2,297
Views
55
CrossRef citations to date
0
Altmetric
Original Articles

Effect of thermal treatments on the degradation of antibiotic residues in food

, &

References

  • Abou-Raya, S. S. A. R., Salama1, N. A., Emam, W. H. and Mehaya, F. M. (2013). Effect of ordinary cooking procedures on tetracycline residues in chicken meat. J. Food Drug Anal. 21:80–86.
  • Alfredsson, G. and Ohlsson, A. (1998). Stability of sulphonamide drugs in meat during storage. Food Addit. Contamin. 15:302–306.
  • Anderson, C. R., Rupp, H. S. and Wu, W. H. (2005). Complexities in tetracycline analysis—chemistry, matrix extraction, cleanup, and liquid chromatography. J. Chromatogr. A. 1075:23–32.
  • Baertschi, S. W. and Alsante, K. M. (2005). Stress testing: The chemistry of drug degradation. Drugs Pharm. Sci. 153:51.
  • Benitz, K.-F. and Diermeier, H. (1964). Renal toxicity of tetracycline degradation products. Exp. Biol. Med. 115:930–935.
  • Blasco, C., Di Corcia, A. and Picó, Y. (2009). Determination of tetracyclines in multi-specie animal tissues by pressurized liquid extraction and liquid chromatography–tandem mass spectrometry. Food Chem. 116:1005–1012.
  • Bogialli, S. and Di Corcia, A. (2009). Recent applications of liquid chromatography–mass spectrometry to residue analysis of antimicrobials in food of animal origin. Anal. Bioanal. Chem. 395:947–966.
  • Clarke, A. D., Means, W. J. and Schmidt, G. R. (1987). Effects of storage time, sodium chloride and sodium tripolyphosphate on yield and microstructure of comminuted beef. J. Food Sci. 52:854–856.
  • Codex Alimentarius Commission. (2010). Codex general standard for contaminants and toxins in food and feed (CODEX STAN 193–1995).
  • Cooper, K. M., Whelan, M., Danaher, M. and Kennedy, D. G. (2011). Stability during cooking of anthelmintic veterinary drug residues in beef. Food Addit. Contamin. 28:155–165.
  • Done, H. Y. and Halden, R. U. (2015). Reconnaissance of 47 antibiotics and associated microbial risks in seafood sold in the United States. J. Hazardous Mater. 282:10–17.
  • Donkor, E. S., Newman, M. J., Tay, S. C., Dayie, N. T., Bannerman, E. and Olu-Taiwo, M. (2011). Investigation into the risk of exposure to antibiotic residues contaminating meat and egg in Ghana. Food Control. 22:869–873.
  • Du, W. X., Marshall, M. R., XU, D. H., Santerre, C. R. and Wei, C. I. (1997). Retention of oxytetracycline residues in cooked channel catfish fillets. J. Food Sci. 62:119–122.
  • Epstein, R. L., Randecker, V., Corrao, P., Keeton, J. T. and Cross, H. R. (1988). Influence of heat and cure preservatives on residues of sulfamethazine, chloramphenicol, and cyromazine in muscle tissue. J. Agric. Food Chem. 36:1009–1012.
  • Fedeniuk, R. W., Shand, P. J. and McCurdy, A. R. (1997). Effect of thermal processing and additives on the kinetics of oxytetracycline degradation in pork muscle. J. Agric. Food Chem. 45:2252–2257.
  • Fisher, N. R., Purnell, C. B. and Kang, J. (2010). Comment on effect of heating on the stability of quinolones in milk. J. Agric. Food Chem. 58:13020–13021.
  • Food and Drug Administration (FDA). (2014). 2012 Summary Report on Antimicrobials Sold or Distributed for Use in Food-Producing Animals.
  • Franco, D. A., Webb, J. and Taylor, C. E. (1990). Antibiotic and sulfonamide residues in meat: Implications for human health. J. Food Prot. 53:178–185.
  • Franje, C. A., Chang, S. K., Shyu, C. L., Davis, J. L., Lee, Y. W., Lee, R. J. and Chou, C. C. (2010). Differential heat stability of amphenicols characterized by structural degradation, mass spectrometry and antimicrobial activity. J. Pharm. Biomed. Anal. 53:869–877.
  • Frimpter, G. W., Timpanelli, A. E., Eisenmenger, W. J., Stein, H. S. and Ehrlich, L. I. (1963). Reversible fanconi syndrome caused by degraded tetracycline. JAMA. 184:111–113.
  • Fritz, J. W. and Zuo, Y. (2007). Simultaneous determination of tetracycline, oxytetracycline, and 4-epitetracycline in milk by high-performance liquid chromatography. Food Chem. 105:1297–1301.
  • Fuliaş, A., Vlase, T., Vlase, G. and Doca, N. (2010). Thermal behaviour of cephalexin in different mixtures. J. Thermal Anal. Calorim. 99:987–992.
  • Furusawa, N. and Hanabusa, R. (2002). Cooking effects on sulfonamide residues in chicken thigh muscle. Food Res. Int. 35:37–42.
  • Gratacós-Cubarsí, M., Fernandez-García, A., Picouet, P., Valero-Pamplona, A., García-Regueiro, J. A. and Castellari, M. (2007). Formation of tetracycline degradation products in chicken and pig meat under different thermal processing conditions. J. Agric. Food Chem. 55:4610–4616.
  • Grundmann, H., Aires-de-Sousa, M., Boyce, J. and Tiemersma, E. (2006). Emergence and resurgence of meticillin-resistant Staphylococcus aureus as a public-health threat. Lancet. 368:874–885.
  • Grunwald, L. and Petz, M. (2003). Food processing effects on residues: Penicillins in milk and yoghurt. Anal. Chim. Acta. 483:73–79.
  • Halling-Sørensen, B., Sengeløv, G. and Tjørnelund, J. (2002). Toxicity of tetracyclines and tetracycline degradation products to environmentally relevant bacteria, including selected tetracycline-resistant bacteria. Arch. Environ. Contamin. Toxicol. 42:263–271.
  • Hassani, M., Lazaro, R., Perez, C., Condon, S. and Pagan, R. (2008). Thermostability of oxytetracycline, tetracycline, and doxycycline at ultrahigh temperatures. J. Agric. Food Chem. 56:2676–2680.
  • Hsieh, M. K., Shyu, C. L., Liao, J. W., Franje, C. A., Huang, Y. J., Chang, S. K. and Chou, C. C. (2011). Correlation analysis of heat stability of veterinary antibiotics by structural degradation, changes in antimicrobial activity and genotoxicity. Veterinarni Med. 56:274–285.
  • Hsu, S. Y. and Epstein, R. L. (1993). Influence of cooking/processing conditions on Levamisole residues in swine muscle tissues. In: Proceedings of Euro Residue II Conference on Residues of Veterinary Drugs in Food, pp. 387–390. A., Haagsma and P. B., Czedik-Eysenberg, Eds., Veldhoven.
  • Huang, T. S., Du, W. X., Marshall, M. R. and Wei, C. I. (1997). Determination of oxytetracycline in raw and cooked channel catfish by capillary electrophoresis. J. Agric. Food Chem. 45:2602–2605.
  • Ibrahim, A. and Moats, W. A. (1994). Effect of cooking procedures on oxytetracycline residues in lamb muscle. J. Agric. Food Chem. 42:2561–2563.
  • Javadi, A. (2011). Effect of roasting, boiling and microwaving cooking method on doxycline residues in edible tissues of poultry by microbial method. Afr. J. Pharm. Pharmacol. 5:1034–1037.
  • Joshi, S. (2002). HPLC separation of antibiotics present in formulated and unformulated samples. J. Pharm. Biomed. Anal. 28:795–809.
  • Junza, A., Barbosa, S., Codony, M. R., Jubert, A., Barbosa, J. and Barron, D. (2014). Identification of metabolites and thermal transformation products of quinolones in raw cow's milk by liquid chromatography coupled to high-resolution mass spectrometry. J. Agric. Food Chem. 62:2008–2021.
  • Kitts, D. D., Yu, C. W., Aoyama, R. G., Burt, H. M. and McErlane, K. M. (1992). Oxytetracycline degradation in thermally processed farmed salmon. J. Agric. Food Chem. 40:1977–1981.
  • Konecny, S. (1978). Effect of temperature and time on reduction of the biological activity of some kinds of antibiotics in milk. Veternarstvi. 28:409–410.
  • Kühne, M., Hamscher, G., Körner, U., Schedl, D. and Wenzel, S. (2001). Formation of anhydrotetracycline during a high-temperature treatment of animal-derived feed contaminated with tetracycline. Food Chem. 75:423–429.
  • Levine, B. B. (1960). Studies on the mechanism of the formation of the penicillin. Antigen I. Delayed allergic cross-reactions among penicillin G and its degradation products. The J. Exp. Med. 112:1131–1156.
  • Li, W. (2010). Studies on the thermal kinetics of thermal decomposition and stability of macrolide drugs. Chin. J. Pharm. Anal. 30:1544–1547.
  • Liu, S., Du, J., Chen, J. and Zhao, H. (2014). Determination of 19 antibiotic and 2 sulfonamide metabolite residues in wild fish muscle in mariculture areas of Laizhou Bay using accelerated solvent extraction and high performance liquid chromatography-tandem mass spectrometry. J. Chromatogr. 32:1320–1325.
  • Loftin, K. A., Adams, C. D., Meyer, M. T. and Surampalli, R. (2008). Effects of ionic strength, temperature, and pH on degradation of selected antibiotics. J. Environ. Qual. 37:378–386.
  • Lolo, M., Pedreira, S., Miranda, J. M., Vázquez, B. I., Franco, C. M., Cepeda, A. and Fente, C. (2006). Effect of cooking on enrofloxacin residues in chicken tissue. Food Addit. Contamin. 23:988–993.
  • Martin, A. (1993). Physical pharmacy: physical chemical principles in the pharmaceutical sciences. pp. 297–298. 4th ed. Lea and Febiger, Philadelphia, PA.
  • McCracken, R. J. and Kennedy, D. G. (1997). The bioavailability of residues of the furazolidone metabolite 3-amino-2-oxazolidinone in porcine tissues and the effect of cooking upon residue concentrations. Food Addit. Contamin. 14:507–513.
  • McDermott, P. F., Zhao, S., Wagner, D. D., Simjee, S., Walker, R. D. and White, D. G. (2002). The food safety perspective of antibiotic resistance. Anim. Biotechnol. 13:71–84.
  • Moats, W. A. (1999). The effect of processing on veterinary residues in foods. In: Impact of Processing on Food Safety, pp. 233–241. Springer, US.
  • Mollica, J. A., Ahuja, S. and Cohen, J. (1978). Stability of pharmaceuticals. J. Pharm. Sci. 67:443–465.
  • Myllyniemi, A. L., Rintala, R., Backman, C. and Niemi, A. (1999). Microbiological and chemical identification of antimicrobial drugs in kidney and muscle samples of bovine cattle and pigs. Food Addit. Contamin. 16:339–351.
  • Nguyen, V., Nguyen, V., Li, C. and Zhou, G. (2015). The degradation of oxytetracycline during thermal treatments of chicken and pig meat and the toxic effects of degradation products of oxytetracycline on rats. J. Food Sci. Technol. 52:2842–2850.
  • O'brien, J. J., Campbell, N. and Conaghan, T. (1981). Effect of cooking and cold storage on biologically active antibiotic residues in meat. J. Hygiene. 87:511–523.
  • Posyniak, A., Mitrowska, K., Zmudzki, J. and Niedzielska, J. (2005). Analytical procedure for the determination of chlortetracycline and 4-epi-chlortetracycline in pig kidneys. J. Chromatogr. A. 1088:169–174.
  • Reeves, P. T. (2012). Antibiotics: Groups and properties. In: Chemical Analysis of Antibiotic Residues in Food, pp. 30–31. Wiley Publishing, New Jersey.
  • Ridgway, K., Lalljie, S. P. and Smith, R. M. (2007). Sample preparation techniques for the determination of trace residues and contaminants in foods. J. Chromatogr. A. 1153:36–53.
  • Roca, M., Althaus, R. L. and Molina, M. P. (2013). Thermodynamic analysis of the thermal stability of sulphonamides in milk using liquid chromatography tandem mass spectrometry detection. Food Chem. 136:376–383.
  • Roca, M., Castillo, M., Marti, P., Althaus, R. L. and Molina, M. P. (2010). Effect of heating on the stability of quinolones in milk. J. Agric. Food Chem. 58:5427–5431.
  • Roca, M., Villegas, L., Kortabitarte, M. L., Althaus, R. L. and Molina, M. P. (2011). Effect of heat treatments on stability of β-lactams in milk. J. Dairy Sci. 94:1155–1164.
  • Roe, R. S. (1967). Antibiotic residues in food. Food Drug Cosmetics. 22:41.
  • Rose, M. D., Argent, L. C., Shearer, G. and Farrington, W. H. (1995a). The effect of cooking on veterinary drug residues in food: 2. Levamisole. Food Addit. Contamin. 12:185–194.
  • Rose, M. D., Bygrave, J. and Farrington, W. H. (1997c). The effect of cooking on veterinary drug residues in food. Part 8. Benzylpenicillin†. Analyst. 122:1095–1099.
  • Rose, M. D., Bygrave, J., Farrington, W. H. and Shearer, G. (1996). The effect of cooking on veterinary drug residues in food: 4. Oxytetracycline. Food Addit. Contamin. 13:275–286.
  • Rose, M. D., Farrington, W. H. H. and Shearer, G. (1998). The effect of cooking on veterinary drug residues in food: 7. ivermectin. Food Addit. Contamin. 15:157–161.
  • Rose, M. D., Farrington, W. H. and Shearer, G. (1995b). The effect of cooking on veterinary drug residues in food: 3. Sulphamethazine (sulphadimidine). Food Addit. Contamin. 12:739–750.
  • Rose, M. D., Rowley, L., Shearer, G. and Farrington, W. H. (1997b). Effect of cooking on veterinary drug residues in food. 6. Lasalocid. J. Agric. Food Chem. 45:927–930.
  • Rose, M. D., Shearer, G. and Farrington, W. H. H. (1997a). The effect of cooking on veterinary drug residues in food; 5. Oxfendazole. Food Addit. Contamin. 14:15–26.
  • Rose, M. (1999). Effect of cooking on veterinary drug residues in food Part 9.† Nitroimidazoles. Analyst. 124:289–294.
  • Samanidou, V. F., Nikolaidou, K. I. and Papadoyannis, I. N. (2007). Advances in chromatographic analysis of tetracyclines in foodstuffs of animal origin—a review. Separat. Purificat. Rev. 36:1–69.
  • Sapkota, A., Sapkota, A. R., Kucharski, M., Burke, J., McKenzie, S., Walker, P. and Lawrence, R. (2008). Aquaculture practices and potential human health risks: current knowledge and future priorities. Environ. Int. 34:1215–1226.
  • Sarmah, A. K., Meyer, M. T. and Boxall, A. B. (2006). A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics (VAs) in the environment. Chemosphere. 65:725–759.
  • Scheibner, G. (1972). Inactivation of several antibiotics in meat tinning. Monalsch. Velernaermed. 27:745–747.
  • Shahani, K. M. (1957). The effect of heat and storage on the stability of Aureomycin in milk, buffer, and water. J. Dairy Sci. 40:289–296.
  • Shahani, K. M. (1958). Factors affecting Terramycin activity in milk, broth, buffer, and water. J. Dairy Sci. 41:382–391.
  • Shahani, K. M., Gould, I. A., Weiser, H. H. and Slatter, W. L. (1956). Stability of small concentrations of penicillin in milk as affected by heat treatment and storage. J. Dairy Sci. 39:971–977.
  • Shakila, R. J., Vyla, S. A. P. R., Saravana Kumar, R., Jeyasekaran, G. and Indra Jasmine, G. (2006). Stability of chloramphenicol residues in shrimp subjected to heat processing treatments. Food Microbiol. 23:47–51.
  • Shit, A. A., Aila, O., Ottaro, S., Aliongrsquo, L., Mwangi, G., Kumar-Sharma, H. and Joseph, M. (2008). Effect of deep frying on furazolidone anticoccidial drug residues in liver and muscle tissues of chicken. African J. Food Sci. 2:144–148.
  • Slanina, P., Kuivinen, J., Ohlsén, C. and Ekström, L. G. (1989). Ivermectin residues in the edible tissues of swine and cattle: Effect of cooking and toxicological evaluation. Food Addit. Contamin. 6:475–481.
  • Sullivan, T. J., Wedner, H. J., Shatz, G. S., Yecies, L. D. and Parker, C. W. (1981). Skin testing to detect penicillin allergy. J. Allergy Clin. Immunol. 68:171–180.
  • Sun, H., Wang, L., Ai, L., Liang, S. and Wu, H. (2010). A sensitive and validated method for determination of melamine residue in liquid milk by reversed phase high-performance liquid chromatography with solid-phase extraction. Food Control. 21:686–691.
  • Traub, W. H. and Leonhard, B. (1995). Heat stability of the antimicrobial activity of sixty-two antibacterial agents. J. Antimicrob. Chemother. 35:149–154.
  • Tsuji, A., Nakashima, E., Hamano, S. and Yamana, T. (1978). Physicochemical properties of amphoteric β-lactam antibiotics I: Stability, solubility, and dissolution behavior of amino penicillins as a function of pH. J. Pharm. Sci. 67:1059–1066.
  • Uno, K., Aoki, T., Kleechaya, W., Tanasomwang, V. and Ruangpan, L. (2006a). Pharmacokinetics of oxytetracycline in black tiger shrimp, Penaeus monodon, and the effect of cooking on the residues. Aquaculture. 254:24–31.
  • Uno, K., Aoki, T., Kleechaya, W., Ruangpan, L. and Tanasomwang, V. (2006b). Pharmacokinetics of oxolinic acid in black tiger shrimp, Penaeus monodon Fabricius, and the effect of cooking on residues. Aquaculture Res. 37:826–833.
  • Wang, Y. P. and Ma, Y. (2008). The usage of antibiotics in animal farming and its potential risk. Chinese Antibiotic 33:519–523.
  • Xu, D., Grizzle, J. M., Rogers, W. A. and Santerre, C. R. (1996). Effect of cooking on residues of ormetoprim and sulfadimethoxine in the muscle of channel catfish. Food Res. Int. 29:339–344.
  • Xuan, R., Arisi, L., Wang, Q., Yates, S. R. and Biswas, K. C. (2009). Hydrolysis and photolysis of oxytetracycline in aqueous solution. J. Environ. Sci. Health, Part B. 45:73–81.
  • Yamaki, M., Berruga, M. I., Althaus, R. L., Molina, M. P. and Molina, A. (2004). Occurrence of antibiotic residues in milk from Manchega ewe dairy farms. J. Dairy Sci. 87:3132–3137.
  • Zhao, X. H., Wu, P. and Zhang, Y. H. (2011). Degradation kinetics of six sulfonamides in hen eggs under simulated cooking temperatures. J. Serbian Chem. Soc. 76:1093–1101.
  • Zorraquino, M. A., Althaus, R. L., Roca, M. and Molina, M. P. (2009). Effect of heat treatments on aminoglycosides in milk. J. Food Prot. 72:1338–1341.
  • Zorraquino, M. A., Althaus, R. L., Roca, M. and Molina, M. P. (2011). Heat treatment effects on the antimicrobial activity of macrolide and lincosamide antibiotics in milk. J. Food Prot. 74:311–315.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.