1,049
Views
20
CrossRef citations to date
0
Altmetric
Original Articles

Metal(loid) contamination in seafood products

, , & ORCID Icon

References

  • AECOSAN (Agencia Española de Consumo, Seguridad Alimentaria y Nutrición) (2011a). Recomendaciones de consumo de pescado para poblaciones sensibles debido a la presencia de mercurio. Available at: http://www.aecosan.msssi.gob.es/AECOSAN/docs/documentos/para_consumidor/Recomendaciones_mercurio.pdf.
  • AECOSAN (Agencia Española de Consumo, Seguridad Alimentaria y Nutrición) (2011b). Report of the Scientific Committee of the Spanish Agency for Food Safety and Nutrition in relation to the assessment of the risk of exposure for the Spanish population to cadmium resulting from the consumption of food. Revista del Comité Científico de la AESAN, 15, 57–102.
  • Afonso, C., Costa, S., Cardoso, C., Bandarra, N. M., Batista, I., Coelho, I., Castanheira, I., and Nunes, M. L. (2015). Evaluation of the risk/benefit associated to the consumption of raw and cooked farmed meagre based on the bioaccessibility of selenium, eicosapentaenoic acid and docosahexaenoic acid, total mercury, and methylmercury determined by an in vitro digestion model. Food Chem. 170, 249–256.
  • Almela, C., Algora, S., Benito, V., Clemente, M. J., Devesa, V., Súñer, M. A., Vélez, D., and Montoro, R. Heavy metal, total arsenic, and inorganic arsenic contents of algae food products. J. Agric. Food Chem. 50, 918–923.
  • Almela, C., Clemente, M. J., Vélez, D., and Montoro, R. (2006). Total arsenic, inorganic arsenic, lead and cadmium contents in edible seaweed sold in Spain. Food Chem. Toxicol. 44, 1901–1908.
  • Amiard, J. C., Amiard-Triquet, C., Charbonnier, L., Mesnil, A., Rainbow, P. S., and Wang, W. X. (2008). Bioaccessibility of essential and non-essential metals in commercial shellfish from Western Europe and Asia. Food Chem. Toxicol. 46, 2010–2022.
  • Andreji, J., Stránai, I., Massányi, P., and Valent, M. (2006). Accumulation of some metals in muscles of five fish species from lower Nitra River. J. Environ. Sci. Health A Tox. Hazard Subst. Environ. Eng, 41, 2607–2622.
  • Arnich, N., Sirot, V., Rivière, G., Jean, J., Noël, L., Guérin, T., and Leblanc, J.-C. (2012). Dietary exposure to trace elements and health risk assessment in the 2nd French Total Diet Study. Food Chem. Toxicol. 50, 2432–2449.
  • Ashraf, W., Seddigi, Z., Abulkibash, A., and Khalid, M. (2006).Levels of selected metals in canned fish consumed in kingdom of Saudi Arabia. Environ. Monit. Assess. 117, 271–279.
  • ATDS (2011). The 23rd Australian Total Diet Study. Food Standards Australia New Zealand. (http://www.foodstandards.gov.au/publications/documents/FSANZ%2023rd%20ATDS_v8_.pdf). Accessed December 2015.
  • Atta, M. B., El-Sabaie, L. A., Noaman, M. A., and Kassab, H. E. (1997). The effect of cooking on the content of heavy metals in fish (Tilapia nilotica). Food Chem. 58, 1–4.
  • Bendell, L. I. (2009). Survey of levels of cadmium in oysters, mussels, clams and scallops from the Pacific Northwest coast of Canada. Food Addit. Contam. Part B Surveill. 2, 131–139.
  • Bendell, L. I. (2010). Cadmium in shellfish: the British Columbia, Canada experience-a mini-review. Toxicol. Lett. 198, 7–12.
  • Besada, V., Andrade, J. M., Schultze, F., and González, J. J. (2009). Heavy metals in edible seaweeds commercialised for human consumption. J. Marine Syst. 75, 305–313.
  • Besada, V., Andrade, J. M., Schultze, F., and González, J. J. (2011). Comparison of the 2000 and 2005 spatial distributions of heavy metals in wild mussels from the North-Atlantic Spanish coast. Ecotoxicol. Environ. Saf. 74, 373–381.
  • Bolam, T., and Bersuder, P. (2013). A survey of cadmium in brown crabmeat and brown crabmeat products (FS102010). Cefas Project report C5700, 55 pp.
  • Borak, J., and Hosgood, H. D. (2007). Seafood arsenic: implications for human risk assessment. Regul. Toxicol. Pharmacol. 47, 204–212.
  • Branco, V., Vale, C., Canário, J., and Santos, M. N. (2007). Mercury and selenium in blue shark (Prionace glauca, L. 1758) and swordfish (Xiphias gladius, L. 1758) from two areas of the Atlantic Ocean. Environ. Pollut. 150, 373–380.
  • Brandon, E. F., Janssen, P. J., and de Wit-Bos, L. (2014). Arsenic: bioaccessibility from seaweed and rice, dietary exposure calculations and risk assessment. Food Addit. Contam. Part A 31, 1993–2003.
  • Brune, D., Nordberg, G. F., Vesterberg, O., Gerhardsson, L., and Wester, P. O. (1991). A review of normal concentrations of mercury in human blood. Sci. Total Environ. 100, 235–282.
  • Burger, J., and Gochfeld, M. (2004). Mercury in canned tuna: white versus light and temporal variation. Environ. Res., 96, 239–249.
  • Calatayud, M., Devesa, V., Virseda, J. R., Barberá, R., Montoro, R., and Vélez, D. (2012). Mercury and selenium in fish and shellfish: occurrence, bioaccessibility and uptake by Caco-2 cells. Food Chem. Toxicol. 50, 2696–2702.
  • Canada. Food and Drug Regulations. Current to November 24, 2015. Published by the Minister of Justice. Available at: http://laws-lois.justice.gc.ca (Accessed November 2015).
  • Cano-Sancho, G., Perelló, G., Maulvault, A. L., Marques, A., Nadal, M., and Domingo, J. L. (2015). Oral bioaccessibility of arsenic, mercury and methylmercury in marine species commercialized in Catalonia (Spain) and health risks for the consumers. Food Chem. Toxicol. 86, 34–40.
  • Canuel, R., de Grosbois, S. B., Lucotte, M., Atikessé, L., Larose, C., and Rheault, I. (2006). New evidence on the effects of tea on mercury metabolism in humans. Arch. Environ. Occup. Health 61, 232–238.
  • Cardoso, C., Farias, I., Costa, V., Nunes, M., and Gordo, L. (2010). Estimation of risk assessment of some heavy metals intake through black scabbardfish (Aphanopus carbo) consumption in Portugal. Risk Anal. 30, 952–961.
  • Cardoso, C., Louren, H., Afonso, C., and Nunes, M. L. (2012). Risk assessment of methyl-mercury intake through cephalopods consumption in Portugal. Food Addit. Contam. Part A 29, 94–103.
  • Chahid, A., Hilali, M., Benlhachimi, A., and Bouzid, T. (2014). Contents of cadmium, mercury and lead in fish from the Atlantic sea (Morocco) determined by atomic absorption spectrometry. Food Chem. 147, 357–360.
  • Chan, H. M., Kim, C., Khoday, K., Receveur, O., and Kuhnlein, H. V. (1995). Assessment of dietary exposure to trace metals in Baffin Inuit food. Environ. Health Perspect. 103, 740–746.
  • Chen, Y., Huang, L., Wu, W., Ruan, Y., Wu, Z., Xue, Z., and Fu, F. (2014). Speciation analysis of lead in marine animals by using capillary electrophoresis couple online with inductively coupled plasma mass spectrometry. Electrophoresis 35, 1346–1352.
  • Cheng, J., Gao, L., Zhao, W., Liu, X., Sakamoto, M., and Wang, W. (2009). Mercury levels in fisherman and their household members in Zhoushan, China: Impact of public health. Sci. Total Environ. 407, 2625–2630.
  • Cheng, W. W., and Gobas, F. A. P. C. (2007). Assessment of human health risks of consumption of cadmium contaminated cultured oysters. Hum. Ecol. Risk Assess. 13, 370–382.
  • Choi, A. L., Cordier, S., Welhe, P., and Grandjean, P. (2008). Negative confounding in the evaluation of toxicity: the case of methylmercury in fish and seafood. Crit. Rev. Toxicol. 38, 877–893.
  • CODEX STAN 193-1995. Codex Alimentarius. General Standard for Contaminants and Toxins in Food and Feed. Adopted in 1995 Revised in 1997, 2006, 2008, 2009 Amended in 2010, 2012, 2013, 2014, and 2015.
  • Copat, C., Arena, G., Fiore, M., Ledda, C., Fallico, R., Sciacca, S., and Ferrante, M. (2013). Heavy metals concentrations in fish and shellfish from eastern Mediterranean Sea: consumption advisories. Food Chem. Toxicol. 53, 33−37.
  • Dabeka, R. W., McKenzie, A. D., and Bradley, P. (2003). Survey of total mercury in total diet food composites and an estimation of the dietary intake of mercury by adults and children from two Canadian cities, 1998-2000. Food Addit. Contam. 20, 629–638.
  • Debes, F., Budtz-Jørgensen, E., Weihe, P., White, R. F., and Grandjean, P. (2006). Impact of prenatal methylmercury exposure on neurobehavioral function at age 14 years. Neurotoxicol. Teratol. 28, 536–547.
  • Devesa, V., Macho, M. L., Jalón, M., Urieta, I., Muñoz, O., Súñer, M. A., López, F., Vélez, D., and Montoro, R. (2001a). Arsenic in cooked seafood products: study on the effect of cooking on total and inorganic arsenic contents. J. Agric. Food Chem. 49, 4132–4410.
  • Devesa, V., Martínez, A., Súñer, M. A., Benito, V., Vélez, D., and Montoro R. (2001b). Kinetic study of transformations of arsenic species during heat treatment. J. Agric. Food Chem. 49, 2267–2271.
  • Devesa, V., Martínez, A., Súñer, M. A., Vélez, D., Almela, C., and Montoro, R. (2001c). Effect of cooking temperatures on chemical changes in species of organic arsenic in seafood. J. Agric. Food Chem. 49, 2272–2276.
  • Díaz, O. P., Leyton, I., Muñoz, O., Núñez, N., Devesa, V., Súñer, M. A., Vélez, D., and Montoro, R. (2004). Contribution of water, bread, and vegetables (raw and cooked) to dietary intake of inorganic arsenic in a rural village of Northern Chile. J. Agric. Food Chem. 52, 1773–1779.
  • Disyawongs, G., and Mukprasert, A. (2005). Lead contamination in foods from ceramic and plastic dinnerware during cooking in microwave oven. KMUTNB 15, 34–38.
  • Dos Santos, L. M. G., Jacob, S. C., and Vidal, N. C. (2009). Arsênio, Cádmio e Chumbo em amostras de atum enlatadas, comercializadas na cidade do Rio de Janeiro–RJ. Hig. Aliment. 23, 172−173.
  • Driscoll, C. T., Mason R. P., Chan, H. M., Jacob, D. J., and Pirrone, N. (2013). Mercury as a global pollutant: sources, pathways, and effects. Environ. Sci. Technol., 47, 4967–4983.
  • EFSA (European Food Safety Authority) (2004). Opinion of the Scientific Panel on Contaminants in the Food Chain on a request from the Commission related to mercury and methylmercury in food (Request N° EFSA-Q-2003-030). EFSA J. 34, 1–14.
  • EFSA (European Food Safety Authority) (2009a). Scientific Opinion on Arsenic in Food. EFSA J. 7, 1351.
  • EFSA (European Food Safety Authority) (2009b). Scientific Opinion. Cadmium in food. EFSA J. 80, 1–139.
  • EFSA (European Food Safety Authority) (2010). Scientific Opinion on Lead in Food. EFSA J. 8, 1570.
  • EFSA (European Food Safety Authority). (2012). Scientific Opinion on the risk for public health related to the presence of mercury and methylmercury in food. EFSA J. 10, 2985.
  • EFSA (European Food Safety Authority) (2014). Dietary exposure to inorganic arsenic in the European population. EFSA J. 12, 3597.
  • Egan, S. K., Tao, S. S-H., Pennington, J. A. T., and Bolger, P. M. (2002). U.S. Food and Drug Administration's Total Diet Study: intake of nutritional and toxic elements, 1991-96. Food Addit. Contam. 19, 103–125.
  • El-Demerdash, F. M. (2001). Effects of selenium and mercury on the enzymatic activities and lipid peroxidation in brain, liver, and blood of rats. J. Environ. Sci. Health B 36, 489–499.
  • Elsenhans, B., Strugala, G. J., and Schäfer, S. G. (1997). Small-intestinal absorption of cadmium and the significance of mucosal metallothionein. Hum. Exp. Toxicol. 16, 429–434.
  • EPA-FDA (Environmental Protection Agency-Food Drug Administration). (2014). Fish: What Pregnant Women and Parents Should Know. Draft Updated Advice by FDA and EPA. (http://www.fda.gov/downloads/Food/FoodborneIllnessContaminants/Metals/UCM400358.pdf) (accessed December 2015).
  • Ersoy, B., Yanar, Y., Küçükgülmez, A., and Çelik, M. (2006). Effects of four cooking methods on the heavy metal concentrations of sea bass fillets (Dicentrarchus labrax Linne, 1785). Food Chem. 99, 748–751.
  • EU 420/2011. COMMISSION REGULATION (EU) No 420/2011 of 29 April 2011 amending Regulation (EC) No 1881/2006 setting maximum levels for certain contaminants in foodstuffs. Official Journal of the European Union, L 111/3-6.
  • EU 488/2014. COMMISSION REGULATION (EU) No 488/2014 of 12 May 2014 amending Regulation (EC) No 1881/2006 as regards maximum levels of cadmium in foodstuffs. Official Journal of the European Union L 138/75-79.
  • EU 1005/2015. COMMISSION REGULATION (EU) 2015/1005 of 25 June 2015 amending Regulation (EC) No 1881/2006 as regards maximum levels of lead in certain foodstuffs. Official Journal of the European Union L 161/9-13.
  • European Commission, Health & Consumer Protection Directorate (2004). Information note: Methyl mercury in fish and fishery products. Available at: http://www.efsa.europa.eu/sites/default/files/assets/af040608-ax9.pdf
  • Falcó, G., Llobet, J. M., Bocio, A., and Domingo, J. L. (2006). Daily intake of Arsenic, Cadmium, Mercury, and Lead by consumption of edible marine species. J. Agric. Food Chem. 54, 6106−6112.
  • Freeman, H. C., Uthe, J. F., Fleming, R. B., Odense, P. H., Ackman, R. G., Landry, G., and Musial, C. (1979). Clearance of arsenic ingested by man from arsenic contaminated fish. Bull. Environ. Contam. Toxicol. 22, 224–229.
  • Freeman, G. B., Schoof, R. A., Ruby, M. V., Davis, A. O., Dill, J. A., Liao, S. C., Lapin, C. A., and Bergstrom, P. D. (1995). Bioavailability of arsenic in soil and house dust impacted by smelter activities following oral administration in cynomolgus monkeys. Fundam. Appl. Toxicol. 28, 215–222.
  • FSANZ F2015C00052. Australia New Zealand Food Standards Code - Standard 1.4.1 - Contaminants and Natural Toxicants-F2015C00052. Available at: https://www.comlaw.gov.au/Details/F2015C00052/Download (Accessed December 2015).
  • Galitsopoulou, A., Georgantelis, D., and Kontominas, M. G. (2009). Cadmium content in fresh and canned squid (Loligo opalescens) from the Pacific coastal waters of California (USA). Food Addit. Contam. Part B 2, 38–43.
  • Galitsopoulou, A., Georgantelis, D., and Kontominas, M. G. (2012). The influence of industrial-scale canning on cadmium and lead levels in sardines and anchovies from commercial fishing centres of the Mediterranean Sea. Food Addit. Contam. Part B 5, 75–81.
  • Galitsopoulou, A., Georgantelis, D., and Kontominas, M. G. (2013). Effect of thermal processing and canning on cadmium and lead levels in California market squid: the role of metallothioneins. Food Addit. Contam. Part A 30, 1900–1908.
  • Gao, S., and Wang, W. X. (2014). Oral bioaccessibility of toxic metals in contaminated oysters and relationships with metal internal sequestration. Ecotoxicol. Environ. Saf. 110, 261–268.
  • García Sartal, C., Barciela-Alonso, M. C., and Bermejo-Barrera, P. (2012). Effect of the cooking procedure on the arsenic speciation in the bioavailable (dialyzable) fraction from seaweed. Microchem. J. 105, 65–71.
  • GB 2762-2012. National Standard of the People's Republic of China. National Food Safety Standard Maximum Levels of Contaminants in Food.
  • Grandjean, P., Weihe, P., White, R. F., Debes, F., Araki, S., Yokoyama, K., Murata, K., Sørensen, N., Dahl, R., and Jørgensen, P. J. (1997). Cognitive deficit in 7-year-old children with prenatal exposure to methylmercury. Neurotoxicol. Teratol. 19, 417–428.
  • Guéguen, M., Amiard, J. C., Arnich, N., Badot, P. M., Claisse, D., Guérin, T., and Vernoux, J. P. (2011). Shellfish and residual chemical contaminants: hazards, monitoring, and health risk assessment along French coasts. Rev. Environ. Contam. Toxicol. 213, 55–111.
  • Guérin, T., Chekri, R., Vastel, C., Sirot, V., Volatier, J-L., Leblanc, J.-C., and Noël, L. (2011). Determination of 20 trace elements in fish and other seafood from the French market. Food Chem. 127, 934–942.
  • Hanaoka, K., Yoshida, K., Tamano, M., Kuroiwa, T., Kaise T., and Maeda, S. (2001a). Arsenic in the prepared edible brown alga, Hizikia fusiforme. Appl. Organomet. Chem. 15, 561–565.
  • Hanaoka, K., Goessler, W., Ohno, H., Irgolic, K. -J., and Kaise, T. (2001b). Formation of toxic arsenical in roasted muscles of marine animals. Appl. Organomet. Chem. 15, 61–66.
  • Has-Schön, E., Bogut, I., and Strelec, I. (2006). Heavy metal profile in five fish species included in human diet, domiciled in the end flow of river Neretva (Croatia). Arch. Environ. Contam. Toxicol. 50, 545–551.
  • He, M., and Wang, W. X. (2011). Factors affecting the bioaccessibility of methylmercury in several marine fish species. J. Agric. Food Chem. 59, 7155–7162.
  • He, M., and Wang, W. X. (2013). Bioaccessibility of 12 trace elements in marine molluscs. Food Chem. Toxicol. 55, 627–636.
  • Health Canada (2008). Mercury in Fish: Consumption Advice: Making Informed Decisions about fish. Available at: http://www.hc-sc.gc.ca/fn-an/securit/chem-chim/environ/mercur/cons-adv-etud-eng.php (Accessed December 2015).
  • Health Canada (2013). Average dietary intakes (μg/kg bw/day) of trace elements for Canadians in different age/sex groups for Total Diet Study in 2007. Available at: http://www.hc-sc.gc.ca/fn-an/surveill/total-diet/intake-apport/chem_age-sex_chim_2007-eng.php (Accessed December 2015).
  • Houlbreque, F., Herve-Fernandez, P., Teyssie, J. L., Oberhaensli, F., Boisson, F., and Jeffree, R. (2011). Cooking makes cadmium contained in Chilean mussels less bioaccessible to humans. Food Chem. 126, 917–921.
  • Hu, S., Su, Z., Jiang, J., Huang, W., Liang, X., Hu, J., Chen, M., Cai, W., Wang, J., and Zhang, X. (2015). Lead, cadmium pollution of seafood and human health risk assessment in the coastline of the southern China. Stoch. Environ. Res. Risk Assess. 1–8.
  • IARC (International Agency for Research on Cancer) (1993). Cadmium and cadmium compounds. In: Beryllium, Cadmium, Mercury and Exposures in the Glass Manufacturing Industry. IARC Monographs on the Evaluation of Carcinogenic Risk of Chemicals to Humans, vol. 58. Lyon, France.
  • IARC (International Agency for Research on Cancer) (2004). Some Drinking-water Disinfectants and Contaminants, including Arsenic. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, vol. 84. Lyon, France.
  • IARC (International Agency for Research on Cancer) (2006). Inorganic and Organic Lead Compounds. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, vol. 84. Lyon, France.
  • Ichikawa, S., Nozawa, S., Hanaoka, K., and Kaise T. (2010). Ingestion and excretion of arsenic compounds present in edible brown algae, Hizikia fusiforme, by mice. Food Chem. Toxicol. 48, 465–469.
  • Iwasaki, Y., Sakamoto, M., Nakai, K., Oka, T., Dakeishi, M., Iwata, T., Satoh, H., and Murata, K. (2003). Estimation of daily mercury intake from seafood in Japanese women: Akita cross-sectional study. Tohoku J. Exp. Med. 200, 67–73.
  • Jadán-Piedra, C., Sánchez, V., Vélez, D., and Devesa, V. (2016). Reduction of mercury bioaccessibility using dietary strategies. LWT Food Sci. Technol. 71:10–16.
  • Janle, E. M., Freiser, H., Manganais, C., Chen, T. -Y., Craig, B. A., and Santerre, C. R. (2015). Green tea increases the concentration of total mercury in the blood of rats following an oral fish tissue bolus. Biomed Res. Int. ID 320936.
  • JECFA (Joint FAO/WHO Expert Committee on Food Additives) (2011). Evaluation of certain Contaminants in food. Seventy-second report of the Joint FAO/WHO Expert Committee on Food Additives. WHO Technical Report Series, no. 959. WHO Library Cataloguing-in-Publication Data, World Health Organization.
  • Juhasz, A. L., Smith, E., Weber, J., Rees, M., Rofe, A., Kuchel, T., Sansom, L., and Naidu, R. (2006). In vivo assessment of arsenic bioavailability in rice and its significance for human health risk assessment. Environ. Health Perspect. 114, 1826–1831.
  • Julshamn, K., Nilsen, B. M., Frantzen, S., Valdersnes, S., Maage, A., Nedreaas, K., and Sloth, J. J. (2012). Total and inorganic arsenic in fish samples form Norwegian waters. Food Addit. Contam. Part B 5, 229−235.
  • Juresa, D., and Blanusa, M. (2003). Mercury, arsenic, lead and cadmium in fish and shellfish from the Adriatic Sea. Food Addit. Contam. 20, 241–246.
  • Kalogeropoulos, N., Karavoltsos, S., Sakellari, A., Avramidou, S., Dassenakis, M., and Scoullos, M. (2012). Heavy metals in raw, fried and grilled Mediterranean finfish and shellfish. Food Chem. Toxicol. 50, 3702–3708.
  • Kayama, F., Nitta, H., Nakai, S., Sasaki, S., and Horiguchi, H. (2013). Total Diet Studies in Japan. In: Total Diet Studies, pp 317–326. Moy, G. G. and Vannoort, R. W., Eds., Springer, New York.
  • Khan, N., Ryu, K. Y., Choi, J. Y., Nho, E. Y., Habte, G., Choi, H., Kim, M. H., Park, K. S., and Kim, K. S. (2015). Determination of toxic heavy metals and speciation of arsenic in seaweeds from South Korea. Food Chem. 169, 464–470.
  • Kikuchi, Y., Nomiyama, T., Kumagai, N., Emura, T. U., and Omae, K. (2002). Cadmium concentration in current Japanese foods and beverages. J. Occup. Health 44, 240–247.
  • Kris-Etherton, P. M., Harris, W. S., and Appel, L. J. (2002). Fish consumption, fish oil, omega-3 fatty acids, and cardiovascular disease. Circulation 106, 2747–2757.
  • Lai, V. W. -M., Cullen, W. R., Harrington, C. F., and Reimer, K. J. (1997). The Characterization of Arsenosugars in Commercially Available Algal Products Including a Nostoc Species of Terrestrial Origin. Appl. Organomet. Chem. 11, 797–803.
  • Laparra, J. M., Vélez, D., Montoro, R., Barberá, R., and Farré, R. (2003). Estimation of arsenic bioaccessibility in edible seaweed by an in vitro digestion method. J. Agr. Food Chem. 51, 6080–6085.
  • Laparra, J. M., Vélez, D., Montoro, R., Barberá, R., and Farré, R. (2004). Bioaccessibility of inorganic arsenic species in raw and cooked Hizikia fusiforme seaweed. Appl. Organomet. Chem. 18, 662–669.
  • Laparra, J. M., Vélez, D., Barberá, R., Montoro, R., and Farré, R. (2007). Bioaccessibility and transport by Caco-2 cells of organoarsenical species present in seafood. J. Agr. Food Chem. 55, 5892–5897.
  • Le, X. C., Cullen, W. R., and Reimer, K. J. (1994). Human urinary arsenic excretion after one-time ingestion of seaweed, crab, and shrimp. Clin. Chem. 40, 617–624.
  • Leblanc, J. -C., Guérin, T., Noël, L., Calamassi-Tran, G., Volatier, J. -L., and Verger, P. (2005). Dietary exposure estimates of 18 elements from the 1st French Total Diet Study. Food Addit. Contam. 22, 624–641.
  • Leufroy, A., Noël L., Dufailly V., Beauchemin D., and Guérin T. (2011). Determination of seven arsenic species in seafood by ion exchange chromatography coupled to inductively coupled plasma-mass spectrometry following microwave assisted extraction: method validation and occurrence data. Talanta 83, 770–779.
  • Liang, C. P., Liu, C. W., Jang, C. S., Wang, S. W., and Lee, J. J. (2011). Assessing and managing the health risk due to ingestion of inorganic arsenic from fish and shellfish farmed in blackfoot disease areas for general Taiwanese. J. Hazard. Mater. 186, 622–628.
  • Luckhurst, B. E., Prince, E. D., Llopiz, J. K., Snodgrass, D., and Brothers, E. B. (2006). Evidence of blue marlin (Makaira nigricans) spawning in Bermuda waters and elevated mercury levels in large specimens. Bull. Mar. Sci. 79, 691–704.
  • Luten, J. B., Bouquet, W., Burggraaf, M. M., and Rus, J. (1986). Accumulation, elimination, and speciation of cadmium and zinc in mussels, Mytilus edulis, in the natural environment. Bull. Environ. Contam. Toxicol. 37, 579–586.
  • Ma M., and Le X. C. (1998). Effect of arsenosugar ingestion on urinary arsenic speciation. Clin. Chem. 44, 539–550.
  • Mahaffey, K. R., Clickner, R. P., and Bodurow, C. C. (2004). Blood organic mercury and dietary mercury intake: National Health and Nutrition Examination Survey, 1999 and 2000. Environ. Health Perspect. 112, 562–570.
  • Marafante, E., Vahter, M., and Dencker, L. (1984). Metabolism of arsenocholine in mice, rats and rabbits. Sci. Total Environ. 34, 223–240.
  • Maulvault, A. L., Machado, R., Afonso, C., Lourenço, H. M., Nunes M. L., Coelho, I., Langerholc, T., and Marques A. (2011). Bioaccessibility of Hg, Cd and As in cooked black scabbard fish and edible crab. Food Chem. Toxicol. 49, 2808–2815.
  • Maulvault, A. L., Anacleto, P., Barbosa, V., Sloth, J., Rasmussen, R. R., Tediosi, A., Fernandez-Tejedor, M., van den Heuvel, F. H. M., Kotterman, M., and Marques, A. (2015). Toxic elements and speciation in seafood samples from different contaminated sites in Europe. Environ. Res. 143, 72–81.
  • McKenzie, J., Kjellstrom, T., and Sharma, R. (1986). Project Summary. Cadmium Intake via oysters and health effects in New Zealand [microform]: Cadmium intake, metabolism, and effects in people with a high intake of oysters in New Zealand. EPA/600/S1-86/004. Research Triangle Park, NC: US Environmental Protection Agency.
  • Medeiros, R. J., dos Santos, L. M. G., Freire, A. S., Santelli, R. E., Braga, A. M. C. B., Krauss, T. M., and Jacob, S. D. C. (2012). Determination of inorganic trace elements in edible marine fish from Rio de Janeiro State, Brazil. Food Control 23, 535–541.
  • Monteiro, L. R., and Lopes, H. D. (1990). Mercury content of swordfish, Xiphias gladius, in relation to length, weight, age, and sex. Mar. Pollut. Bull. 21, 293–296.
  • Moore, M. R., Hughes, M. A., and Goldberg, D. J. (1979). Lead absorption in man from dietary sources. Int. Arch. Occup. Environ. Health 44, 81–90.
  • Morgan, J. N., Berry, M. R., and Graves, R. L. (1997). Effects of commonly used cooking practices on total mercury concentration in fish and their impact on exposure assessments. J. Expo. Anal. Environ. Epidemiol. 7, 119–133.
  • Morgano, M. A., Rabonato, L. C., Milani, R. F., Miyagusku, L., and Quintaes, K. D. (2014). As, Cd, Cr, Pb and Hg in seafood species used for sashimi and evaluation of dietary exposure. Food Control 36, 24–29.
  • Muñoz, O., Devesa, V., Suñer, M. A., Vélez, D., Montoro, R., Urieta, I., Macho, M. L., and Jalón, M. (2000). Total and inorganic arsenic in fresh and processed fish products. J. Agr. Food Chem. 48, 4369–4376.
  • Muñoz, O., Bastias, J. M., Araya, M., Morales, A., Orellana, C., Rebolledo, R., and Vélez, D. (2005). Estimation of the dietary intake of cadmium, lead, mercury, and arsenic by the population of Santiago (Chile) using a Total Diet Study. Food Chem. Toxicol. 43, 1647–1655.
  • Noël, L., Chafey, C., Testu, C., Pinte, J., Velge, P., and Guérin, T. (2011). Contamination levels of lead, cadmium and mercury in imported and domestic lobsters and large crab species consumed in France: Differences between white and brown meat. J. Food Comp. Anal. 24, 368–375.
  • Okyere, H., Voegborlo, R. B., and Agorku, S. E. (2015). Human exposure to mercury, lead and cadmium through consumption of canned mackerel, tuna, pilchard and sardine. Food Chem. 179, 331–335.
  • Olmedo, P., Pla, A., Hernández, A. F., Barbier, F., Ayouni, L., and Gil, F. (2013). Determination of toxic elements (mercury, cadmium, lead, tin and arsenic) in fish and shellfish samples. Risk assessment for the consumers. Environ. Int. 59, 63–72.
  • Padula, D., Greenfield, H., Cunningham, J., Kiermeier, A., and McLeod, C. (2016). Australian seafood compositional profiles: A pilot study. Vitamin D and mercury content. Food Chem. 193, 106–111.
  • Perelló, G., Martí-Cid, R., Llobet, J. M., and Domingo, J. L. (2008). Effects of various cooking processes on the concentrations of arsenic, cadmium, mercury, and lead in foods. J. Agr. Food Chem. 56, 1262–1269.
  • Ouédraogo, O., and Amyot, M. (2011). Effects of various cooking methods and food components on bioaccessibility of mercury from fish. Environ. Res. 111, 1064–1069.
  • Rabinowitz, M. B., Koppel, J. D., and Wetherill, G. W. (1980). Effect of food intake on fasting gastrointestinal lead absorption in humans. Am. J. Clin. Nutr. 33, 1784–1788.
  • Ralston, N. V. C., Blackwell III, J. L., and Raymond, L. J. (2007). Importance of molar ratios in selenium-dependent protection against methylmercury toxicity. Biol. Trace Elem. Res. 119, 255–268.
  • Rangkadilok, N., Siripriwon, P., Nookabkaew, S., Suriyo, T., and Satayavivad, J. (2015). Arsenic, cadmium, and manganese levels in shellfish from Map Ta Phut, an industrial area in Thailand, and the potential toxic effects on human cells. Arch. Environ. Contam. Toxicol. 68, 169–180.
  • Rasmussen, R. S., and Morrissey, M. T. (2007). Effects of canning on total mercury, protein, lipid, and moisture content in troll-caught albacore tuna (Thunnus alalunga). Food Chem. 3, 1130–1135.
  • Reeves, P. G., and Chaney, R. L. (2001). Mineral status of female rats affects the absorption and organ distribution of dietary cadmium derived from edible sunflower kernels (Helianthus annuus L.). Environ. Res. 85, 215–225.
  • Reeves, P. G., and Chaney, R. L. (2004). Marginal nutritional status of zinc, iron, and calcium increases cadmium retention in the duodenum and other organs of rats fed rice-based diets. Environ. Res. 96, 311–322.
  • Rose, M., Lewis, J., Langford, N., Baxter, M., Origgi, S., Barber, M., MacBain, H., and Thomas, K. (2007). Arsenic in seaweed–forms, concentration and dietary exposure. Food Chem. Toxicol. 45, 1263–1267.
  • Rowland, I. R., Mallett, A. K., Flynn, J., and Hargreaves, R. J. (1986). The effect of various dietary fibres on tissue concentration and chemical form of mercury after methylmercury exposure in mice. Arch. Toxicol. 59, 94–98.
  • Ruttens, A., Blanpain, A. C., De Temmerman, L., and Waegeneers, N. (2012). Arsenic speciation in food in Belgium Part 1: fish, molluscs and crustaceans. J. Geochem. Explor. 121, 55–61.
  • Sawada, N., Iwasaki, M., Inoue, M., Takachi, R., Sasazuki, S., Yamaji, T., Shimazu, T., and Tsugane, S. (2013). Dietary arsenic intake and subsequent risk of cancer: the Japan. Public Health Center-based (JPHC) Prospective Study. Cancer Causes Control, 24, 1403–1415.
  • Schmidt, L., Bizzi, C. A., Duarte, F. A., Muller, E. I., Krupp, E., Feldmann, J., and Flores, E. M. M. (2015). Evaluation of Hg species after culinary treatments of fish. Food Control 47, 413–419.
  • Sepe, A., Ciaralli, L., Ciprotti, M. R., Giordano, R., Funari, E., and Costantini, S. (2003). Determination of cadmium, chromium, lead and vanadium in six fish species from the Adriatic Sea. Food Addit. Contam. 20, 543–552.
  • Sheehan, M. C., Burke, T. A., Navas-Acien, A., Breysse, P. N., McGready, J., and Fox, M. A. (2014). Global methylmercury exposure from seafood consumption and risk of developmental neurotoxicity: a systematic review. Bull. World Health Organ. 92, 254–269.
  • Shim, S. M., Ferruzzi, M., Kim, Y. C., Janle, E. M., and Santerre, C. R. (2009). Impact of phytochemical-rich foods on bioaccessibility of mercury from fish. Food Chem. 112, 46–50.
  • Sirot, V., Samieri, C., Volatier, J. L., and Leblanc, J. C. (2008). Cadmium dietary intake and biomarker data in French high seafood consumers. J. Expo. Sci. Environ. Epidemiol. 18, 400–409.
  • Sepe, A., Ciaralli, L., Ciprotti, M. R., Giordano, R., Funari, E., and Costantini, S. (2007). Determination of cadmium, chromium, lead and vanadium in six fish species from the Adriatic Sea. Food Addit. Contam. 102, 612–620.
  • Sloth, J. J., and Julshamn, K. (2008). Survey of total inorganic Arsenic content in blue mussels (Mytilus edulis L.) from Norwegian Fiords: revelation of unusual high levels of inorganic Arsenic. J. Agr. Food Chem. 56, 1269−1273.
  • Stevenson, L., Phillips, F., O'Sullivan, K., and Walton, J. (2012). Wheat bran: its composition and benefits to health, a European perspective. Int. J. Food Sci. Nutr. 63, 1001–1013.
  • Sugawara, N., and Sugawara, C. (1991). Gastrointestinal absorption of Cd-metallothionein and cadmium chloride in mice. Arch. Toxicol. 65, 689–692.
  • Suñer, M. A., Devesa, V., Clemente, M. J., Vélez, D., Montoro, R., Urieta, I., Jalón, M., and Macho, M. L. (2002). Organoarsenical species contents in fresh and processed seafood products. J. Agr. Food Chem. 50, 924–932.
  • Taweel, A., Shuhaimi-Othman, M., and Ahmad, A. K. (2013). Assessment of heavy metals in tilapia fish (Oreochromis niloticus) from the Langat River and Engineering Lake in Bangi, Malaysia, and evaluation of the health risk from tilapia consumption. Ecotoxicol. Environ. Saf. 93, 45–51.
  • Tahán, J. E., Sánchez, J. M., Granadillo, V. A., Cubillán, H. S., and Romero, R. A. (1995). Concentration of total Al, Cr, Cu, Fe, Hg, Na, Pb and Zn in commercial canned seafood determined by atomic spectrometric means after mineralization by microwave heating. J. Agr. Food Chem. 43, 910–915.
  • Tian, W., Egeland, G. M., Sobol, I., and Chan, H. M. (2011). Mercury hair concentrations and dietary exposure among Inuit preschool children in Nunavut, Canada. Environ. Int. 37, 42–48.
  • Tong, Y., Zhu, Z., Hao, X., He, L., He, W., and Chen, J. (2016). The study of lead content distribution in Chinese seafood and its oral bioavailability in mice. Environ. Sci. Pollut. Res. 23, 1714–1721.
  • Torres-Escribano, S., Vélez, D., and Montoro, R. (2012). Mercury and methylmercury bioaccessibility in swordfish. Food Addit. Contam. Part A 27, 327–337.
  • Torres-Escribano, S., Ruiz, A., Barrios, L., Vélez, D., and Montoro, R. (2011). Influence of mercury bioaccessibility on exposure assessment associated with consumption of cooked predatory fish in Spain. J. Sci. Food Agr. 91, 981–986.
  • Uneyama, C., Toda, M., Yamomoto, M., and Morikawa, K. (2007). Arsenic in various foods: cumulative data. Food Addit. Contam. 56, 1269–1273.
  • Urieta, I., Jalón, M., and Macho, M. L. (2001). Arsenic intake in the Basque Country (Spain): A real need for speciation. In: Trace elements speciation for environment, food and health. pp. 241–250. Ebdon, L., Pitts, L., Cornelis, R., Crews, H., Donar, O. F. X. and Quevauviller, Ph., Eds. The Royal Society of Chemistry, UK.
  • USDA (United States Department of Agriculture) (2008). Characterization of the cadmium health risk, concentrations and ways to minimize cadmium residues in shellfish: sampling and analysis of cadmium in U.S. West coast bivalve shellfish. Available at: http://www.pacshell.org/pdf/CadmiumFinalReport.pdf (Accessed November 2015).
  • Vahter, M., Marafante, E., and Dencker, L. (1983). Metabolism of arsenobetaine in mice, rats and rabbits. Sci. Total Environ. 30, 197–211.
  • Vahter, M., Marafante, E., and Dencker, L. (1984). Tissue distribution and retention of 74As-dimethylarsinic acid in mice and rats. Arch. Environ. Contamin. Toxicol. 13, 259–264.
  • Vahter, M., Berglund, M., Nermell, B., and Akesson, A. (1996). Bioavailability of cadmium from shellfish and mixed diet in women. Toxicol. Appl. Pharm. 136, 332–341.
  • Valadez-Vega, C., Zúñiga-Pérez, C., Quintanar-Gómez, S., Morales-González, J. A., Madrigal-Santillán, E., Villagómez-Ibarra, J. R., Sumaya-Martínez, M. T., and García-Paredes, J. D. (2011). Lead, cadmium and cobalt (Pb, Cd, and Co) leaching of glass-clay containers by pH effect of food. Int. J. Mol. Sci. 12, 2336–2350.
  • van Netten, C., Hoption Cann, S. A., Morley, D. R., and van Netten, J. P. (2000). Elemental and radioactive analysis of commercially available seaweed. Sci. Total Environ. 255, 169–175.
  • Vélez, D., Ybáñez, N., and Montoro, R. (1997). Migration of arsenobetaine from canned seafood to brine. J. Agr. Food Chem. 45, 449–453.
  • Voigt, H. R. (2003). Concentrations of mercury (Hg) and cadmium (Cd), and the condition of some coastal Baltic fishes. Proc. Estonian Acad. Sci. Biol. Ecol. 52, 305–318.
  • Wang, C., Duan, H. Y., and Teng, J. W. (2014). Assessment of microwave cooking on the bioaccessibility of cadmium from various food matrices using an in vitro digestion model. Biol. Trace Elem. Res. 160, 276–284.
  • Wasserman, G., Liu, X., Parvez, F., Ahsan, H., Factor-Litvak, P., Van Geen, A., Slavkovich, V., LoIacono, N., Cheng, Z., Hussain, I., Momotaj, H., and Graziano, J. H. (2004). Water arsenic exposure and children's intellectual function in Araihazar, Bangladesh. Environ. Health Perspect. 112, 1329–1333.
  • Watanabe, T., Hirayama, T., Takahashi, T., Kokubo, T., and Ikeda, M. (1979). Toxicological evaluation of arsenic in edible seaweed, Hizikia species. Toxicology 14, 1–22.
  • WHO (World Health Organization). Code of practice for fish and fishery products–2nd edition (CAC/RCP 52-2003), 2012, p. 16. Available at: ftp://ftp.fao.org/codex/Publications/Booklets/Practice_code_fish/CCFFP_2012_EN.pdf (Accessed November 2015)
  • Whyte, A. L. H., Raumati Hook, G., Greening, G. E., Gibbs-Smith, E., and Gardner, J. P. A. (2009). Human dietary exposure to heavy metals via the consumption of greenshell mussels (Perna canaliculus Gmelin 1791) from the Bay of Islands, northern New Zealand. Sci. Total Environ. 407, 4348–4355.
  • Widmeyer, J. R., and Bendell-Young L. I. (2008). Heavy metal levels in suspended sediments, Crassostrea gigas, and the risk to humans. Arch. Environ. Contam. Toxicol. 55, 442–450.
  • Yang, H. R., Kim, N. Y., Hwang, L. H., Park, J. S., and Kim, J. H. (2015). Mercury contamination and exposure assessment of fishery products in Korea. Food Addit. Contam. Part B 8, 44–49.
  • Yannai, S., and Sachs, K. M. (1993). Absorption and accumulation of cadmium, lead and mercury from foods by rats. Food Chem. Toxicol. 31, 351–355.
  • Yokoi, K., and Konomi, A. (2012). Toxicity of so-called edible hijiki seaweed (Sargassum fusiforme) containing inorganic arsenic. Regul. Toxicol. Pharm. 63, 291–297.
  • Zaza, S., de Balogh, K., Palmery, M., Pastorelli, A. A., and Stacchini, P. (2015). Human exposure in Italy to lead, cadmium and mercury through fish and seafood product consumption from Eastern Central Atlantic Fishing Area. J. Food Comp. Anal. 40, 148–153.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.