2,138
Views
10
CrossRef citations to date
0
Altmetric
Articles

Enzymatic browning in avocado (Persea americana) revisited: History, advances, and future perspectives

ORCID Icon &

References

  • Almeida, M. and Nogueira, J. (1995). The control of polyphenol oxidase activity in fruits and vegetables. Plant Foods Human Nutr. 47:245–256.
  • Angleton, E. and Flurkey, W. (1984). Activation and alteration of plant and fungal polyphenoloxidase isoenzymes in sodium dodecylsulfate electrophoresis. Phytochemistry. 23:2723–2725.
  • Arnon, I. (1949). Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaricus. Plant Physiol. 24:1–15.
  • Asaka, M. and Hayashi, R. (2014). Activation of polyphenoloxidase in pear fruits by high pressure treatment. Agricult. Biologic. Chem. 55:2439–2440.
  • Barrett, D., Lee, C. and Liu, F. (1991). Changes in the activity and subcellular distribution of PPO in Delicious apples during controlled atmosphere storage. J. Food Biochem. 15:185–199.
  • Bates, R. (1970). Heat-induced off-flavor in avocado flesh. J. Food Sci. 35:478–482.
  • Bi, X., Hemar, Y., Balaban, M. and Liao, X. (2015). The effect of ultrasound on particle size, color, viscosity and polyphenol oxidase activity of diluted avocado puree. Ultrasonic. Sonochem. 27:567–575.
  • Bonghi, C. and Trainotti, L. (2006). Genomics tools for a better understanding of the fruit ripening process. Stewart Postharvest Rev.. 2:1–10.
  • Boschetti, E. and Righetti, P. (2008). The proteominer in the proteomic arena: A non-depleting tool for discovering low-abundance species. J. Proteom. 71:255–264.
  • Chai, W., Wei, M., Wang, R., Deng, R., Zou, Z. and Peng, Y. (2015). Avocado proanthocyanidins as a source of tyrosinase inhibitors: Structure characterization, inhibitory activity, and mechanism. J. Agric. Food Chem. 63:7381–7387.
  • Chang, T. (2009). An updated review of tyrosinase inhibitors. Int. J. Mol.Sci. 10:2440–2475.
  • Chaplin, G. and Hawson, M. (1981). Extending the postharvest life of unrefrigerated avocado (Perseaamericana Mill.) fruit by storage in polyethylene bags. Sci.Horticultur. 14:219–226.
  • Chen, S. and Harmon, A. (2006). Advances in plant proteomics. Proteomics. 6:5504–5516.
  • Constabel, C. and Barbehenn, R. (2008). Defensive roles of polyphenol oxidase in plants. In: Induced Plant Resistance to Herbivory, pp. 253–270. Schaller, A., Ed., Springer Science + Business Media.
  • Constabel, C., Bergey, D. and Ryan, C. (1995). Systemin activates synthesis of wound-inducible tomato leaf polyphenol oxidase via the octadecanoid defense signaling pathway. Proc. Natl. Acad. Sci. U.S.A. 92:407–11.
  • Constantinides, S. and Bedford, C. (1967). Multiple forms of phenoloxidase. J. Food Sci. 32:446–450.
  • Decker, H., Schweikardt, T. and Tuczek, F. (2006). The first crystal structure of tyrosinase: All questions answered? Angewandte Chemie—International Edition. 45:4546–4550.
  • Dizik, N. and Knapp, F. (1970). Avocado polyphenoloxidase: Purification, and fractionation on sephadex thin layers. J. Food Sci. 35:282–285.
  • Donetti, M. and Terry, L. (2014). Biochemical markers defining growing area and ripening stage of imported avocado fruit cv. Hass. J. Food Composit. Anal. 34:90–98.
  • Earnshaw, R., Appleyard, J. and Hurst, R. (1995). Understanding physical inactivation processes: Combined preservation opportunities using heat, ultrasound and pressure. Int. J. Food Microbiol. 28:197–219.
  • Eicken, C., Zippel, F., Büldt-Karentzopoulos, K. and Krebs, B. (1998). Biochemical and spectroscopic characterization of catechol oxidase from sweet potatoes (Ipomoea batatas) containing a type-3 dicopper center. In memoriam to Prof. Dr. H. Witzel. FEBS Lett. 436:293–299.
  • Engelbrecht, A. (1982). Intracellular localization of poly-phenoloxidase in avocado fruit. In: South African Avocado Grower´s association Yearbook. pp. 30–31.
  • Espin, J., Morales, M., Varon, R., Tudela, J. and García-Cánovas, F. (1995). A continuous spectrophotometric method for determining the monophenolase and diphenolase activities of apple polyphenol oxidase. Analytic. Biochem. 231:237–246.
  • Espín, J., Trujano, M., Tudela, J. and García-Cánovas, F. (1997). Monophenolase activity of polyphenol oxidase from Haas avocado. J. Agric. Food Chem. 45:1091–1096.
  • Espín, J., Tudela, J. and García-Cánovas, F. (1998). 4-Hydroxyanisole: The most suitable monophenolic substrate for determining spectrophotometrically the monophenolase activity of polyphenol oxidase from fruits and vegetables. Analytic. Biochem. 259:118–126.
  • Esteve, C., D'Amato, A., Marina, M., García, M. and Righetti, P. (2012). Identification of avocado (Perseaamericana) pulp proteins by nano-LC-MS/MS via combinatorial peptide ligand libraries. Electrophoresis. 33:2799–805.
  • FAO. Food and Agriculture Organization of the United Nations Statistics Division. Available from http://faostat3.fao.org
  • Felton, G., Donato, K., Broadway, R. and Duffey, S. (1992). Impact of oxidized plant phenolics on the nutritional quality of dietar protein to a noctuid herbivore, Spodopteraexigua. J. Insect Physiol. 38:277–285.
  • Felton, G., Donato, K., Vecchio, R. and Duffey, S. (1989). Activation of plant foliar oxidases by insect feeding reduces nutritive quality of foliage for noctuid hervivores. J. Chem. Ecol. 15:2667–2694.
  • García-Borrón, J. and Solano, F. (2002). Molecular anatomy of tyrosinase and its related proteins: Beyond the histidine-bound metal catalytic center. Pigment Cell Res. 15:162–173.
  • Gerdemann, C., Eicken, C. and Krebs, B. (2002). The crystal structure of catechol oxidase: New insight into the function of type-3 copper proteins. Accounts Chem.Res. 35:183–191.
  • Gerdes, D. and Parrino-Lowe, V. (1995). Modified atmosphere packaging (MAP) of Fuerte avocado halves. LWT - Food Sci.Technol. 28:12–16.
  • Ginsbach, J., Kieber-Emmons, M., Nomoto, R., Noguchi, A., Ohnishi, Y. and Solomon, E. (2012). Structure/function correlations among coupled binuclear copper proteins through spectroscopic and reactivity studies of NspF. Proc. Natl. Acad. Sci. U.S.A. 109:10793–10797.
  • Golan-Goldhirsh, A., Whitaker, J. and Kahn, V. (1984). Relation between structure of polyphenol oxidase and prevention of browning. Adv.Experiment.Med.Biol. 177:437–56.
  • Goldfeder, M., Kanteev, M., Isaschar-Ovdat, S., Adir, N. and Fishman, A. (2014). Determination of tyrosinase substrate-binding modes reveals mechanistic differences between type-3 copper proteins. Nat.Communicat. 5:4505.
  • Gómez, H., Polyak, I., Thiel, W., Lluch, J. and Masgrau, L. (2012). Retaining glycosyltransferase mechanism studied by QM/MM methods: Lipopolysaccharyl-α-1,4-galactosyltransferase C transfers α-galactose via an oxocarbenium ion-like transition state. J. Am.Chem.Soc. 134:4743–4752.
  • Gómez-López, V. (2002). Some biochemical properties of polyphenol oxidase from two varieties of avocado. Food Chem. 77:163–169.
  • Gooding, P., Bird, C. and Robinson, S. (2001). Molecular cloning and characterization of banana fruit polyphenol oxidase. Planta. 213:748–757.
  • Gstaiger, M. and Aebersold, R. (2009). Applying mass spectrometry-based proteomics to genetics, genomics and network biology. Nat. Rev. Genetic. 10:617–627.
  • Harel, E. and Mayer, A. (1968). Interconversion of sub-units of catechol oxidase from apple chloroplasts. Phytochemistry. 7:199–204.
  • Harel, E., Mayer, A. and Lehman, E. (1973). Multiple forms of Vitisvinifera catechol oxidase. Phytochemistry. 12:2649–2654.
  • Hayashi, R. (1989). Application of high-pressure processing and preservation: Philosophy and development. In: Engineering and Food, pp. 815–826. Spiess, H., Ed., Elsevier applied science, London.
  • Heimdal, H., Larsen, L. and Poll, L. (1994). Characterization of polyphenol oxidase from photosynthetic and vascular lettuce tissues (Lactuca sativa). J. Agric.Food Chem. 42:1428–1433.
  • Hurtado-Fernández, E., Pacchiarotta, T., Mayboroda, O., Fernández-Gutiérrez, A. and Carrasco-Pancorbo, A. (2015). Metabolomic analysis of avocado fruits by GC-APCI-TOF MS: Effects of ripening degrees and fruit varieties. Analytic.Bioanalytic.Chem. 407:547–555.
  • Ibarra-Laclette, E., Méndez-Bravo, A., Pérez-Torres, C., Albert, V., Mockaitis, K., Kilaru, A., López-Gómez, R., Cervantes-Lluevano, J. and Herrera-Estrella, L. (2015). Deep sequencing of the Mexican avocado transcriptome, an ancient angiosperm with a high content of fatty acids. BMC Genom. 16:599.
  • Ioniţă, E., Stănciuc, N., Aprodu, I., Râpeanu, G. and Bahrim, G. (2014). pH-induced structural changes of tyrosinase from Agaricusbisporus using fluorescence and in silico methods. J. Sci.Food Agric. 94:2338–2344.
  • Jackson, I. (1994). Evolution and expression of tyrosinase-related proteins. Pigment Cell Res. 7:241–242.
  • Jacobo-Velázquez, D. and Hernández-Brenes, C. (2010). Biochemical changes during the storage of high hydrostatic pressure processed avocado paste. J. Food Sci. 75:S264–S270.
  • Jaenicke, E. and Decker, H. (2003). Tyrosinases from crustaceans form hexamers. Biochem. J. 371:515–23.
  • Jiménez, M. and García-Carmona, F. (1996). The effect of sodium dodecyl sulphate on polyphenol oxidase. Phytochemistry. 42:1503–1509.
  • Jiménez-Cervantes, C., Solano, F., Kobayashi, T., Urabe, K., Hearing, V., Lozano, J. and García-Borrón, J. (1994). A new enzymatic function in the melanogenic pathway. The 5,6-dihydroxyindole-2-carboxylic acid oxidase activity of tyrosinase-related protein-1 (TRP1). J.Biologic Chem. 269:17993–8000.
  • Jolley, R., Evans, L., Makino, N. and Mason, H. (1974). Oxytyrosinase. J. Biologic.Chem. 249:335–345.
  • Kahn, V. (1975). Polyphenol oxidase activity and browning of three avocado varieties. J. Sci. Food Agric. 26:1319–1324.
  • Kahn, V. and Pomerantz, S. (1980). Monophenolase activity of avocado polyphenol oxidase. Phytochemistry. 19:379–385.
  • Kamerlin, S. and Warshel, A. (2011). Multiscale modeling of biological functions. PCCP. 13:10401–10411.
  • Kanteev, M., Goldfeder, M. and Fishman, A. (2015). Structure-function correlations in tyrosinases. Protein Sci.A Publication Protein Soc. 24:1360–1369.
  • Klabunde, T., Eicken, C., Sacchettini, J. and Krebs, B. (1998). Crystal structure of a plant catechol oxidase containing a dicopper center. Nat.Structur.Biol. 5:1084–1090.
  • Knapp, F. (1965). Some characteristics of eggplant and avocado polyphenolases. J. Food Sci. 30:930–936.
  • Knorr, D. (1993). Effects of high-hydrostatic-pressure processes on food safety and quality. Food Technol. 47:156–161.
  • Kobayashi, T., Urabe, K., Winder, A., Jiménez-Cervantes, C., Imokawa, G., Brewington, T., Solano, F., García-Borrón, J. and Hearing, V. (1994). Tyrosinase related protein 1 (TRP1) functions as a DHICA oxidase in melanin biosynthesis. EMBO J. 13:5818–5825.
  • Lerch, K. (1995). Tyrosinase: Molecular and Active-Site structure. In: Enzymatic browning and its prevention, pp.64–80. Lee, C. and Whitaker, J., Eds., Vol. 600. American Chemical Society. Washington.
  • Lerch, K. (1983). Neurosporatyrosinase: Structural, spectroscopi and catalytic properties. Mol.Cell.Biochem. 52:125–138.
  • Li, L. and Steffens, J. (2002). Overexpression of polyphenol oxidase in transgenic tomato plants results in enhanced bacterial disease resistance. Planta. 215:239–247.
  • Lieberei, R., Biehl, B. and Voigt, J. (1981). Serological studies on phenolase from spinach leaves. Phytochemistry. 20:2109–2116.
  • Maefle, G. and Stahl, A. (1955). Utilization of cull avocados. Proc. Florida State Hort. Soc. 68:136–138.
  • Malviya, N., Srivastava, M., Diwakar, S. and Mishra, S. (2011). Insights to sequence information of polyphenol oxidase enzyme from different source organisms. Appl.Biochem.Biotechnol. 165:397–405.
  • Martínez-Cayuela, M., Rodríguez-Vico, F., Faus, M. and Gil, A. (1989). Partial purification and intracellular localization of cherimoya (Annona cherimoliaMill.)Polyphenoloxidase. J. Plant Physiol. 133:660–663.
  • Mason, H., Fowlks, W. and Peterson, E. (1955). Oxygen transfer and electron transport by the phenolase complex. J. Am.Chem.Soc. 77:2914–2915.
  • Matheis, G. and Whitaker, J. (1984). Modification of proteins by polyphenol oxidase and peroxidase and their products. J. Food Biochem. 8:137–162.
  • Matoba, Y., Kumagai, T., Yamamoto, A., Yoshitsu, H. and Sugiyama, M. (2006). Crystallographic evidence that the dinuclear copper center of tyrosinase is flexible during catalysis. J. Biologic.Chem. 281:8981–8990.
  • Mayer, A. (1966). Catechol oxidase: Enzymic liberation from sugar beet chloroplasts. Phytochemistry. 5:1297–1301.
  • Mayer, A. (2006). Polyphenol oxidases in plants and fungi: Going places? A review. Phytochemistry. 67:2318–2331.
  • Mayer, A. and Harel, E. (1979). Polyphenol oxidases in plants. Phytochemistry. 18:193–215.
  • Mazzafera, P. and Robinson, S. (2000). Characterization of polyphenol oxidase in coffee. Phytochemistry. 55:285–296.
  • McEvily, A., Iyengar, R. and Otwell, W. (1992). Inhibition of enzymatic browning in foods and beverages. Critic. Rev. Food Sci. Nutr. 32:253–273.
  • Meir, S., Naiman, D., Akerman, M., Hyman, J., Zauberman, G. and Fuchs, Y. (1997). Prolonged storage of Hass avocado fruit using modified atmosphere packaging. Postharvest Biol.Technol. 12:51–60.
  • Meyer, H. and Biehl, B. (1980). Activities and multiplicity of phenolase from spinach chloroplasts during leaf ageing. Phytochemistry. 19:2267–2272.
  • Monard, G., Prat-Resina, X., González-Lafont, A. and Lluch, J. (2003). Determination of enzymatic reaction pathways using QM/MM methods. Int. J. Quantum Chem. 93:229–244.
  • Nicolas, J., Richard-Forget, F., Goupy, P., Amiot, M. and Aubert, S. (1994). Enzymatic browning reaction in apple and apple products. Critic. Rev. Food Sci.Nutr. 34:109–157.
  • Noguchi, A., Kitamura, T., Onaka, H., Horinouchi, S. and Ohnishi, Y. (2010). A copper-containing oxidase catalyzes C-nitrosation in nitrosobenzamide biosynthesis. Nat.Chem.Biol. 6:641–643.
  • Oba, K., Iwatsuki, N., Uritani, I., Alvarez, A. and Garcia, V. (1992). Partial purification and characterization of polyphenol oxidase isozymes in banana bud. Biosci Biotechnol Biochem. 56:1027–1030.
  • Oetting, W. and King, R. (1999). Molecular basis of albinism: Mutations and polymorphisms of pigmentation genes associated with albinism. Human Mutat. 13:99–115.
  • Olivares, C., García-Borrón, J. and Solano, F. (2002). Identification of active site residues involved in metal cofactor binding and stereospecific substrate recognition in mammalian tyrosinase. Implications to the catalytic cycle. Biochemistry. 41:679–686.
  • Palou, E., Hernández-Salgado, C., López-Malo, A., Barbosa-Cánovas, G., Swanson, B. and Welti-Chanes, J. (2000). High pressure-processed guacamole. Innovat.Food Sci.Emerg.Technol. 1:69–75.
  • Park, E. and Luh, B. (1985). Polyphenol oxidase of kiwifruit. J. Food Sci. 50:678–684.
  • Parvez, S., Kang, M., Chung, H. and Bae, H. (2007). Naturally occurring tyrosinase inhibitors: Mechanism and applications in skin health, cosmetics and agriculture industries. Phytother.Res. 21:805–816.
  • Pedreschi, R., Muñoz, P., Robledo, P., Becerra, C., Defilippi, B., van Eekelen, H., Mumm, R., Westra, E. and De Vos, R. (2014). Metabolomics analysis of postharvest ripening heterogeneity of Hass avocadoes. Postharvest Biol.Technol. 92:172–179.
  • Raffert, G. and Flurkey, W. (1995). Carbohydrate associated with broad bean polyphenol oxidase is resistant to enzymatic and chemical deglycosylation. Phytochemistry. 38:1355–1360.
  • Raviyan, P., Zhang, Z. and Feng, H. (2005). Ultrasonication for tomato pectinmethylesterase inactivation: Effect of cavitation intensity and temperature on inactivation. J. Food Eng. 70:189–196.
  • Robb, D., Mapson, L. and Swain, T. (1965). On the heterogeneity of the tyrosinase of broad bean (Viciafaba L.). Phytochemistry. 4:731–740.
  • Robinson, S. and Dry, I. (1992). Broad bean leaf polyphenol oxidase is a 60-kilodalton protein susceptible to proteolytic cleavage. Plant Physiol. 99:317–323.
  • Rodriguez-López, J., Tudela, J., Varon, R., García-Carmona, F. and García-Canóvas, F. (1992). Analysis of a kinetic model for melanin biosynthesis pathway. J. Biologic.Chem. 267:3801–3810.
  • Samisch, R. (1937). Contribution to the knowledge of plant phenolases. Plant Physiol. 12:499–508.
  • Sánchez-Ferrer, A., Laveda, F. and García-Carmona, F. (1993). Cresolase activity of potato tuber partially purified in a two-phase partition system. J.Agricul. Food Chem. 41:1225–1228.
  • Sánchez-Ferrer, A., Rodríguez-López, J., García-Cánovas, F. and García-Carmona, F. (1995). Tyrosinase: A comprehensive review of its mechanism. Biochim.Biophys.Acta (BBA) - Prot.Struct.Mol.Enzymol. 1247:1–11.
  • Sánchez-Ferrer, A., Pérez-Gilabert, M., Núñez, E., Bru, R. and García-Carmona, F. (1994). Triton X-114 phase partitioning in plant protein purification. J.Chromatogr. A. 668:75–83.
  • Saura, P., Suardíaz, R., Masgrau, L., Lluch, J. and González-Lafont, A. (2014). Unraveling how enzymes can use bulky residues to drive site-selective C–H activation: The case of mammalian lipoxygenases catalyzing arachidonic acid oxidation. ACS Catal. 4:4351–4363.
  • Shaw,J., Chao,L. and Chen, M. (1991). Isoenzymes of papaya polyphenol oxidase. Botanic. Bull.Acad.Sinica. 32:259–263.
  • Siegbahn, P. and Borowski, T. (2011). Comparison of QM-only and QM/MM models for the mechanism of tyrosinase. Faraday Discussions. 148:109–17.
  • Soliva-Fortuny, R., Elez-Martínez, P., Sebastián-Calderó, M. and Martín-Belloso, O. (2002). Kinetics of polyphenol oxidase activity inhibition and browning of avocado purée preserved by combined methods. J. Food Eng. 55:131–137.
  • Solomon, E., Sundaram, U. and Machonkin, T. (1996). Multicopper oxidases and oxygenases. Chem. Rev. 96:2563–2606.
  • Steffens, E., Harel, M. (1994). Polyphenol oxidase.In: Genetic Engineering of Plant Secondary Metabolism, pp. 275–312. Ellis, B., Kuroki, G. and Stafford, H., Eds., Springer, United States.
  • Sugumaran, M. (2002). Comparative biochemistry of eumelanogenesis and the protective roles of phenoloxidase and melanin in insects. Pigment Cell Research / Sponsored by the European Society for Pigment Cell Research and the International Pigment Cell Society. 15:2–9.
  • Tolbert, N. (1973). Activation of polyphenol oxidase of chloroplasts. Plant Physiol. 51:234–244.
  • Vámos-Vigyázó, L. (1981). Polyphenol oxidases in fruits and vegetables. Critic. Rev.Food Sci.Nutr. 15:49–127.
  • Van Lelyveld, L., Gerrish, C. and Dixont, R. (1984). Enzyme activities and polyphenols related to mesocarpdiscolouration of avocado fruit. Phytochemistry. 23:1531–1534.
  • Vanini, L., Kwiatkowski, A. and Clemente, E. (2010). Polyphenoloxidase and peroxidase in avocado pulp (Perseaamericana Mill.). Ciência E Tecnologia de Alimentos. 30:525–531.
  • Virador, V., Reyes, J., Blanco-Labra, A., Mendiola-Olaya, E., Smith, G., Moreno, A. and Whitaker, J. (2010). Cloning, sequencing, purification, and crystal structure of Grenache (Vitisvinifera) polyphenol oxidase. J. Agric. Food Chem. 58:1189–201.
  • Volbeda, A. and Hol, W. (1989). Crystal structure of hexamerichaemocyanin from Panulirusinterruptus refined at 3.2 A resolution. J. Mol.Biol. 209:249–279.
  • Walter, W. and Purcell, A. (1980). Effect of substrate levels and polyphenol oxidase activity on darkening in sweet potato cultivars. J. Agric. Food Chem. 28:941–944.
  • Warshel, A. (2003). Computer simulations of enzyme catalysis: Methods, progress, and insights. Annual Rev.Biophys.Biomol.Struct. 32:425–443.
  • Warshel, A. and Levitt, M. (1976). Theoretical studies of enzymic reactions: Dielectric, electrostatic and steric stabilization of the carbonium ion in the reaction of lysozyme. J. Mol.Biol. 103:227–249.
  • Weemaes, C., Ludikhuyze, L., Broeck, I. and Hendrickx, M. (1998a). High pressure inactivation of polyphenoloxidases. J. Food Sci. 63:873–877.
  • Weemaes, C., Ludikhuyze, L., Van den Broeck, I. and Hendrickx, M. (1998b). Effect of pH on pressure and thermal inactivation of avocado polyphenol oxidase: A kinetic study. J. Agric. Food Chem. 46:2785–2792.
  • Weemaes, C., Ludikhuyze, L., Van den Broeck, I., Hendrickx, M. and Tobback, P. (1998c). Activity, electrophoretic characteristics and heat inactivation of polyphenoloxidases from apples, avocados, grapes, pears and plums. LWT—Food Sci.Technol. 31:44–49.
  • Weemaes, C., Ludikhuyze, L., Broeck, I. and Hendrickx, M. (1999). Kinetic study of antibrowning agents and pressure inactivation of avocado polyphenoloxidase. J. Food Sci. 64:823–827.
  • Woolf, A., Wibisono, R., Farr, J., Hallett, I., Richter, L., Oey, I., Wholers, M., Zhou, J., Fletcher, G. and Requejo-Jackman, C. (2013). Effect of high pressure processing on avocado slices. Innovat. Food Sci.Emerg.Technol. 18:65–73.
  • Yahia, E. and Gonzalez-Aguilar, G. (1998). Use of passive and semi-active atmospheres to prolong the postharvest life of avocado fruit. LWT—Food Sci.Technol. 31:602–606.
  • Yoruk, R. and Marshall, M. (2003). Physicochemical properties and function of plant polyphenol oxidase: A Review. J. Food Biochem. 27:361–422.
  • Zapata-Rivera, J., Caballol, R. and Calzado, C. (2011a). Comparing the peroxo/superoxo nature of the interaction between molecular O2 and β-diketiminato-copper and nickel complexes. Phys.Chem.Chem.Phys. 13:20241–20247.
  • Zapata-Rivera, J., Caballol, R. and Calzado, C. (2011b). Electronic structure and relative stability of 1:1 Cu-O2 adducts from difference-dedicated configuration interaction calculations. Jf.Computat.Chem. 32:1144–1158.
  • Zekiri, F., Bijelic, A., Molitor, C. and Rompel, A. (2014). Crystallization and preliminary X-ray crystallographic analysis of polyphenol oxidase from Juglansregia (jrPPO1). Acta Crystallograph. Section F, Structur.Biol.Communicat. 70:832–834.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.