5,232
Views
98
CrossRef citations to date
0
Altmetric
Reviews

A living model for obesity and aging research: Caenorhabditis elegans

ORCID Icon, ORCID Icon & ORCID Icon

References

  • Ackerman, D. and Gems, D. (2012). The mystery of C. elegans aging: an emerging role for fat. Distant parallels between C. elegans aging and metabolic syndrome? Bioessays 34(6):466–471.
  • Angeli, S., Klang, I., Sivapatham, R., Mark, K., Zucker, D., Bhaumik, D., Lithgow, G. J. and Andersen, J. K. (2013). A DNA synthesis inhibitor is protective against proteotoxic stressors via modulation of fertility pathways in Caenorhabditis elegans. Aging (Albany NY) 5:759–769.
  • Apfeld, J., O'Connor, G., McDonagh, T., DiStefano, P. S. and Curtis, R. (2004). The AMP-activated protein kinase AAK-2 links energy levels and insulin-like signals to lifespan in C. elegans. Genes Dev 18(24):3004–3009.
  • Ashrafi, K. (2006). Mapping out starvation responses. Cell Metab. 3(4):235–236.
  • Ashrafi, K. (2007). Obesity and the regulation of fat metabolism. Worm Book:1–20.
  • Ashrafi, K., Chang, F. Y., Watts, J. L., Fraser, A. G., Kamath, R. S., Ahringer, J. and Ruvkun, G. (2003). Genome-wide RNAi analysis of Caenorhabditis elegans fat regulatory genes. Nature 421:268–272.
  • Bamps, S., Wirtz, J., Savory, F. R., Lake, D. and Hope, I. A. (2009). The Caenorhabditis elegans sirtuin gene, sir-2.1, is widely expressed and induced upon caloric restriction. Mech Ageing Dev. 130(11–12):762–770.
  • Bass, T. M., Weinkove, D., Houthoofd, K., Gems, D. and Partridge, L. (2007). Effects of resveratrol on lifespan in Drosophila melanogaster and Caenorhabditis elegans. Mech Ageing Dev. 128(10):546–552.
  • Baumeister, R. and Ge, L. (2002). The worm in us-Caenorhabditis elegans as a model of human disease. Trends Biotechnol. 20:147–148.
  • Boulin, T., Etchberger, J. F. and Hobert, O. (2006). Reporter gene fusions. Worm Book:1–23.
  • Boyd, W. A., McBride, S. J., Rice, J. R., Snyder, D. W. and Freedman, J. H. (2010). A high-throughput method for assessing chemical toxicity using a Caenorhabditis elegans reproduction assay. Toxicol. Appl. Pharmacol. 245(2):153–159.
  • Brenner, S. (1974). The genetics of Caenorhabditis elegans. Genetics 77:71–94.
  • Brock, T. J., Browse, J. and Watts, J. L. (2006). Genetic regulation of unsaturated fatty acid composition in C. elegans. pLOs Genetics 2:e108.
  • Buchter, C., Ackermann, D., Havermann, S., Honnen, S., Chovolou, Y., Fritz, G., Kampkotter, A. and Watjen, W. (2013). Myricetin-mediated lifespan extension in Caenorhabditis elegans is modulated by DAF-16. Int. J. Mol. Sci. 14(6):11895–11914.
  • Burns, A. R., Wallace, I. M., Wildenhain, J., Tyers, M., Giaever, G., Bader, G. D., Nislow, C., Cutler, S. R. and Roy, P. J. (2010). A predictive model for drug bioaccumulation and bioactivity in Caenorhabditis elegans. Nat. Chem. Biol. 6:549–557.
  • Chauhan, V. M., Orsi, G., Brown, A., Pritchard, D. I. and Aylott, J. W. (2013). Mapping the pharyngeal and intestinal pH of Caenorhabditis elegans and real-time luminal pH oscillations using extended dynamic range pH-sensitive nanosensors. Acs. Nano 25:5577–5587.
  • Chawla, A., Repa, J. J., Evans, R. M. and Mangelsdorf, D. J. (2001). Nuclear receptors and lipid physiology: opening the X-files. Science 294:1866–1870.
  • Chen, Y., Onken, B., Chen, H., Xiao, S., Liu, X., Driscoll, M., Cao, Y. and Huang, Q. (2014a). Mechanism of longevity extension of Caenorhabditis elegans induced by pentagalloyl glucose isolated from eucalyptus leaves. J. Agric. Food Chem. 62(15):3422–3431.
  • Chen, Y., Onken, B., Chen, H., Xiao, S., Liu, X., Driscoll, M., Cao, Y. and Huang, Q. (2014b). Mechanism of longevity extension of Caenorhabditis elegans induced by pentagalloyl glucose isolated from eucalyptus leaves. J. Agric. Food Chem. 62(15):3422–3431.
  • Cheng, J. X. and Xie, X. S. (2004). Coherent anti-Stokes Raman Scattering Microscopy:  Instrumentation, theory, and applications. Feature Article 108:827–840.
  • Colmenares, D., Sun, Q., Shen, P., Yue, Y., McClements, D. J. and Park, Y. (2016). Delivery of dietary triglycerides to Caenorhabditis elegans using lipid nanoparticles: Nanoemulsion-based delivery systems. Food Chem. 202:451–457.
  • Dancy, B. M., Sedensky, M. M. and Morgan, P. G. (2014). Effects of the mitochondrial respiratory chain on longevity in C. elegans. Exp. Gerontol. 56:245–255.
  • Davies, A. G., Friedberg, R. I., Gupta, H., Chan, C. L., Shelton, K. L. and Bettinger, J. C. (2012). Different genes influence toluene- and ethanol-induced locomotor impairment in C. elegans. Drug Alcohol. Depend. 122(1–2):47–54.
  • Doerks, T., Copley, R. R., Schultz, J., Ponting, C. P. and Bork, P. (2002). Systematic identification of novel protein domain families associated with nuclear functions. Genome Res. 12(1):47–56.
  • Eberle, D., Hegarty, B., Bossard, P., Ferre, P. and Foufelle, F. (2004). SREBP transcription factors: Master regulators of lipid homeostasis. Biochimie 86(11):839–848.
  • Elle, I. C., Olsen, L. C., Pultz, D., Rodkaer, S. V. and Faergeman, N. J. (2010). Something worth dying for: Molecular tools for the dissection of lipid metabolism in Caenorhabditis elegans. FEBS Lett. 584(11):2183–2193.
  • Entchev, E. V., Schwudke, D., Zagoriy, V., Matyash, V., Bogdanova, A., Habermann, B., Zhu, L., Shevchenko, A. and Kurzchalia, T. V. (2008). LET-767 is required for the production of branched chain and long chain fatty acids in Caenorhabditis elegans. J. Biol. Chem. 283(25):17550–17560.
  • Felkai. S., Ewbank, J. J., Lemieux, J., Labbé, J. C., Brown, G. G. and Hekimi, S. (1999). CLK-1 controls respiration, behavior and aging in the nematode Caenorhabditis elegans. EMBO J. 18:1793–1792.
  • Felkai, S., Ewbank, J. J., Lemieux, J., Labbé, J. C., Brown, G. G. and Hekimi, S. (1999). CLK-1 controls respiration, behavior and aging in the nematode Caenorhabditis elegans. EMBO J. 18:1783–1792.
  • Feng, J., Bussière, F. and S., H. (2001). Mitochondrial electron transport is a key determinant of life span in Caenorhabditis elegans. Dev Cell. 1:633–644.
  • Fielenbach, N. and Antebi, A. (2008). C. elegans dauer formation and the molecular basis of plasticity. Genes Dev. 22(16):2149–2165.
  • Finley, J. W., Sandlin, C., Holliday, D. L., Keenan, M. J., Prinyawiwatkul, W. and Zheng, J. (2013). Legumes reduced intestinal fat deposition in the Caenorhabditis elegans model system. J. Funct. Foods 5(3):1487–1493.
  • Fitzenberger, E., Boll, M. and Wenzel, U. (2013). Impairment of the proteasome is crucial for glucose-induced lifespan reduction in the mev-1 mutant of Caenorhabditis elegans. Biochim. Biophys. Acta. 1832(4):565–573.
  • Folick, A., Min, W. and Wang, M. C. (2011). Label-free imaging of lipid dynamics using coherent anti-stokes Raman scattering (CARS) and stimulated Raman scattering (SRS) microscopy. Curr. Opin. Genet, Dev. 21(5):585–590.
  • Freudiger, C. W., Min, W., Saar, B. G., Lu, S., Holtom, G. R., He, C., Tsai, J. C., Kang, J. X. and Xie, X. S. (2008). Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy. Science 322(5909):1857–1861.
  • Fuchs, B., Suss, R., Teuber, K., Eibisch, M. and Schiller, J. (2011). Lipid analysis by thin-layer chromatography—A review of the current state. J. Chromatogr. A 1218(19):2754–2774.
  • Gao, C., Gao, Z., Greenway, F. L., Burton, J. H., Johnson, W. D., Keenan, M. J., Enright, F. M., Martin, R. J., Chu, Y. and Zheng, J. (2015). Oat consumption reduced intestinal fat deposition and improved health span in Caenorhabditis elegans model. Nutr. Res. 35(9):834–843.
  • Gill, M. S., Olsen, A., Sampayo, J. N. and Lithgow, G. J. (2003). An automated high-throughput assay for survival of the nematode Caenorhabditis elegans. Free Radical Biol. Med. 35(6):558–565.
  • Gonzalez-Moragas, L., Roig, A. and Laromaine, A. (2015). C. elegans as a tool for in vivo nanoparticle assessment. Adv. Colloid Interface Sci. 219:10–26.
  • Greenspan, P. and Fowler, S. D. (1985). Spectrofluorometric studies of the lipid probe, nile red. J. Lipid Res. 26:781–789.
  • Grishok, A. (2005). RNAi mechanisms in Caenorhabditis elegans. FEBS Lett. 579(26):5932–5939.
  • Grunz, G., Haas, K., Soukup, S., Klingenspor, M., Kulling, S. E., Daniel, H. and Spanier, B. (2012). Structural features and bioavailability of four flavonoids and their implications for lifespan-extending and antioxidant actions in C. elegans. Mech. Ageing. Dev 133(1):1–10.
  • Guha, S., Cao, M., Kane, R. M., Savino, A. M., Zou, S. and Dong, Y. (2013). The longevity effect of cranberry extract in Caenorhabditis elegans is modulated by daf-16 and osr-1. Age (Dordr) 35(5):1559–1574.
  • Guralnik, J. M., Simonsick, E. M., Ferrucci, L., Glynn, R. J., Berkman, L. F., Blazer, D. G., Scherr, P. A. and Wallace, R. B. (1994). A short physical performance battery assessing lower extremity function: Association with self-reported disability and prediction of mortality and nursing home admission. J. Gerontol. 49:M85–94.
  • Hahm, J.-H., Kim, S., DiLoreto, R., Shi, C., Lee, S.-J. V., Murphy, C. T. and Nam, H. G. (2015). C. elegans maximum velocity correlates with healthspan and is maintained in worms with an insulin receptor mutation. Nat. Commun. 6:8919.
  • Hall, D. H. and Altun, Z. F. (2008). C. elegans altas. Cold Spring Harbor Laboratory Press. New York, NY.
  • Harrington, A. J., Hamamichi, S., Caldwell, G. A. and Caldwell, K. A. (2010). C. elegans as a model organism to investigate molecular pathways involved with Parkinson's disease. Dev Dyn. 239(5):1282–1295.
  • Hellerer, T., Axang, C., Brackmann, C., Hillertz, P., Pilon, M. and Enejder, A. (2007). Monitoring of lipid storage in Caenorhabditis elegans using coherent anti-Stokes Raman scattering (CARS) microscopy. Proc. Natl. Acad. Sci. U S A 104(37):14658–14663.
  • Herndon, L. A., Schmeissner, P. J., Dudaronek, J. M., Brown, P. A., Listner, K. M., Sakano, Y., Paupard, M. C., Hall, D. H. and Driscoll, M. (2002). Stochastic and genetic factors influence tissue-specific decline in ageing C. elegans. Nature. 419:808–814.
  • Hobert, O. (2005). Specification of the nervous system. Worm Book:1–19.
  • Holden-Dye, L. and Walker, R. J. (2007). Anthelmintic drugs. Worm Book:1–13.
  • Howitz, K. T., Bitterman, K. J., Cohen, H. Y., Lamming, D. W., Lavu, S., Wood, J. G., Zipkin, R. E., Chung, P., Kisielewski, A., Zhang, L. L., Scherer, B. and Sinclair, D. A. (2003). Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature 425:191–196.
  • Hsu, A. L., Feng, Z., Hsieh, M. Y. and Xu, X. Z. (2009). Identification by machine vision of the rate of motor activity decline as a lifespan predictor in C. elegans. Neurobiol Aging. 30(9):1498–1503.
  • Huang, C., Xiong, C. and Kornfeld, K. (2004). Measurements of age-related changes of physiological processes that predict lifespan of Caenorhabditis elegans. Proc. Natl. Acad. Sci. U S A 101(21):8084–8089.
  • Kahn, B. B., Alquier, T., Carling, D. and Hardie, D. G. (2005). AMP-activated protein kinase: Ancient energy gauge provides clues to modern understanding of metabolism. Cell Metab. 1(1):15–25.
  • Kenyon, C., Chang, J., Gensch, E., Rudner, A. and Tabtland, R. (1993). A C. elegans mutant that lives twice as long as wile type. Nature 366:461–464.
  • Kim, Y. I., Bandyopadhyay, J., Cho, I., Lee, J., Park, D. H. and Cho, J. H. (2014). Nucleolar GTPase NOG-1 regulates development, fat storage, and longevity through insulin/IGF signaling in C. elegans. Mol. Cells 37(1):51–57.
  • Kiyama, Y., Miyahara, K. and Ohshima, Y. (2012). Active uptake of artificial particles in the nematode Caenorhabditis elegans. J. Exp. Biol. 215(Pt 7):1178–1183.
  • Kniazeva, M., Sieber, M., McCauley, S., Zhang, K., Watts, J. L. and Han, M. (2003). Suppression of the ELO-2 FA elongation activity results in alterations of the fatty acid composition and multiple physiological defects, including abnormal ultradian rhythms, in Caenorhabditis elegans. Genetics 163:159–169.
  • Knight, Z. A. and Shokat, K. M. (2007). Chemical genetics: Where genetics and pharmacology meet. Cell 128(3):425–430.
  • Kopelman, P. G. (2000). Obesity as a medical problem. Nature 404:635–643.
  • Lakowski, B. and Hekimi, S. (1998). The genetics of caloric restriction in Caenorhabditis elegans. Proc. Natl. Acad. Sci. USA 95:13091–13096.
  • Lass, A., Zimmermann, R., Oberer, M. and Zechner, R. (2011). Lipolysis—a highly regulated multi-enzyme complex mediates the catabolism of cellular fat stores. Prog. Lipid Res. 50(1):14–27.
  • Lee, H. J., Kong, J., Jang, J. Y., Han, J. S., Ji, Y., Lee, J. and Kim, J. B. (2014). Lipid droplet protein LID-1 mediates ATGL-1-dependent lipolysis during fasting in Caenorhabditis elegans. Mol. Cell, Biol. 34:4165–4176.
  • Lee, J., Kong, J., Jang, J., Han, J., Ji, Y., Lee, J. and Kim, J. (2014). Lipid droplet protein LID-1 mediates ATGL-1-dependent lipolysis during fasting in Caenorhabditis elegans. Mol. Cell. Biol. 34(22):4165–4176.
  • Lemieux, G. A., Liu, J., Mayer, N., Bainton, R. J., Ashrafi, K. and Werb, Z. (2011). A whole-organism screen identifies new regulators of fat storage. Nat. Chem. Biol. 7(4):206–213.
  • Leung, C. K., Wang, Y., Malany, S., Deonarine, A., Nguyen, K., Vasile, S. and Choe, K. P. (2013). An ultra high-throughput, whole-animal screen for small molecule modulators of a specific genetic pathway in Caenorhabditis elegans. PLoS One 8(4):e62166.
  • Li, J., Cui, X., Wang, Z. and Li, Y. (2015). rBTI extends Caenorhabditis elegans lifespan by mimicking calorie restriction. Exp. Gerontol. 67:62–71.
  • Liu, Z., Li, X., Ge, Q., Ding, M. and Huang, X. (2014). A lipid droplet-associated GFP reporter-based screen identifies new fat storage regulators in C. elegans. J. Genet. Genomics. 41(5):305–313.
  • Lublin, A. L. and Link, C. D. (2013). Alzheimer's disease drug discovery: In vivo screening using Caenorhabditis elegans as a model for β-amyloid peptide-induced toxicity. Drug Discov.s Today: Technol. 10(1):e115–e119.
  • Mak, H. Y. (2012). Lipid droplets as fat storage organelles in Caenorhabditis elegans: Thematic Review Series: Lipid Droplet Synthesis and Metabolism: From Yeast to Man. J. Lipid Res. 53(1):28–33.
  • McCay, C., Crowell, M. and Maynard, L. (1935). The effect of retarded growth upon the length of life and upon ultimate size. J. Nutr. 10:63–79.
  • McGhee, J. D. (2007). The C. elegans intestine. Worm Book:1–36.
  • McKay, R. M., McKay, J. P., Avery, L. and Graff, J. M. (2003). C. elegans: A model for exploring the genetics of fat storage. Dev. Cell. 4:131–142.
  • Melov, S. (2007). First version Gene expression changes associated with aging in C. elegans. Worm Book.
  • Minamino, T., Orimo, M., Shimizu, I., Kunieda, T., Yokoyama, M., Ito, T., Nojima, A., Nabetani, A., Oike, Y., Matsubara, H., Ishikawa, F. and Komuro, I. (2009). A crucial role for adipose tissue p53 in the regulation of insulin resistance. Nat. Med. 15(9):1082–1087.
  • Mitchell, D. H., Stiles, J. W., Santelli, J. and Sanadi, D. R. (1979). Synchronous growth and aging of Caenorhabditis elegans in the presence of fluorodeoxyuridine. J. Gerontol. 34:28–36.
  • Miyadera, H., Amino, H., Hiraishi, A., Taka, H., Murayama, K., Miyoshi, H., Sakamoto, K., Ishii, N., Hekimi, S. and Kita, K. (2001). Altered quinone biosynthesis in the long-lived clk-1 mutants of Caenorhabditis elegans. J. Biol. Chem. 276(11):7713–7716.
  • Mukhopadhyay, A., Deplancke, B., Walhout, A. J. and Tissenbaum, H. A. (2005). C. elegans tubby regulates life span and fat storage by two independent mechanisms. Cell, Metab. 2(1):35–42.
  • Murphy, C. T. and Hu, P. J. (2013). Insulin/insulin-like growth factor signaling in C. elegans. Worm Book:1–43.
  • Na, H., Zhang, P., Chen, Y., Zhu, X., Liu, Y., Xie, K., Xu, N., Yang, F., Yu, Y., Cichello, S., Mak, H. Y., Wang, M. C., Zhang, H. and Liu, P. (2015). Identification of lipid droplet structure-like/resident proteins in Caenorhabditis elegans. Biochim. Biophys. Acta. 1853(10 Pt A):2481–2491.
  • Narbonne, P. and Roy, R. (2009). Caenorhabditis elegans dauers need LKB1/AMPK to ration lipid reserves and ensure long-term survival. Nature 457(7226):210–214.
  • Niccoli, T. and Partridge, L. (2012). Ageing as a risk factor for disease. Curr, Biol. 22(17):R741–752.
  • Ogden, C. L., Carroll, M. D., Kit, B. K. and Flegal, K. M. (2014). Prevalence of childhood and adult obesity in the United States, 2011–2012. JAMA 311(8):806–814.
  • Okoli, I., Coleman, J. J., Tampakakis, E., An, W. F., Holson, E., Wagner, F., Conery, A. L., Larkins-Ford, J., Wu, G., Stern, A., Ausubel, F. M. and Mylonakis, E. (2009). Identification of antifungal compounds active against Candida albicans using an improved high-throughput Caenorhabditis elegans assay. PLoS One 4(9):e7025.
  • Olsen, A., Vantipalli, M. C. and Lithgow, G. J. (2006). Using Caenorhabditis elegans as a model for aging and age-related diseases. Ann. N Y Acad. Sci. 1067:120–128.
  • Onken, B. and Driscoll, M. (2010). Metformin induces a dietary restriction-like state and the oxidative stress response to extend C. elegans Healthspan via AMPK, LKB1, and SKN-1. PLoS One 5(1):e8758.
  • O'Rourke, E. J., Soukas, A. A., Carr, C. E. and Ruvkun, G. (2009). C. elegans major fats are stored in vesicles distinct from lysosome-related organelles. Cell. Metab. 10(5):430–435.
  • Page, A. P. and Johnstone, I. L. (2007). The cuticle. Worm Book:1–15.
  • Peng, H., Wei, Z., Luo, H., Yang, Y., Wu, Z., Gan, L. and Yang, X. (2016). Inhibition of fat accumulation by hesperidin in Caenorhabditis elegans. J. Agric. Food Chem. 64(25):5207–5214.
  • Porta-de-la-Riva, M., Fontrodona, L., Villanueva, A. and Ceron, J. (2012). Basic Caenorhabditis elegans methods: Synchronization and observation. J. Vis. Exp. (64):e4019.
  • Roth, B. L., Poot, M., Yue, S. T. and Millard, P. J. (1997). Bacterial viability and antibiotic susceptibility testing with SYTOX green nucleic acid stain. Appl. Environ. Microbiol. 63:2421–2431.
  • Satouchi, K., Hirano, K., Sakaguchi, M., Takehara, H. and Matsuura, F. (1993). Phospholipids from the free-living nematode Caenorhabditis elegans. Lipids 28:837–840.
  • Schleit, J., Wall, V. Z., Simko, M. and Kaeberlein, M. (2011). The MDT-15 subunit of mediator interacts with dietary restriction to modulate longevity and fluoranthene toxicity in Caenorhabditis elegans. PLoS One 6:e28036.
  • Schweiger, M., Schreiber, R., Haemmerle, G., Lass, A., Fledelius, C., Jacobsen, P., Tornqvist, H., Zechner, R. and Zimmermann, R. (2006). Adipose triglyceride lipase and hormone-sensitive lipase are the major enzymes in adipose tissue triacylglycerol catabolism. J. Biol. Chem. 281(52):40236–40241.
  • Senoo-Matsuda, N., Hartman, P. S., Akatsuka, A., Yoshimura, S. and Ishii, N. (2003). A complex II defect affects mitochondrial structure, leading to ced-3- and ced-4-dependent apoptosis and aging. J. Biol. Chem. 278(24):22031–22036.
  • Shmookler Reis, R. J., Xu, L., Lee, H., Chae, M., Thaden, J. J., Bharill, P., Tazearslan, C., Siegel, E., Alla, R., Zimniak, P. and Ayyadevara, S. (2011). Modulation of lipid biosynthesis contributes to stress resistance and longevity of C. elegans mutants. Aging (Albany NY) 3:125–147.
  • Stawicki, T. M., Zhou, K., Yochem, J., Chen, L. and Jin, Y. (2011). TRPM channels modulate epileptic-like convulsions via systemic ion homeostasis. Curr. Biol. 21(10):883–888.
  • Steinberg, G. R. and Kemp, B. E. (2009). AMPK in health and disease. Physiol, Rev. 89(3):1025–1078.
  • Stiernagle, T. (2006). Maintenance of C. elegans. Worm Book:1–11.
  • Stroustrup, N., Ulmschneider, B. E., Nash, Z. M., Lopez-Moyado, I. F., Apfeld, J. and Fontana, W. (2013). The Caenorhabditis elegans Lifespan Machine. Nat. Methods 10(7):665–670.
  • Studenski, S., Perera, S., Wallace, D., Chandler, J. M., Duncan, P. W., Rooney, E., Fox, M. and Guralinik, J. M. (2003). Physical performance measures in the clinical setting. J. Am. Geriatr. Soc. 51:314–322.
  • Sun, Q., Yue, Y., Shen, P., Yang, J. J. and Park, Y. (2016). Cranberry product decreases fat accumulation in Caenorhabditis elegans. J. Med. Food 19(4):427–433.
  • Taira, N., Nguyen, B. C., Be Tu, P. T. and Tawata, S. (2016). Effect of okinawa propolis on PAK1 activity, Caenorhabditis elegans longevity, melanogenesis, and growth of cancer cells. J. Agric. Food Chem. 64(27):5484–5489.
  • Takahashi, M., Ogawara, M., Shimizu, T. and Shirasawa, T. (2012). Restoration of the behavioral rates and lifespan in clk-1 mutant nematodes in response to exogenous coenzyme Q(10). Exp. Gerontol. 47(3):276–279.
  • Tosato, M., Zamboni, V., Ferrini, A. and Cesari, M. (2007). The aging process and potential interventions to extend life expectancy. Clin. Interv. Aging. 2:401–412.
  • Tzanetakou, I. P., Katsilambros, N. L., Benetos, A., Mikhailidis, D. P. and Perrea, D. N. (2012). “Is obesity linked to aging?”: Adipose tissue and the role of telomeres. Ageing Res. Rev. 11(2):220–229.
  • Valdes, A. M., Andrew, T., Gardner, J. P., Kimura, M., Oelsner, E., Cherkas, L. F., Aviv, A. and Spector, T. D. (2005). Obesity, cigarette smoking, and telomere length in women. Lancet. 366(9486):662–664.
  • Van Gilst, M. R., Hadjivassiliou, H. and Yamamoto, K. R. (2005). A Caenorhabditis elegans nutrient response system partially dependent on nuclear receptor NHR-49. Proc. Natl. Acad. Sci. U S A 102(38):13496–13501.
  • Van Raamsdonk, J. M. and Hekimi, S. (2011). FUdR causes a twofold increase in the lifespan of the mitochondrial mutant gas-1. Mech. Ageing. Dev. 132(10):519–521.
  • Volpato, S., Cavalieri, M., Sioulis, F., Guerra, G., Maraldi, C., Zuliani, G., Fellin, R. and Guralnik, J. M. (2010). Predictive value of the short physical performance battery following hospitalization in older patients. J. Gerontol. Series A: Biol. Sci. Med. Sci. 66A(1):89–96.
  • Vrablik, T. L., Petyuk, V. A., Larson, E. M., Smith, R. D. and Watts, J. L. (2015). Lipidomic and proteomic analysis of Caenorhabditis elegans lipid droplets and identification of ACS-4 as a lipid droplet-associated protein. Biochim. Biophys. Acta. 1851(10):1337–1345.
  • Wählby, C., Conery, A. L., Bray, M. A., Kamentsky, L., Larkins-Ford, J., Sokolnicki, K. L., Veneskey, M., Michaels, K., Carpenter, A. E. and O'Rourke, E. J. (2014). High- and low-throughput scoring of fat mass and body fat distribution in C. elegans. Methods 68(3):492–499.
  • Walker, G., Houthoofd, K., Vanfleteren, J. R. and Gems, D. (2005). Dietary restriction in C. elegans: From rate-of-living effects to nutrient sensing pathways. Mech. Ageing. Dev. 126(9):929–937.
  • Wallis, J. G., Watts, J. L. and Browse, J. (2002). Polyunsaturated fatty acid synthesis: What will they think of next? Trends. Biochem. Sci. 27:467–473.
  • Wang, M. C., Min, W., Freudiger, C. W., Ruvkun, G. and Xie, X. S. (2011). RNAi screening for fat regulatory genes with SRS microscopy. Nat. Methods 8(2):135–138.
  • Watts, J. L. (2009). Fat synthesis and adiposity regulation in Caenorhabditis elegans. Trends Endocrinol. Metab 20(2):58–65.
  • Watts, J. L. and Browse, J. (2002). Genetic dissection of polyunsaturated fatty acid synthesis in Caenorhabditis elegans. Proc. Natl. Acad. Sci. U S A 99(9):5854–5859.
  • Wood, W. B. (1988). The nematode Caenorhabditis elegans. Cold Spring Harbor Laboratory Press, pp. 10.
  • Xian, B., Shen, J., Chen, W., Sun, N., Qiao, N., Jiang, D., Yu, T., Men, Y., Han, Z., Pang, Y., Kaeberlein, M., Huang, Y. and Han, J. D. (2013). WormFarm: A quantitative control and measurement device toward automated Caenorhabditis elegans aging analysis. Aging Cell. 12:398–409.
  • Xu, X. Y., Hu, J. P., Wu, M. M., Wang, L. S. and Fang, N. Y. (2015). CCAAT/enhancer-binding protein CEBP-2 controls fat consumption and fatty acid desaturation in Caenorhabditis elegans. Biochem. Biophys. Res. Commun. 468(1–2):312–318.
  • Yang, F., Vought, B. W., Satterlee, J. S., Walker, A. K., Jim Sun, Z. Y., Watts, J. L., DeBeaumont, R., Saito, R. M., Hyberts, S. G., Yang, S., Macol, C., Iyer, L., Tjian, R., van den Heuvel, S., Hart, A. C., Wagner, G. and Naar, A. M. (2006). An ARC/Mediator subunit required for SREBP control of cholesterol and lipid homeostasis. Nature 442(7103):700–704.
  • Yasuda, K., Adachi, H., Fujiwara, Y. and Ishii, N. (1999). Protein carbonyl accumulation in aging dauer formation-defective (daf) mutants of Caenorhabditis elegans. J. Gerontol. A Biol. Sci. Med. Sci. 54:B47–51.
  • Yen, K., Le, T. T., Bansal, A., Narasimhan, S. D., Cheng, J. X. and Tissenbaum, H. A. (2010). A comparative study of fat storage quantitation in nematode Caenorhabditis elegans using label and label-free methods. PLoS One 5:e12810.
  • Zhang, J., Lu, L. and Zhou, L. (2015). Oleanolic acid activates daf-16 to increase lifespan in Caenorhabditis elegans. Biochem. Biophys. Res. Commun. 468(4):843–849.
  • Zhang, J., Na, H., Liu, Z., Zhang, S., Xue, P., Chen, Y., Pu, J., Peng, G., Huang, X., Yang, F., Xie, Z., Xu, T., Xu, P., Ou, G., Zhang, S. O. and Liu, P. (2012). Proteomic study and marker protein identification of Caenorhabditis elegans lipid droplets. Mol. Cell. Proteomics 11:317–328.
  • Zhang, Y., Lv, T., Xue, T., Liu, H., Zhang, W., Ding, X. and Zhuang, Z. (2015). Anti-aging effect of polysaccharide from Bletilla striata on nematode Caenorhabditis elegans. Pharmacogn Mag. 11:449–454.
  • Zheng, J., Enright, F., Keenan, M., Finley, J., Zhou, J., Ye, J., Greenway, F., Senevirathne, R. N., Gissendanner, C. R., Manaois, R., Prudente, A., King, J. M. and Martin, R. (2010). Resistant starch, fermented resistant starch, and short-chain fatty acids reduce intestinal fat deposition in Caenorhabditis elegans. J. Agric. Food Chem. 58(8):4744–4748.
  • Zheng, S. Q., Ding, A. J., Li, G. P., Wu, G. S. and Luo, H. R. (2013). Drug absorption efficiency in Caenorhabditis elegans delivered by different methods. PLoS One 8:e56877.
  • Zheng, S. Q., Huang, X. B., Xing, T. K., Ding, A. J., Wu, G. S. and Luo, H. R. (2016). Chlorogenic acid extends the lifespan of Caenorhabditis elegans via insulin/IGF-1 signaling pathway. J. Gerontol. A Biol. Sci. Med. Sci.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.