1,271
Views
25
CrossRef citations to date
0
Altmetric
Articles

Highly fluorescent gold nanoclusters stabilized by food proteins: From preparation to application in detection of food contaminants and bioactive nutrients

ORCID Icon, ORCID Icon, ORCID Icon &

References

  • Akola, J., Walter, M., Whetten, R. L., Häkkinen, H. and Grönbeck, H. (2008). On the structure of thiolate-protected Au25. J. Am. Chem. Soc. 130:3756–3757.
  • Aswathy, B. and Sony, G. (2014). Cu2+ modulated BSA-Au nanoclusters: A versatile fluorescence turn-on sensor for dopamine. Microchem. J. 116:151–156.
  • Avnesh, K. and Sudesh, K. Y. (2014). Nanotechnology in agri-food sector. Crit. Rev. Food Sci. 54:975–984.
  • Baker, E. N. and Baker, H. M. (2005). Molecular structure, binding properties and dynamics of lactoferrin. Cell Mol. Life Sci. 62:2531–2539.
  • Buzby, J. C. (2010). Nanotechnology for food applications: More questions than answers. J. Consum. Aff. 44:528–545.
  • Cai, Y., Yan, L., Liu, G., Yuan, H. and Xiao, D. (2013). In-situ synthesis of fluorescent gold nanoclusters with electrospun fibrous membrane and application on Hg (II) sensing. Biosens. Bioelectron. 41:875–879.
  • Cao, D., Fan, J., Qiu, J., Tu, Y. and Yan, J. (2013). Masking method for improving selectivity of gold nanoclusters in fluorescence determination of mercury and copperions. Biosens. Bioelectron. 42:47–50.
  • Cao, X., Li, H., Lian, L., Xu, N., Lou, D. and Wu, Y. (2015). A dual-responsive fluorescence method for the detection of clenbuterol based on BSA-protected gold nanoclusters. Anal. Chim. Acta 871:43–50.
  • Chaudhari, K., Xavier, P. L. and Pradeep, T. (2011). Understanding the evolution of luminescent gold quantum clusters in protein templates. ACS Nano 5:8816–8827.
  • Chen, C. W., Wang, C. H., Wei, C. M., Hsieh, C. Y., Chen, Y. T., Chen, Y. F., Lai, C. W., Liu, C. L., Hsieh, C. C. and Chou, P. T. (2009). Highly sensitive emission sensor based on surface plasmon enhanced energy transfer between gold nanoclusters and silver nanoparticles. J. Phys. Chem. C 114:799–802.
  • Chen, Y., Wang, Y., Wang, C., Li, W., Zhou, H., Jiao, H. and Yu, C. (2013). Papain-directed synthesis of luminescent gold nanoclusters and the sensitive detection of Cu2+. J. Colloid Interface Sci. 396:63–68.
  • Chen, Y., Yang, T., Pan, H., Yuan, Y., Chen, L., Liu, M., Zhang, K., Zhang, S. J., Wu, P. and Xu, J. (2014). Photoemission mechanism of water-soluble silver nanoclusters: Ligand-to-Metal-Metal charge transfer vs. strong coupling between surface plasmon and emitters. J. Am. Chem. Soc. 136:1686–1689.
  • Chen, Z., Qian, S., Chen, J. and Chen, X. (2012). Highly fluorescent gold nanoclusters based sensor for the detection of quercetin. J. Nanopart. Res. 14:1–8.
  • Cui, M. L., Liu, J. M., Wang, X. X., Lin, L. P., Jiao, L., Zhang, L. H., Zheng, Z. Y. and Lin, S. Q. (2012). Selective determination of cysteine using BSA-stabilized gold nanoclusters with red emission. Analyst 137:5346–5351.
  • Dass, A. (2009). Mass spectrometric identification of Au68 (SR)34 molecular gold nanoclusters with 34-electron shell closing. J. Am. Chem. Soc. 131:11666–11667.
  • Fabris, L., Antonello, S., Armelao, L., Donkers, R. L., Polo, F., Toniolo, C. and Maran, F. (2006). Gold nanoclusters protected by conformationally constrained peptides. J. Am. Chem. Soc. 128:326–336.
  • Feng, D. Q., Chen, M., Liu, G., Zhu, W., Sun, W., Zhu, R. and Wang, W. (2015). A novel resonance light scattering sensing for glucose based on the conversion of gold nanoclusters into gold nanoparticles. Sens. Actuators, B 219:133–138.
  • Gajhede, M., Schuller, D. J., Henriksen, A., Smith, A. T. and Poulos, T. L. (1997). Crystal structure of horseradish peroxidase C at 2.15 Å resolution. Nat. Struct. Mol. Biol. 4:1032–1038.
  • Gopu, C. L., Krishna, A. S. and Sreenivasan, K. (2015). Fluorimetric detection of hypochlorite using albumin stabilized gold nanoclusters. Sens. Actuators, B 209:798–802.
  • Grütter, M. G., Weaver, L. H. and Matthews, B. W. (1983). Goose lysozyme structure: an evolutionary link between hen and bacteriophage lysozymes?. Nature 303:828–831.
  • Haug, A., Høstmark, A. T. and Harstad, O. M. (2007). Bovine milk in human nutrition—a review. Lipids Health Dis. 6:1.
  • He, S., Li, D., Zhu, C., Song, S., Wang, L., Long, Y. and Fan, C. (2008). Design of a gold nanoprobe for rapid and portable mercury detection with the naked eye. Chem. Commun. 40:4885–4887.
  • Hemmateenejad, B., Shakerizadeh-shirazi, F. and Samari, F. (2014). BSA-modified gold nanoclusters for sensing of folic acid. Sens. Actuat., B 199:42–46.
  • Hu, D., Sheng, Z., Gong, P., Zhang, P. and Cai, L. (2010). Highly selective fluorescent sensors for Hg2+ based on bovine serum albumin-capped gold nanoclusters. Analyst 135:1411–1416.
  • Hu, L., Han, S., Parveen, S., Yuan, Y., Zhang, L. and Xu, G. (2012). Highly sensitive fluorescent detection of trypsin based on BSA-stabilized gold nanoclusters. Biosens. Bioelectron. 32:297–299.
  • Huang, C. C. and Chang, H. T. (2007). Parameters for selective colorimetric sensing of mercury (II) in aqueous solutions using mercaptopropionic acid-modified gold nanoparticles. Chem. Commun. 12:1215–1217.
  • Jadzinsky, P. D., Calero, G., Ackerson, C. J., Bushnell, D. A. and Kornberg, R. D. (2007). Structure of a thiol monolayer-protected gold nanoparticle at 1.1 Å resolution. Science 318:430–433.
  • Jin, R. (2010). Quantum sized, thiolate-protected gold nanoclusters. Nanoscale 2:343–362.
  • Joseph, D. and Geckeler, K. E. (2014). Synthesis of highly fluorescent gold nanoclusters using egg white proteins. Coll. Surf. B 115:46–50.
  • Kaya-Celiker, H. and Mallikarjunan, K. (2012). Better nutrients and therapeutics delivery in food through nanotechnology. Food Eng. Rev. 4:114–123.
  • Kovacs-Nolan, J., Phillips, M. and Mine, Y. (2005). Advances in the value of eggs and egg components for human health. J. Agric. Food Chem. 53:8421–8431.
  • Le Guével, X., Hötzer, B., Jung, G., Hollemeyer, K., Trouillet, V. and Schneider, M. (2011). Formation of fluorescent metal (Au, Ag) nanoclusters capped in bovine serum albumin followed by fluorescence and spectroscopy. J. Phys. Chem. C 115:10955–10963.
  • Lee, J. S., Han, M. S. and Mirkin, C. A. (2007). Colorimetric detection of mercuric Ion (Hg2+) in aqueous media using DNA-functionalized gold nanoparticles. Angew. Chem. Int. Ed. 119:4171–4174.
  • Li, H. W., Yue, Y., Liu, T. Y., Li, D. and Wu, Y. (2013). Fluorescence-enhanced sensing mechanism of BSA-protected small gold-nanoclusters to silver(I) ions in aqueous solutions. J. Phys. Chem. C 117:16159–16165.
  • Li, M., Yang, D. P., Wang, X., Lu, J. and Cui, D. (2013). Mixed protein-templated luminescent metal clusters (Au and Pt) for H2O2 sensing. Nanoscale Res. Lett. 8:1–5.
  • Li, Y., Chen, Y., Huang, L., Ma, L., Lin, Q. and Chen, G. (2015). A fluorescent sensor based on ovalbumin-modified Au nanoclusters for sensitive detection of ascorbic acid. Anal. Methods 7:4123–4129.
  • Lin, H., Li, L., Lei, C., Xu, X., Nie, Z., Guo, M., Huang, Y. and Yao, S. (2013). Immune-independent and label-free fluorescent assay for Cystatin C detection based on protein-stabilized Au nanoclusters. Biosens. Bioelectron. 41:256–261.
  • Lin, Y. H. and Tseng, W. L. (2010). Ultrasensitive sensing of Hg2+ and CH3Hg+ based on the fluorescence quenching of lysozyme type VI-stabilized gold nanoclusters. Anal. Chem. 82:9194–9200.
  • Linhá Tran, M. (2006). Synthesis and spectroscopic observation of dendrimer-encapsulated gold nanoclusters. Chem. Commun. 22:2400–2401.
  • Liu, J., Lu, L., Xu, S. and Wang, L. (2015). One-pot synthesis of gold nanoclusters with bright red fluorescence and good biorecognition Abilities for visualization fluorescence enhancement detection of E. Coli. Talanta 134:54–59.
  • Lu, D., Liu, L., Li, F., Shuang, S., Li, Y., Choi, M. M. and Dong, C. (2014). Lysozyme-stabilized gold nanoclusters as a novel fluorescence probe for cyanide recognition. Spectro. Chim. Acta A 121:77–80.
  • Masson, P. L. and Heremans, J. F. (1971). Lactoferrin in milk from different species. Comp. Biochem. Phys. B: Comp. Biochem. 39:119–IN13.
  • Morales, C. S., Valencia, P. M., Thakkar, A. B., Swanson, E. and Langer, R. (2012). Recent developments in multifunctional hybrid nanoparticles: opportunities and challenges in cancer therapy. Front. Bio. Sci. 4:529–545.
  • Mudedla, S. K., Singam, E. A., Vijay Sundar, J., Pedersen, M. N., Murugan, N. A., Kongsted, J., Agren, H. and Subramanian, V. (2014). Enhancement of internal motions of lysozyme through interaction with gold nanoclusters and its optical imaging. J. Phys. Chem. C 119:653–664.
  • Nakano, T., Ikawa, N. I. and Ozimek, L. (2003). Chemical composition of chicken eggshell and shell membranes. Poultry Sci. 82:510–514.
  • Park, K. S., Kim, M. I., Woo, M. A. and Park, H. G. (2013). A label-free method for detecting biological thiols based on blocking of Hg2+-quenching of fluorescent gold nanoclusters. Biosens. Bioelectron. 45:65–69.
  • Qian, H., Zhu, M., Wu, Z. and Jin, R. (2012). Quantum sized gold nanoclusters with atomic precision. Acc. Chem. Res. 45:1470–1479.
  • Qiao, J., Mu, X., Qi, L., Deng, J. and Mao, L. (2013). Folic acid-functionalized fluorescent gold nanoclusters with polymers as linkers for cancer cell imaging. Chem. Commun. 49:8030–8032.
  • Ravichandran, R. (2010). Nanotechnology applications in food and food processing: Innovative green approaches, opportunities and uncertainties for global market. Green Nanothe: Phys. Chem. 1:72–96.
  • Romagnani, S. (2006). Immunological tolerance and autoimmunity. Intern. Emerg. Med. 1:87–196.
  • Selvaprakash, K. and Chen, Y. C. (2014). Using protein-encapsulated gold nanoclusters as photoluminescent sensing probes for biomolecules. Biosens. Bioelectron. 61:88–94.
  • Selvaprakash, K. and Chen, Y. C. (2014). Using protein-encapsulated gold nanoclusters as photoluminescent sensing probes for biomolecules. Biosens. Bioelectron. 61:88–94.
  • Shao, C., Yuan, B., Wang, H., Zhou, Q., Li, Y., Guan, Y. and Deng, Z. (2011). Eggshell membrane as a multimodal solid state platform for generating fluorescent metal nanoclusters. J. Mater. Chem. 21:2863–2866.
  • Sharma, P., Singh, H., Sharma, S. and Singh, H. (2007). Binding of gold nanoclusters with size-expanded DNA bases: a computational study of structural and electronic properties. J. Chem. Theory Comp. 3:2301–2311.
  • Shi, H., Ou, M. Y., Cao, J. P. and Chen, G. F. (2015). Synthesis of ovalbumin-stabilized highly fluorescent gold nanoclusters and their application as an Hg2+ sensor. RSC Adv. 5:86740–86745.
  • Shiang, Y. C., Huang, C. C., Chen, W. Y., Chen, P. C. and Chang, H. T. (2012). Fluorescent gold and silver nanoclusters for the analysis of biopolymers and cell imaging. J. Mater. Chem. 22:12972–12982.
  • Shoji, R., Miyazaki, T., Niinou, T., Kato, M. and Ishii, H. (2004). Recovery of gold by chicken egg shell membrane-conjugated chitosan beads. J. Mater. Cycles Waste 6:142–146.
  • Simms, G. A., Padmos, J. D. and Zhang, P. (2009). Structural and electronic properties of protein/thiolate-protected gold nanocluster with “staple” motif: A XAS, L-DOS, and XPS study. J. Chem. Phys. 131:214703.
  • Su, L., Shu, T., Wang, Z., Cheng, J., Xue, F., Li, C. and Zhang, X. (2013). Immobilization of bovine serum albumin-protected gold nanoclusters by using polyelectrolytes of opposite charges for the development of the reusable fluorescent Cu2+-sensor. Biosens. Bioelectron. 44:16–20.
  • Tan, Z., Xu, H., Li, G., Yang, X. and Choi, M. M. (2015). Fluorescence quenching for chloramphenicol detection in milk based on protein-stabilized Au nanoclusters. Spectrochim. Acta A 149:615–620.
  • Tao, Y., Lin, Y., Ren, J. and Qu, X. (2013). A dual fluorometric and colorimetric sensor for dopamine based on BSA-stabilized Au nanoclusters. Biosens. Bioelectron. 42:41–46.
  • Tsunoyama, H., Sakurai, H., Negishi, Y. and Tsukuda, T. (2005). Polymer-stabilized gold nanoclusters for aerobic alcohol oxidation. Synfacts 2005:0215–0215.
  • Unnikrishnan, B., Wei, S. C., Chiu, W. J., Cang, J., Hsu, P. H. and Huang, C. C. (2014). Nitrite ion-induced fluorescence quenching of luminescent BSA-Au25nanoclusters: mechanism and application. Analyst 139:2221–2228.
  • Vericat, C., Vela, M. E., Benitez, G., Carro, P. and Salvarezza, R. C. (2010). Self-assembled monolayers of thiols and dithiols on gold: new challenges for a well-known system. Chem. Soc. Rev. 39:1805–1834.
  • Walther, C., Meyer, K., Rennert, R. and Neundorf, I. (2008). Quantum dot− carrier peptide conjugates suitable for imaging and delivery applications. Bioconjugate Chem. 19:2346–2356.
  • Wang, C. W., Chen, Y. N., Wu, B. Y., Lee, C. K., Chen, Y. C., Huang, Y. H. and Chang, H. T. (2016a). Sensitive detection of cyanide using bovine serum albumin-stabilized cerium/gold nanoclusters. Anal. Bioanal. Chem. 408:287–294.
  • Wang, J., Chang, Y., Wu, W. B., Zhang, P., Lie, S. Q. and Huang, C. Z. (2016c). Label-free and selective sensing of uric acid with gold nanoclusters as optical probe. Talanta 152:314–320.
  • Wang, L. L., Qiao, J., Qi, L., Xu, X. Z. and Li, D. (2015). Construction of OVA-stabilized fluorescent gold nanoclusters for sensing glucose. Sci. China Chem. 58:1508–1514.
  • Wang, X., Wu, P., Hou, X. and Lv, Y. (2013). An ascorbic acid sensor based on protein-modified Au nanoclusters. Analyst 138:229–233.
  • Wang, Y. W., Tang, S., Yang, H. H. and Song, H. (2016b). A novel colorimetric assay for rapid detection of cysteine and Hg2+ based on gold clusters. Talanta 146:71–74.
  • Wang, Y., Wang, Y., Zhou, F., Kim, P. and Xia, Y. (2012). Protein-protected Au clusters as a new class of nanoscale biosensor for label-free fluorescence detection of proteases. Small 8:3769–3773.
  • Wei, H., Wang, Z., Yang, L., Tian, S., Hou, C. and Lu, Y. (2010). Lysozyme-stabilized gold fluorescent cluster: synthesis and application as Hg2+ sensor. Analyst 135:1406–1410.
  • Wei, H., Wang, Z., Zhang, J., House, S., Gao, Y. G., Yang, L., Robison, H., Tan, L. H., Xing, H., Hou, C. and Robertson, I. M. (2011). Time-dependent, protein-directed growth of gold nanoparticles within a single crystal of lysozyme. Nature Nanotech. 6:93–97.
  • Welinder, K. G. (1976). Covalent structure of the glycoprotein horseradish peroxidase (EC 1.11. 1.7). FEBS Lett. 72:19–23.
  • Welinder, K. G. (1992). Superfamily of plant, fungal and bacterial peroxidases. Curr. Opin. Struc. BioL. 2:388–393.
  • Wen, F., Dong, Y., Feng, L., Wang, S., Zhang, S. and Zhang, X. (2011). Horseradish peroxidase functionalized fluorescent gold nanoclusters for hydrogen peroxide sensing. Anal. Chem. 83:1193–1196.
  • Wen, X., Yu, P., Toh, Y. R. and Tang, J. (2012). Structure-correlated dual fluorescent bands in BSA-protected Au25nanoclusters. J. Phys. Chem. C 116:11830–11836.
  • Willett, R. L., Baldwin, K. W., West, K. W. and Pfeiffer, L. N. (2005). Differential adhesion of amino acids to inorganic surfaces. Proc. Natl. Acad. Sci. 102:7817–7822.
  • Wu, X., He, X., Wang, K., Xie, C., Zhou, B. and Qing, Z. (2010). Ultrasmall near-infrared gold nanoclusters for tumor fluorescence imaging in vivo. Nanoscale 2:2244–2249.
  • Wu, Z. and Jin, R. (2010). On the ligand's role in the fluorescence of gold nanoclusters. Nano Lett. 10:2568–2573.
  • Xavier, P. L., Chaudhari, K., Verma, P. K., Pal, S. K. and Pradeep, T. (2010). Luminescent quantum clusters of gold in transferrin family protein, lactoferrin exhibiting FRET. Nanoscale 2:2769–2776.
  • Xie, J., Zheng, Y. and Ying, J. Y. (2009). Protein-directed synthesis of highly fluorescent gold nanoclusters. J. Am. Chem. Soc. 131:888–889.
  • Xie, J., Zheng, Y. and Ying, J. Y. (2010). Highly selective and ultrasensitive detection of Hg2+ based on fluorescence quenching of Au nanoclusters by Hg2-Au+ interactions. Chem. Commun. 46:961–963.
  • Xiong, X., Tang, Y., Zhang, L. and Zhao, S. (2015). A label-free fluorescent assay for free chlorine in drinking water based on protein-stabilized gold nanoclusters. Talanta 132:790–795.
  • Xu, Y., Sherwood, J., Qin, Y., Crowley, D., Bonizzoni, M. and Bao, Y. (2014). The role of protein characteristics in the formation and fluorescence of Au nanoclusters. Nanoscale 6:1515–1524.
  • Yamane, H., Asechi, M., Tsuneyoshi, Y., Denbow, D. M. and Furuse, M. (2009). Central L-cysteine induces sleep, and D-cysteine induces sleep and abnormal behavior during acute stress in neonatal chicks. J. Anim. Sci. 80:428–432.
  • Yang, T., Li, Z., Wang, L., Guo, C. and Sun, Y. (2007). Synthesis, characterization, and self-assembly of protein lysozyme monolayer-stabilized gold nanoparticles. Langmuir 23:10533–10538.
  • Yau, S. H., Varnavski, O. and Goodson III, T. (2013). An ultrafast look at Au nanoclusters. Acc. Chem. Res. 46:1506–1516.
  • Zheng, J., Nicovich, P. R. and Dickson, R. M. (2007). Highly fluorescent noble metal quantum dots. Annu. Rev. Phys. Chem. 58:409.
  • Zhu, M., Aikens, C. M., Hollander, F. J., Schatz, G. C. and Jin, R. (2008). Correlating the crystal structure of a thiol-protected Au25 cluster and optical properties. J. Am. Chem. Soc. 130:5883–5885.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.