, C. (2004). Translocation of inhaled ultrafine particles to the brain. Inhal. Toxicol. 16:437–445. doi:10.1080/08958370490439597.
  • Ostrowski, A., Nordmeyer, D., Boreham, A., Holzhausen, C., Mundhenk, L., Graf, C., Meinke, M. C., Vogt, A., Hadam, S., Lademann, J., Rühl, E., Alexiev, U. and Gruber, A. D. (2015). Overview about the localization of nanoparticles in tissue and cellular context by different imaging techniques. Beilstein J. Nanotechnol. 6:263–280.
  • Pauluhn, J. (2010). Multi-walled carbon nanotubes (Baytubes®): Approach for derivation of occupational exposure limit. Regul. Toxicol. Pharmacol. 57:78–89. doi:10.1016/j.yrtph.2009.12.012.
  • Piao, M. J., Kang, K. A., Lee, I. K., Kim, H. S., Kim, S., Choi, J. Y., Choi, J. and Hyun, J. W. (2011). Silver nanoparticles induce oxidative cell damage in human liver cells through inhibition of reduced glutathione and induction of mitochondria-involved apoptosis. Toxicol. Lett. 201:92–100. doi:10.1016/j.toxlet.2010.12.010.
  • Pietroiusti, A., Campagnolo, L. and Fadeel, B. (2013). Interactions of engineered nanoparticles with organs protected by internal biological barriers. Small 9(9-10):1557–7. doi:10.1002/smll.201201463.
  • Pope, C. A., Burnett, R. T., Thurston, G. D., Thun, M. J., Calle, E. E., Krewski, D. and Godleski, J. J. (2004). Cardiovascular mortality and long-term exposure to particulate air pollution: Epidemiological evidence of general pathophysiological pathways of disease. Circulation 109:71–77. doi:10.1161/01.CIR.0000108927.80044.7F.
  • Powers, K. W., Palazuelos, M., Moudgil, B. M. and Roberts, S. M. (2007). Characterization of the size, shape, and state of dispersion of nanoparticles for toxicological studies. Nanotoxicology 1:42–51. doi:10.1080/17435390701314902
  • Pulido, M. D. and Parrish, A. R. (2003). Metal-induced apoptosis: Mechanisms. Mutat. Res. - Fundam. Mol. Mech. Mutagen. 533(1-2):227–41. doi:10.1016/j.mrfmmm.2003.07.015.
  • Quarta, A., Curcio, A., Kakwere, H. and Pellegrino, T. (2012). Polymer coated inorganic nanoparticles: Tailoring the nanocrystal surface for designing nanoprobes with biological implications. Nanoscale 4:3319–3334. doi:10.1039/C2NR30271C.
  • Ramachandran, G. (2011). Assessing nanoparticle risks to human health. William Andrew.
  • Ranjan, S., Dasgupta, N., Chakraborty, A. R., Melvin Samuel, S., Ramalingam, C., Shanker, R. and Kumar, A. (2014). Nanoscience and nanotechnologies in food industries: Opportunities and research trends. J. Nanoparticle Res. 16:1–23. doi:10.1007/s11051-014-2464-5.
  • Ranjan, S., Dasgupta, N., Chinnappan, S., Chidambaram, R. and Kumar, A. (2015). A novel approach to evaluate titanium dioxide nanoparticle-protein interaction through docking: An insight into mechanism of action. Proc. Natl. Acad. Sci. India - Sect. B Biol. Sci. doi:10.1007/s40011-015-0673-z.
  • Ranjan, S., Dasgupta, N., Ganesh, S. A., Ramalingam, C. and Kumar, A. (2016). Microwave-irradiation-assisted hybrid chemical approach for titanium dioxide nanoparticle synthesis: Microbial and cyto-toxicological evaluation. Environ. Sci. Pollut. Res. 23(12):12287–302.
  • Ravichandran, R. (2010). Nanotechnology applications in food and food processing: Innovative green approaches, opportunities and uncertainties for global market. Int. J. Green Nanotechnol. Phys. Chem. 1:P72–P96. doi:10.1080/19430871003684440.
  • Rico, C. M., Majumdar, S., Duarte-Gardea, M., Peralta-Videa, J. R. and Gardea-Torresdey, J. L. (2011). Interaction of nanoparticles with edible plants and their possible implications in the food chain. J. Agric. Food Chem. 59(8):3485–98. doi:10.1021/jf104517j.
  • Riding, M. J., Trevisan, J., Hirschmugl, C. J., Jones, K. C., Semple, K. T. and Martin, F. L. (2012). Mechanistic insights into nanotoxicity determined by synchrotron radiation-based Fourier-transform infrared imaging and multivariate analysis. Environ. Int. 50:56–65. doi:10.1016/j.envint.2012.09.009.
  • Rothen-Rutishauser, B. M., Schürch, S., Haenni, B., Kapp, N. and Gehr, P. (2006). Interaction of fine particles and nanoparticles with red blood cells visualized with advanced microscopic techniques. Environ. Sci. Technol. 40:4353–4359. doi:10.1021/es0522635.
  • Savolainen, K., Alenius, H., Norppa, H., Pylkkänen, L., Tuomi, T. and Kasper, G. (2010). Risk assessment of engineered nanomaterials and nanotechnologies-a review. Toxicology. 269, (2–3), 10 March 2010, :92–104. doi:10.1016/j.tox.2010.01.013.
  • Savolainen, K., Backman, U., Brouwer, D., Fadeel, B., Fernandes, T., Kuhlbusch, T., Landsiedel, R., Lynch, I. and Pylkkänen, L. (2013). Nanosafety in Europe 2015-2025: Towards safe and sustainable nanomaterials and nanotechnology innovations. Helsinki, Finnish Inst. Occup. Heal.http://www.eu-vri.eu/filehandler.ashx?file=12392.
  • Sayes, C. M., Reed, K. L. and Warheit, D. B. (2007). Assessing toxicology of fine and nanoparticles: Comparing in vitro measurements to in vivo pulmonary toxicity profiles. Toxicol. Sci. 97:163–180. doi:10.1093/toxsci/kfm018.
  • Sayes, C. M. and Warheit, D. B. (2009). Characterization of nanomaterials for toxicity assessment. Wiley Interdiscip. Rev. Nanomedicine Nanobiotechnology. 1(6):660–70. doi:10.1002/wnan.58.
  • Scalf, J. and West, P. (2006). Part I: Introduction to nanoparticle characterization with AFM. Pacific Nanotechnol. http://iopscience.iop.org/article/10.1088/1742-6596/61/1/192/pdf.
  • Schlyter, C. (2012). Second regulatory review of nanomaterials. To Mr. J. Poto{č}nik, Eur. Comm. Environ. 64(1):36–52.
  • Schwartz, J. (1994). Air pollution and daily mortality: A review and meta analysis. Environ. Res. 64:36–52. doi:10.1006/enrs.1994.1005.
  • Selin, C. (2007). Expectations and the emergence of nanotechnology. Sci. Technol. Human Values 32(2) March 2007, :196–220. doi:10.1177/0162243906296918.
  • Sharma, V., Anderson, D. and Dhawan, A. (2012a). Zinc oxide nanoparticles induce oxidative DNA damage and ROS-triggered mitochondria mediated apoptosis in human liver cells (HepG2). Apoptosis 17:852–70. doi:10.1007/s10495-012-0705-6.
  • Sharma, V., Kumar, A. and Dhawan, A. (2012b). Nanomaterials: Exposure, effects and toxicity assessment. Proc. Natl. Acad. Sci. India Sect. B Biol. Sci. 82:3–11. doi:10.1007/s40011-012-0072-7.
  • Shi, X., Thomas, T. P., Myc, L. A., Kotlyar, A. and Baker, J. R. (2007). Synthesis, characterization, and intracellular uptake of carboxyl-terminated poly(amidoamine) dendrimer-stabilized iron oxide nanoparticles. Phys. Chem. Chem. Phys. 9:5712–5720. doi:10.1039/b709147h.
  • Shinohara, N., Matsumoto, K., Endoh, S., Maru, J. and Nakanishi, J. (2009). In vitro and in vivo genotoxicity tests on fullerene {C60} nanoparticles. Toxicol. Lett. 191:289–296. doi:https://doi.org/10.1016/j.toxlet.2009.09.012.
  • Shivendu, R. and Nandita, D. (2013). Proposal Grant “NanoToF: Toxicological evaluation for Nanoparticles used in Food.” PI: Dr. C. Ramalingam, Co-PI: Dr. Ashutosh K and Dr. Ramanathan K [WWW Document]. Available from dbtepromis.nic.in. Accessed March 24, 2015).
  • Shukla, R. K., Kumar, A., Gurbani, D., Pandey, A. K., Singh, S. and Dhawan, A. (2013a). TiO2 nanoparticles induce oxidative DNA damage and apoptosis in human liver cells. Nanotoxicology 7:48–60. doi:10.3109/17435390.2011.629747.
  • Shukla, R. K., Kumar, A., Vallabani, N. V. S., Pandey, A. K. and Dhawan, A. (2013b). Titanium dioxide nanoparticle-induced oxidative stress triggers DNA damage and hepatic injury in mice. Nanomedicine (Lond). 9(9):1423–34. doi:10.2217/nnm.13.100.
  • Shukla, R. K., Sharma, V., Pandey, A. K., Singh, S., Sultana, S. and Dhawan, A. (2011). ROS-mediated genotoxicity induced by titanium dioxide nanoparticles in human epidermal cells. Toxicol. In Vitro 25:231–241. doi:10.1016/j.tiv.2010.11.008.
  • Shvedova, A. A., Castranova, V., Kisin, E. R., Schwegler-Berry, D., Murray, A. R., Gandelsman, V. Z., Maynard, A. and Baron, P. (2003). Exposure to carbon nanotube material: Assessment of nanotube cytotoxicity using human keratinocyte cells. J. Toxicol. Environ. Health. A 66:1909–26. doi:10.1080/713853956.
  • Shvedova, A. A., Kisin, E. R., Mercer, R., Murray, A. R., Johnson, V. J., Potapovich, A. I., Tyurina, Y. Y., Gorelik, O., Arepalli, S., Schwegler-Berry, D., Hubbs, A. F., Antonini, J., Evans, D. E., Ku, B.-K., Ramsey, D., Maynard, A., Kagan, V. E., Castranova, V. and Baron, P. (2005). Unusual inflammatory and fibrogenic pulmonary responses to single-walled carbon nanotubes in mice. Am. J. Physiol. Lung Cell. Mol. Physiol. 289:L698–L708. doi:10.1152/ajplung.00084.2005.
  • Shvedova, A. A., Kisin, E. R., Porter, D., Schulte, P., Kagan, V. E., Fadeel, B. and Castranova, V. (2009). Mechanisms of pulmonary toxicity and medical applications of carbon nanotubes: Two faces of Janus?. Pharmacol. Ther. 121(2):192–204. doi:10.1016/j.pharmthera.2008.10.009.
  • Sinha, R., Karan, R., Sinha, A. and Khare, S. K. (2011). Interaction and nanotoxic effect of ZnO and Ag nanoparticles on mesophilic and halophilic bacterial cells. Bioresour. Technol. 102:1516–1520.
  • Sotto, D. A., Chiaretti, M., Carru, G. A., Bellucci, S. and Mazzanti, G. (2009). Multi-walled carbon nanotubes: Lack of mutagenic activity in the bacterial reverse mutation assay. Toxicol. Lett. 184:192–197. doi:10.1016/j.toxlet.2008.11.007.
  • Stapleton, P. A., Nichols, C. E., Yi, J., McBride, C. R., Minarchick, V. C., Shepherd, D. L., Hollander, J. M. and Nurkiewicz, T. R. (2014). Microvascular and mitochondrial dysfunction in the female F1 generation after gestational TiO2 nanoparticle exposure. Nanotoxicology 1–11 9(8):941–51.
  • Stark, W. J. (2011). Nanoparticles in biological systems. Angew. Chemie - Int. Ed. 50(6):1242–58. doi:10.1002/anie.200906684.
  • Stone, V., Johnston, H. and Schins, R. P. F. (2009). Development of in vitro systems for nanotoxicology: Methodological considerations. Crit. Rev. Toxicol. 39:613–626. doi:10.1080/10408440903120975.
  • Tervonen, T., Linkov, I., Figueira, J. R., Steevens, J., Chappell, M. and Merad, M. (2009). Risk-based classification system of nanomaterials. J. Nanoparticle Res. 11:757–766. doi:10.1007/s11051-008-9546-1.
  • Thorley, A. J. and Tetley, T. D. (2013). New perspectives in nanomedicine. Pharmacol. Ther. 140:176–185.
  • Tin-Tin-Win-Shwe, Y., Ahmed, S., Kakeyama, M., Kobayashi, T. and Fujimaki, H. (2006). Brain cytokine and chemokine mRNA expression in mice induced by intranasal instillation with ultrafine carbon black. Toxicol. Lett. 163:153–60. doi:10.1016/j.toxlet.2005.10.006.
  • Trout, D. B. and Schulte, P. A. (2010). Medical surveillance, exposure registries, and epidemiologic research for workers exposed to nanomaterials. Toxicology 269:128–135. doi:10.1016/j.tox.2009.12.006.
  • Valerio, L. G., Balakrishnan, S., Fiszman, M. L., Kozeli, D., Li, M., Moghaddam, S. and Sadrieh, N. (2013). Development of cardiac safety translational tools for QT prolongation and torsade de pointes. Exp. Opin. Drug Metab. Toxicol. 9(7):801–15. doi:10.1517/17425255.2013.783819.
  • Valko, M., Morris, H. and Cronin, M. T. D. (2005). Metals, toxicity and oxidative stress. Curr. Med. Chem. 12:1161–1208. doi:10.2174/0929867053764635.
  • Verma, A. and Stellacci, F. (2010). Effect of surface properties on nanoparticle-cell interactions. Small 6:12–21. doi:10.1002/smll.200901158.
  • Walker, V. G., Li, Z., Hulderman, T., Schwegler-Berry, D., Kashon, M. L. and Simeonova, P. P. (2009). Potential in vitro effects of carbon nanotubes on human aortic endothelial cells. Toxicol. Appl. Pharmacol. 236:319–328. doi:10.1016/j.taap.2009.02.018.
  • Wang, D., Sun, L., Liu, W., Chang, W., Gao, X. and Wang, Z. (2009). Photoinduced DNA cleavage by alpha-, beta-, and gamma-cyclodextrin-bicapped C60 supramolecular complexes. Environ. Sci. Technol. 43:5825–5829.
  • Wang, J., Chen, C., Liu, Y., Jiao, F., Li, W., Lao, F., Li, Y., Li, B., Ge, C., Zhou, G., Gao, Y., Zhao, Y. and Chai, Z. (2008a). Potential neurological lesion after nasal instillation of TiO2 nanoparticles in the anatase and rutile crystal phases. Toxicol. Lett. 183:72–80. doi:10.1016/j.toxlet.2008.10.001.
  • Wang, J., Deng, X., Zhang, F., Chen, D. and Ding, W. (2014). ZnO nanoparticle-induced oxidative stress triggers apoptosis by activating JNK signaling pathway in cultured primary astrocytes. Nanoscale Res. Lett. 9:117. doi:10.1186/1556-276X-9-117.
  • Wang, J., Liu, Y., Jiao, F., Lao, F., Li, W., Gu, Y., Li, Y., Ge, C., Zhou, G. and Li, B. others (2008b). Time-dependent translocation and potential impairment on central nervous system by intranasally instilled TiO2 nanoparticles. Toxicology 254:82–90.
  • Wang, L., Luanpitpong, S., Castranova, V., Tse, W., Lu, Y., Pongrakhananon, V. and Rojanasakul, Y. (2011). Carbon nanotubes induce malignant transformation and tumorigenesis of human lung epithelial cells. Nano Lett. 11:2796–2803. doi:10.1021/nl2011214.
  • Warheit, D. B. (2008). How meaningful are the results of nanotoxicity studies in the absence of adequate material characterization? Toxicol. Sci. 101:183–185. doi:10.1093/toxsci/kfm279.
  • Warheit, D. B., Laurence, B. R., Reed, K. L., Roach, D. H., Reynolds, G. A. M. and Webb, T. R. (2004). Comparative pulmonary toxicity assessment of single-wall carbon nanotubes in rats. Toxicol. Sci. 77:117–125. doi:10.1093/toxsci/kfg228.
  • Weibel, A., Bouchet, R., Boulc'h, F. and Knauth, P. (2005). The big problem of small particles: A comparison of methods for determination of particle size in nanocrystalline anatase powders. Chem. Mater. 17:2378–2385. doi:10.1021/cm0403762.
  • Wilhelmi, V., Fischer, U., Weighardt, H., Schulze-Osthoff, K., Nickel, C., Stahlmecke, B., Kuhlbusch, T. A. J., Scherbart, A. M., Esser, C., Schins, R. P. F. and Albrecht, C. (2013). Zinc oxide nanoparticles induce necrosis and apoptosis in macrophages in a p47phox- and nrf2-independent manner. PLoS One 8:1–15. doi:10.1371/journal.pone.0065704.
  • Wise, K. and Brasuel, M. (2011). The current state of engineered nanomaterials in consumer goods and waste streams: The need to develop nanoproperty-quantifiable sensors for monitoring engineered nanomaterials. Nanotechnol. Sci. Appl. 4:73–86. doi:10.2147/NSA.S9039.
  • Wu, Y. L., Putcha, N., Ng, K. W., Leong, D. T., Lim, C. T., Loo, S. C. J. and Chen, X. (2013). Biophysical responses upon the interaction of nanomaterials with cellular interfaces. Acc. Chem. Res. 46:782–791. doi:10.1021/ar300046u.
  • Xie, G., Sun, J., Zhon, G., Shi, L., Zhan, D. (2010). Biodistribution and toxicity of intravenously administered silica nanoparticles in mice. Arch. Toxicol. 84:183–190. doi:10.1007/s00204-009-0488-x.
  • XpertArena (2015). Safety concerns of nanomaterials: an expert's critics [WWW Document]. Available from www.xpertarena.com. Accessed July 30, 2015.
  • Yada, R. Y., Buck, N., Canady, R., DeMerlis, C., Duncan, T., Janer, G., Juneja, L., Lin, M., McClements, D. J., Noonan, G., Oxley, J., Sabliov, C., Tsytsikova, L., Vázquez-Campos, S., Yourick, J., Zhong, Q. and Thurmond, S. (2014). Engineered nanoscale food ingredients: Evaluation of current knowledge on material characteristics relevant to uptake from the gastrointestinal tract. Compr. Rev. Food Sci. Food Saf. 13:730–744. doi:10.1111/1541-4337.12076.
  • Yamakoshi, Y., Aroua, S., Nguyen, T.-M. D., Iwamoto, Y. and Ohnishi, T. (2014). Water-soluble fullerene materials for bioapplications: Photoinduced reactive oxygen species generation. Faraday Discuss. 173:287–296. doi:10.1039/C4FD00076E.
  • Yan, L. and Chen, X. (2013). Nanomaterials for drug delivery. In: Nanocrystalline Materials: Their Synthesis-Structure-Property Relationships and Applications. Sie-Chin Tjong. Publishers: Elsevier, USA. pp. 221–268. doi:10.1016/B978-0-12-407796-6.00007-5.
  • Yu, H. and Huang, Q. (2013). Bioavailability and delivery of nutraceuticals and functional foods using nanotechnology. In: Bio-Nanotechnology. pp. 593–604. Blackwell Publishing Ltd. http://onlinelibrary.wiley.com/ doi:10.1002/9781118451915.ch35/summary.
  • Zhang, B., Xing, Y., Li, Z., Zhou, H., Mu, Q. and Yan, B. (2009). Functionalized carbon nanotubes specifically bind to alpha-chymotrypsin's catalytic site and regulate its enzymatic function. Nano Lett. 9:2280–4. doi:10.1021/nl900437n.
  • Zhao, X. and Liu, R. (2012). Recent progress and perspectives on the toxicity of carbon nanotubes at organism, organ, cell, and biomacromolecule levels. Environ. Int. 40:244–255. doi:10.1016/j.envint.2011.12.003.
  • Zhu, M.-T., Wang, B., Wang, Y., Yuan, L., Wang, H.-J., Wang, M., Ouyang, H., Chai, Z.-F., Feng, W.-Y. and Zhao, Y.-L. (2011). Endothelial dysfunction and inflammation induced by iron oxide nanoparticle exposure: Risk factors for early atherosclerosis. Toxicol. Lett. 203:162–171. doi:10.1016/j.toxlet.2011.03.021.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.