5,391
Views
183
CrossRef citations to date
0
Altmetric
Articles

Active and intelligent packaging: The indication of quality and safety

&

References

  • Abad, E., Palacio, F., Nuin, M., de Zárate, A. G., Juarros, A., Gómez, J. M. and Marco, S. (2009). RFID smart tag for traceability and cold chain monitoring of foods: Demonstration in an intercontinental fresh fish logistic chain. J. Food Eng. 93:394–399.
  • Aday, M. S., Caner, C. and Rahvali, F. (2011). Effect of oxygen and carbon dioxide absorbers on strawberry quality. Postharvest Biol. Tech. 62:179–187.
  • Agerhem, H. and Nilsson, H. J. (1981). Substrate composition and use thereof. United States Patent Publication US 4284719.
  • Ahn, B. J., Gaikwad, K. K. and Lee, Y. S. (2016). Characterization and properties of LDPE film with gallic-acid-based oxygen scavenging system useful as a functional packaging material. J. Appl. Polym. Sci. 133:44138.
  • Ali, S., Masud, T., Ali, A., Abbasi, K. S. and Hussain, S. (2016). Influence of packaging material and ethylene scavenger on biochemical composition and enzyme activity of apricot cv. Habi at ambient storage. Food Sci. Qual. Manag. 35:73–82.
  • Altieri, C., Sinigaglia, M., Corbo, M. R., Buonocore, G. G., Falcone, P. and Del Nobile, M. A. (2004). Use of entrapped microorganisms as biological oxygen scavengers in food packaging applications. LWT - Food Sci. Technol. 37:9–15.
  • Anthierens, T., Ragaert, P., Verbrugghe, S., Ouchchen, A., De Geest, B. G., Noseda, B., Mertens, J., Beladjal, L., De Cuyper, D., Diericks, W., Du Prez, F. and Devlieghere, F. (2011). Use of endospore-forming bacteria as an active oxygen scavenger in plastic packaging materials. Innov. Food Sci. Emerg. Technol. 12:594–599.
  • Azeredo, H. M. C. (2009). Nanocomposites for food packaging applications. Food Res.Inter. 42:1240–1253.
  • Azeredo, H. M. C. (2013). Antimicrobial nanostructures in food packaging. Trends Food Sci. Technol. 30:56–69.
  • Baldwin, E. A. (1994). Edible coatings for fresh fruits and vegetables: past, present, and future. In: Edible Coatings and Films to Improve Food Quality, pp. 25–64. Krochta, J. M., Baldwin, E. A., and Nisperos-Carriedo, M. O., Eds., Technomic, Lancaster.
  • Bazzano, M., Barolo, C., Buscaino, R., D'Agostino, G., Ferri, A., Sangermano, M. and Pisano, R. (2016). Ind. Eng. Chem. Res. 55:579–585.
  • Beaudry, R. (2007). MAP as a basis for active packaging. In: Intelligent and Active Packaging for Fruits and Vegetables, pp. 31–55. Wilson, C. L., Ed., CRC Press, Boca Raton, FL.
  • Blixt, K. G., Tornmarck, S. I. A., Juhlin, R., Salenstedt, K. R. and Tiru, M. (1977). Enzymatic substrate composition adsorbed on a carrier. United States Patent Publication US 4043871.
  • Blixt, K. G., Tornmarck, S. I. A., Juhlin, R., Salenstedt, K. R. and Tiru, M. (1980). Enzymatic substrate composition adsorbed on a carrier. United States Patent Publication US 4184920.
  • Brewer, A. and Sloan, N. (1999). Intelligent tracking in manufacturing. J. Intell. Manuf. 10:245–250.
  • Brody, A. L., Bugusu, B., Han, J. H., Sand, C. K. and McHugh, T. H. (2008). Innovative Food Packaging Solutions. J. Food. Sci. 73:R107–116.
  • Brody, A. L., Strupinsky, E. R. and Kline, L. R. (2001). Active Packaging for Food Applications. CRC Press, Boca Raton, FL.
  • Burana, C., Yamane, K. and Srilaong, V. (2008). Effect of EthylBloc® sachet on quality and longevity in potted carmations (Dianthus caryophyllus L.). Agricultural Sci. J. 39:203–205.
  • Byun, Y., Darby, D., Cooksey, K., Dawson, P. and Whiteside, S. (2011). Development of oxygen scavenging system containing a natural free radical scavenger and a transition metal. Food Chem. 124:615–619.
  • Byun, Y. and Whiteside, S. (2011). Ascorbyl palmitate-β-cyclodextrin inclusion complex as an oxygen scavenging microparticle. Carbohydr. Polym. 87:2114–2119.
  • Byun, Y., Bae, H. J. and Whiteside, S. (2012). Active warm-water fish gelatin film containing oxygen scavenging system. Food Hydrocol. 27:250–255.
  • Cardona, E. D., Noriega, M. P. and Sierra, J. D. (2011). Oxygen scavengers impregnated in porous activated carbon matrix for food and beverage packaging applications. J. Plast. Film. Sheet. 28:63–78.
  • Cavallini, M. and Melucci, M. (2015). Organic materials for time-temperature integrator devices. ACS Appl. Mater. Interfaces 7:16897–16906.
  • Cha, D. S. and Chinnan, M. S. (2004). Biopolymer-based antimicrobial packaging: A review. Crit. Rev. Food Sci. Nutr. 44:223–237.
  • Chaix, E., Guillaume, C. and Guillard, V. (2014). Oxygen and carbon dioxide solubility and diffusivity in solid food matrices: A review of past and current knowledge. Compr. Rev. Food Sci. Food Saf. 13:261–286.
  • Chen, J. and Brody, A. L. (2013). Use of active packaging structures to control the microbialquality of a ready-to-eat meat product. Food Control. 30:306–310.
  • Ching, T. Y., Cai, G., Craig, D., Galland, M. S., Goodrich, J. L., Leonard, J. P., Matthews, A., Russell, K. W. and Yang, H. (1999). World Patent Publication WO 1999/048963.
  • Choi, D. Y., Jung, S. W., Kim, T. J. and Lee, S. J. (2014). A prototype of time temperature integrator (TTI) with microbeads-entrapped microorganisms maintained at a constant concentration. J. Food Eng. 120:118–123.
  • Chouliara, E., Badeka, A., Savvaidis, I. and Kontominas, M. G. (2008). Combined effect of irradiation and modified atmosphere packaging on shelf-life extension of chicken breast meat: Microbiological, chemical and sensory changes. Eur. Food Res. Technol. 226:877–888.
  • Clarke, R. (2001). Radio frequency identification: smart or intelligent packaging? J. Packag. Sci. Technol. Japan 10:233–247.
  • Coloma, A., Rodríguez, F. J., Bruna, J. E., Guarda, A. and Galotto, M. J. (2014). Development of an active film with natural zeolite as ethylene scavenger. J. Chil. Chem. Soc. 59:2409–2414.
  • Corval, A., Kuldová, K., Eichen, Y., Pikramenou, Z., Lehn, J. M. and Trommsdorff, H. P. (1996). Photochromism and thermochromism driven by intramolecular proton transfer in dinitrobenzylpyridine compounds. J. Physical Chem. 100:19315–19320.
  • Crump, J. W., Chau, C. C., Mckedy, G. E., Payne, D. S., Powers, T. H., Solovyov, S. and Hurley, T. J. (2011). Oxygen and carbon dioxide absorption in a single use container with an absorbent support below the filter. United States Patent Publication US 2012/0171333 A1.
  • Damaj, Z., Joly, C. and Guillon, E. (2015). Toward new polymeric oxygen scavenging systems: formation of poly(vinyl alcohol) oxygen scavenger film. Packag. Technol. Sci. 28:293–302.
  • Day, B. P. F. (2008). Active packaging of food. In: Smart Packaging Technologies for Fast Moving Consumer Goods, pp. 1–18. Kerry, J. and Butler, P., Eds., John Wiley & Sons, England.
  • De Moura, M. R., Fauze, F. A., Avena-Bustillos, R. J., McHugh, T. H., Krochta, J. M. and Mattoso, L. H. C. (2009). Improved barrier and mechanical properties of novel hydroxypropyl methylcellulose edible films with chitosan/tripolyphosphate nanoparticles. J. Food Eng. 92:448–553.
  • Edens, L., Farin, F., Ligtvoet, A. F. and Van Der Platt, J. B. (1992). Dry yeast immobilized in wax or paraffin for scavenging oxygen. United States Patent Publication US 5106633.
  • Eitenmiller, R. R., Ye, L. and Landen, W. O. (2008). Ascorbic acid: vitamin C. In: Vitamin Analysis for Health and Food Science, pp. 231–90. Eitenmiller, R. R., Ye, L., and Landen, W. O., Eds., Taylor & Francis, New York.
  • Ellouze, M., Pichaud, M., Bonaiti, C., Coroller, L., Couvert, O., Thuault, D. and Vaillant, R. (2008). Modelling pH evolution and lactic acid production in the growth medium of a lactic acid bacterium: Application to set a biological TTI. Int. J. Food Microbiol. 128:101–107.
  • Erickson, M. C. (1997). Lipid oxidation: Flavor and nutritional quality deterioration in frozen food. In: Quality of Frozen Food, pp. 141–173. Erickson, M. C. and Hung, Y. C., Eds., Chapman & Hall, New York.
  • Espitia, P. J., Avena Bustillos, R. D., Du, W., Teófilo, R. F., Williams, T. G., Wood, D. F., McHugh, T. H. and Soares, N. F. (2014). Optimal antimicrobial formulation and physical–mechanical properties of edible films based on Açaí and pectin for food preservation. Food Packag. Shelf Life 2:38–49.
  • Frank, I., Grimme, S. and Peyerimhoff, S. D. (1996). Quantum chemical investigations of the thermal and photoinduced proton-transfer reactions of 2-(2′, 4′-dinitrobenzyl)pyridine. J. Phys. Chem. 100:16187–16194.
  • Gailkwad, K. K. and Lee, Y. S. (2016). Novel natural phenolic compound-based oxygen scavenging system for active packaging applications. J. Food Meas. Charact. 10:533–538.
  • Giannakourou, M. C., Koutsoumanis, K., Nychas, G. J. E. and Taoukis, P. S. (2005). Field evaluation of the application of time temperature integrators for monitoring fish quality in the chill chain. Int. J. Food Microbiol. 102:323–336.
  • Gouvêa, D. M., Mendonça, R. C. S., Lopez, M. E. S. and Batalha, L. S. (2016). Absorbent food pads containing bacteriophages for potential antimicrobial use in refrigerated food products. LWT — Food Sci. Technol. 67:159–166.
  • Gurudatt, K., Tarun, J., Pal, A. A. and Kumar, R. A. (2011). Ethylene adsorbent packaging or barrier material and method of making the same. United States Patent Publication US 20110300768 A1.
  • Haarer, D. and Eichen, Y. (2006). Substrate for packaging perishable goods or for application onto same and method for determining the quality of said goods. United States Patent Publication US 7081364.
  • Hansen, A. Å., Moen, B., Rødbotten, M., Berget, I. and Pettersen, M. K. (2016). Effect of vacuum or modified atmosphere packaging (MAP) in combination with a CO2 emitter on quality parameters of cod loins (Gadus morhua). Food Packag. Shelf. 9:29–37.
  • Hartman, B. (2003). A new technology for detecting food spoilage. Book Abstr. IFT Ann. Meeting. July 12–16, 2003. Chicago, IL.
  • Hogan, S. A. and Kerry, J. P. (2008). Smart packaging of meat and poultry products. In: Smart Packaging Technologies, pp. 33–59. Kerry, J. and Butler, P., Eds., John Wiley & Sons, Ltd, West Sussex.
  • Holck, A. L., Pettersen, M. K, Moen, M. H. and Sørheim, O. (2014). Prolonged shelf life and reduced drip loss of chicken filets by the use of carbon dioxide emitters and modified atmosphere packaging. J. Food Protect. 7:1052–1240.
  • HortResearch. (2004). ripeSense®. [On-line]. Available: http://www.ripesense.com/pdf_store/ProductOverview.pdf. Accessed July, 2009.
  • Hotckiss, J. H., Watkins, C. B. and Sanchez, D. G. (2007). Release of 1-Methylcyclopropene from heat-pressed polymer films. J. Food Sci. 72:E330–E334.
  • Hurme, E. (2003). Detecting leaks in modified atmosphere packaging. In: Novel Food Packaging Techniques, pp. 276–286. Ahvenainen, R., Ed., Woodhead Publishing Ltd., Cambridge.
  • Igene, J. O., Yamauchi, K., Pearson, A. M., Gray, J. I. and Aust, S. D. (1985). Evaluation of 2-thiobarbituric acid reactive substances (TBARS) in relation to warmed-over flavor (WOF) development in cooked chicken. J. Agric. Food Chem. 33:364–367.
  • Ilkenhans, T., Poulston, S. and Smith, A. W. J. (2013). Adsorption of volatile organic compounds derived from organic matter. United States Patent Publication US 8,480,794 B2.
  • Imran, M., Revol-Junelles, A. M., Martyn, A., Tehrany, E. A., Jacquot, M., Linder, M. and Desobry, S. (2010). Active food packaging evolution: Transformation from micro- to nanotechnology. Crit. Rev. Food Sci. Nutr. 50:799–821.
  • Janjarasskul, T. and Krochta, J. M. (2010). Edible packaging materials. Annu. Rev. Food Sci. Technol. 1:415–48.
  • Janjarasskul, T., Min, S. C. and Krochta, J. M. (2011b). Storage stability of ascorbic acid incorporated in edible whey protein films. J. Agric. Food Chem. 59:12424–12432.
  • Janjarasskul, T., Min, S. C. and Krochta, J. M. (2013). Triggering mechanisms for oxygen-scavenging function of ascorbic acid-incorporated whey protein isolate films. J. Sci. Food Agric. 93:2939–2944.
  • Janjarasskul, T., Sothornvit, R. and McHugh, T. (2016b). Edible films and coatings for fresh and minimally processed fruits and vegetables. In: Fresh-Cut Fruits and Vegetables: Technology, Physiology, and Safety, pp. 333–402. Pareek, S., Ed., Pareek, S. CRC Press, Boca Raton, FL.
  • Janjarasskul, T., Tananuwong, K. and Krochta, J. M. (2011a). Whey protein isolate film with oxygen scavenging function by incorporation of ascorbic acid. J. Food Sci. 76:E561–E568.
  • Janjarasskul, T., Tananuwong, K., Kongpensook, V., Tantratian, S. and Kokpol, S. (2016a). Shelf life extension of sponge cake by active packaging as an alternative to direct addition of chemical preservatives. LWT - Food Sci. Technol. 72:166–174.
  • Johansson, K., Winestrand, S., Johansson, C., Järnström, L. and Jönsson, L. J. (2012). Oxygen-scavenging coatings and films based on lignosulfonates and laccase. J. Biotechnol. 161:14–18.
  • Jones, P., Clarke-Hill, C., Shears, P., Comfort, D. and Hillier, D. (2004). Radio frequency identification in the UK: Opportunities and challenges. Int. J. Retail Distrib. Manag. 32:164–171.
  • Joven, R., Garcia, A., Arias, A. and Medina, J. (2015). Development of an Active thermoplastic film with oxygen scavengers made of activated carbon and sodium erythorbate. Packag. Technol. Sci. 28:113–121.
  • Käkkäinen, M. (2003). Increasing efficiency in the supply chain for short shelf life goods using RFID tagging. Int. J. Retail Distrib. Manag. 31:529–536.
  • Käkkäinen, M. and Holmström, J. (2002). Wireless product identification: Enabler for handling efficiency, customization and information sharing. Supply Chain Manag. 7:242–252.
  • Kerry, J. P., O'Grady, M. N. and Hogan, S. A. (2006). Past, current and potential utilisation of active and intelligent packaging systems for meat and muscle-based products: A review. Meat Sci. 74:113–130.
  • Kim, K., Kim, E. and Lee, S. J. (2012). New enzymatic time–temperature integrator (TTI) that uses laccase. J. Food Eng. 113:118–123.
  • Kim, M. J., Jung, S. W., Park, H. R. and Lee, S. J. (2012). Selection of an optimum pH-indicator for developing lactic acid bacteria-based time–temperature integrators (TTI). J. Food Eng. 113:471–478.
  • Kim, M. J., Shin, H. W. and Lee, S. J. (2016). A novel self-powered time-temperature integrator (TTI) using modified biofuel cell for food quality monitoring. Food Control 70:167–173.
  • Khankaew, S., Mills, A., Yusufu, D., Wells, N., Hodgen, S., Boonsupthip, W. and Suppakul, P. (2016). Multifunctional anthraquinone-based sensors: UV, O2 and time. Sensor Actuat. B Chem. 238:76–82.
  • Khankaew, S., Nandhivajrin, C., Boonsupthip, W., Pechyen, C. and Suppakul, P. (2014). Effect of nano-semiconductors and sacrificial electron donors on color transition of anovel UV-activated oxygen bio-indicator. The Proc. 19th IAPRI World Conf. Packag. June 15–18, 2014. Melbourne, Australia.
  • Klein, R. A., Riley, M. R., DeCianne, D. M. and Srinavakul, N. (2006). Non-invasive colorimetric ripeness indicator. United States Patent Application Publication US 2006/0127543 A1.
  • Kleist, R. A., Chapman, T. A., Sakai, D. A. and Jarvis, B. S. (2005). RFID Labeling: Smart Labeling Concepts and Applications for the Consumer Packaged Goods Supply Chain, 2nd ed. Printronix, Inc., Irvene.
  • Koutsoumanis, K., Taoukis, P. S. and Nychas, G. J. E. (2005). Development of a safety monitoring and assurance system for chilled food products. Int. J. Food Microbiol. 100:253–260.
  • Kreyenschmidt, J., Christiansen, H., Hübner, A., Raab, V. and Petersen, B. (2010). A novel photochromic time-temperature indicator to support cold chain management. Int. J. Food Sci. Technol. 45:208–215.
  • Kubacka, A., Diez, M. S., Rojo, D., Bargiela, R., Ciordia, S., Zapico, I., Albar, J. P., Barbas, C., Martins dos Santos, V. A. P., Fernandez-Garcia, M. and Ferrer, M. (2014). Understanding the antimicrobial mechanism of TiO2-based nanocomposite films in a pathogenic bacterium. Sci. Rep., Article number: 4134. doi:10.1038/srep04134
  • Kulchan, R., Boonsupthip, W., Jinkarn, T. and Suppakul, P. (2016). Developing a novel colorimetric indicator for monitoring rancidity reaction and estimating the accelerated shelf life of oxygen-sensitive dairy products. Int. Food Res. J. 23:1092–1099.
  • Kumar, P., Reinitz, H. W., Simunovic, J., Sandeep, K. P. and Franzon, P. D. (2009). Overview of RFID technology and its applications in the food industry. J. Food Sci. 74:R101–R106.
  • Kumar, S. and Budin, E. M. (2006). Prevention and management of product recalls in the processed food industry: A case study based on an exporter's perspective. Technovation 26:739–750.
  • Labuza, T. P. (1982). Shelf-life Dating of Foods. Food and Nutrition Press, Westport.
  • Labuza, T. P. (1996). An introduction to active packaging for foods. Food Technol. 50:68–71.
  • Lee, H. L., An, D. S. and Lee, D. S. (2016). Effect of initial gas flushing or vacuum packaging on the ripening dynamics and preference for kimchi, a Korean fermented vegetable. Packag. Technol. Sci. doi:10.1002/pts.
  • Lee, J. W., Cha, D. S., Hwang, K. T. and Park, H. J. (2003). Effects of CO2 absorbent and high-pressure treatment on the shelf-life of packaged kimchi products. Int. J. Food Sci. Tech. 38:519–524.
  • Lee, Y. S., Beaudry, R., Kim, J. N. and Harte, B. R. (2006). Development of a 1-Methylcyclopropene (1-MCP) sachet release system. J. Food Sci. 71:C1–C6.
  • Li, S., Visich, J. K., Khumawala, B. M. and Zhang, C. (2006). Radio frequency identification technology: Applications, technical challenges and strategies. Sensor Rev. 26:193–202.
  • Liu, B. T., Shui, Y. H. and Zhu, G. Y. (2012). Adsorption of a non-woven fabric with activated carbon for CO2. Adv. Mat. Res. 518–523:683–686.
  • Llorens, A., Lloret, E., Picouet, P. A., Trbojevich, R. and Fernandez, A. (2012). Metallic-based micro and nanocomposites in food contact materials and active food packaging. Trends Food Sci. Technol. 24:19–29.
  • Lomastro, F. and Vestrucci, C. (2015). Theoritical evaluation of oxygen barrier on coffee pod. Italian J. Food Sci. Special issue:46–49.
  • López-Rubio, A., Lagarón, J. M. and Ocio, M. J. (2008). Active polymer packaging of non-meat food products. In: Smart packaging Technologies for Fast Moving Consumer Goods, pp. 19–32. Kerry, J. and Butler, P., Eds., John Wiley & Sons, England.
  • Macnish, A. J., Leonard, R. T. and Nell, T. A. (2011). Sensitivity of potted foliage plant genotypes to ethylene and 1-methylocyclopropene. HortScience. 46:1127–1131.
  • Manske, W. J. (1976). Selected time interval indicating device. United States Patent Publication US 3954011.
  • McMurry, J. E. (2007). Introduction to Organic Chemistry. Thomson Higher Educ.
  • Mills, A., Doyle, G., Peiro, A. M. and Durrant, J. (2006). Demonstration of a novel, flexible, photocatalytic oxygen-scavenging polymer film. J. Photochem. Photobiol. A: Chem. 177:328–331.
  • Mills, A. and Hazafy, D. (2008). A solvent-based intelligence ink for oxygen. Analyst 133:213–218.
  • Mills, A. and Hazafy, D. (2009). Nanocrystalline SnO2-based, UVB-activated, colourimetric oxygen indicator. Sensors Actuators B 136:344–349.
  • Miltz, J., Bigger, S. W., Sonneveld, C. and Suppakul, P. (2011). Antimicrobial packaging material. United States Patent Publication US 8,017,667 B2.
  • Mitsubishi gas chemical company, Inc. (2016). Ageless® oxygen absorber for preserving product freshness, purity and integrity. [On-line]. Available: http://ageless.mgc-a.com/AGELESS%20brochure.pdf. Accessed August, 2016.
  • Munro, I. C., Haighton, L. A., Lynch, B. S. and Tafazoli, S. (2009). Technological challenges of addressing new and more complex migrating products from novel food packaging materials. Food Addit. Contam. 26:1534–1546.
  • Nezat, J. W. (1985). Composition for absorbing oxygen and carrier thereof. United States Patent Publication US 4510162.
  • Ngai, E. W. T., Moon, K. K. L., Riggins, F. J. and Yi, C. Y. (2008). RFID research: An academic literature review (1995–2005) and future research directions. Int. J. Prod. Econ. 112:510–520.
  • Nicoli, M. C., Manzocco, L. and Calligaris, S. (2009). Packaging and the shelf life of coffee. In: Food Packaging and Shelf life: A Practical Guide, pp. 199–214. Robertson, G. L., Ed., CRC Press, Baca Raton, FL.
  • Nopwinyuwong, A., Boonsupthip, W., Pechyen, C. and Suppakul, P. (2012a). Preparation of polydiacetylene vesicle and amphiphilic polymer as time-temperature indicator. Adv. Mat. Res. 506:552–555.
  • Nopwinyuwong, A., Boonsupthip, W., Pechyen, C. and Suppakul, P. (2012b). Response modeling for polydiacetylene/silica nanocomposite as time-temperature indicator. The Book Abstr. 5th Shelf Life Int. Meeting 2012. May 30 – June 1, 2012. Changwon, South Korea.
  • Nopwinyuwong, A., Boonsupthip, W., Pechyen, C. and Suppakul, P. (2013). Formation of polydiacetylene/silica nanocomposite as a colorimetric indicator: Effect of time and temperature. Adv. Polym. Technol. 32:E724–E731.
  • Nopwinyuwong, A., Kitaoka, T., Boonsupthip, W., Pechyen, C. and Suppakul, P. (2014). Effect of cationic surfactants on characteristics and colorimetric behavior of polydiacetylene/silica nanocomposite as time–temperature indicator. Appl. Surface Sci. 314:426–432.
  • Nopwinyuwong, A., Trevanich, S. and Suppakul, P. (2010). Development of a novel colorimetric indicator label for monitoring freshness of intermediate-moisture dessert spoilage. Talanta 81:1126–1132.
  • Oliveira, F., Sousa-Gallagher, M. J, Mahajan, P. V. and Teixeira, J. A. (2012). Evaluation of MAP engineering design parameters on quality of fresh-sliced mushrooms. J. Food Eng. 108:507–514.
  • Olmi, G. (2015). Statistical tools applied for the reduction of the defect rate of coffee degassing valves. Case Stud. Eng. Fail. Anal. 3:17–24.
  • Otoni, C. G., Espitia, P. J. P, Avena-Bustillos, R. J. and McHugh, T. H. (2016). Trends in antimicrobial food packaging systems: etmitting sachets and absorbent pads. Food Res. Int. 83:60–73.
  • Pacquit, A., Frisby, J., Diamond, D., Lau, K. T., Farrell, A., Quilty, B. and Diamond, D. (2007). Development of a smart packaging for the monitoring of fish spoilage. Food Chem. 102:466–470.
  • Pacquit, A., Lau, K. T., McLaughlin, H., Frisby, J., Quilty, B. and Diamond, D. (2006). Development of a volatile amine sensor for the monitoring of fish spoilage. Talanta 69:515–520.
  • Pan, Y., Rollins, D. K., Cummings, M. D. and Bills, J. M. (2002). Devices and methods of prolonging the storage life of produce. World Patent Publication WO 2002069723 A2.
  • Park, H. R., Kim, K. and Lee, S. J. (2013). Adjustment of Arrhenius activation energy of laccase-based time–temperature integrator (TTI) using sodium azide. Food Control 32:615–620.
  • Patel, G. N., Preziosi, A. F. and Baughman, R. H. (1976). Time-temperature history indicators. United States Patent Publication US 3999946.
  • Patel, G. N. and Yang, N. (1983). Polydiacetylenes: An ideal system for teaching polymer science. J. Chem. Edu. 60:181–185.
  • Patel, G. N. and Yee, K. C. (1980). Diacetylene time-temperature indicators. United States Patent Publication US 4228126.
  • Pereira de Abreu, D. A., Cruz, J. M. and Paseiro Losada, P. (2012). Active and intelligent packaging for the food industry. Food Rev. Int. 28:146–187.
  • Persico, P., Ambrogi, V., Carfagna, C., Cerruti, P., Ferrocino, I. and Mauriello, G. (2009). Nanocomposite polymer films containing carvacrol for antimicrobial active packaging. Polym. Eng. Sci. 49:1447–1455.
  • Phoopuritham, P., Thongngam, M., Yoksan, R. and Suppakul, P. (2012). Antioxidant properties of selected plant extracts and their effectiveness after incorporation into cellulose-based films for vegetable oil. Packag. Technol. Sci. 25:125–136.
  • Poças, M. F. F., Delgado, T. F. and Oliveira, F. A. R. (2008). Smart packaging technologies for fruits and vegetables. In: Smart Packaging Technologies, pp. 151–166. Kerry, J., and Butler, P., Eds.,John Wiley & Sons, Ltd, West Sussex.
  • Puligundla, P., Jung, J. and Ko, S. (2012). Carbon dioxide sensors for intelligent food packaging applications. Food Control 25:328–333.
  • Rees, D. (2012). Introduction. In: Crop Post-Harvest: Science and Technology, Perishables, pp. 1–4. Golob, P., Farrell, G. and Orchard, J., Eds., John Wiley & Sons, Ltd, West Sussex.
  • Regattieri, A., Gamberi, M. and Manzini, R. (2007). Traceability of food products: General framework and experimental evidence. J. Food Eng. 81:347–356.
  • Restuccia, D., Spizzirri, U. G., Parisi, O. I., Cirillo, G., Curcio, M., Iemma, F., Puoci, F., Vinci, G. and Picci, N. (2010). New EU regulation aspects and global market of active and intelligent packaging for food industry applications. Food Control 21:1425–1435.
  • Riley, M. R. (2006). RediRipe® Sticker. [On-line]. Available: http://ag.arizona.edu/∼riley/. Accessed May, 2016.
  • Robertson, G. L. (2006). Food Packaging: Principles and Practice, 2nd ed. CRC Press, Boca Raton.
  • Robertson, G. L. (2012). Food Packaging: Principles and Practice, 3rd ed. CRC Press, Boca Raton.
  • Rokugawa, H. and Fujikawa, H. (2015). Evaluation of a new Maillard reaction type time-temperature integrator at various temperatures. Food Control 57:355–361.
  • Rooney, M. L. (1982). Oxygen scavenging from air in package headspaces by singlet oxygen reactions in polymer media. J. Food Sci. 47:291–294.
  • Rooney, M. L. (1993). Novel food packaging. In: Technology of Reduced-additive Foods, Smith, J., Ed., Blackie Academic and Professional, England.
  • Rooney, M. L. (1995). Active Food Packaging. Blackie Academic and Professional, England.
  • Rosca, I. D. and Vergnaud, J. M. (2007). Problems of food protection by polymer packages. J. Chem. Health Safety 14:14–20.
  • Rozenberg, G. G., Bresler, E., Speakman, S. P., Jeynes, C., Steinke, J. H. G. (2002). Patterned low temperature copper-rich deposits using inkjet printing. Appl. Phys. Lett. 81:5249–5251.
  • Rukchon, C., Nopwinyuwong, A., Trevanich, S., Jinkarn, T. and Suppakul, P. (2014). Development of a food spoilage indicator for monitoring freshness of skinless chicken breast. Talanta 130:547–554.
  • Sabnis, R. W. (2008). Handbook of Acid-Base Indicators. CRC Press, Boca Raton.
  • Salmieri, S., Islam, F., Khan, R. A., Hossain, F. M., Ibrahim, H. M. M., Miao, C., Hamad, W. Y. and Lacroix, M. (2014). Antimicrobial nanocomposite films made of poly(lactic acid)-cellulose nanocrystals (PLC-CNC) in food applications-part B: effect of oregano essential oil release on the inactivation of Listeria monocytogenes in mixed vegetables. Cellulose 21:4271–4285.
  • Sánchez-García, M. D., Gimenez, E., Ocio, M. J. and Lagaron, J. M. (2008). Novel polycaprolactone nanocomposites containing thymol of interest in antimicrobial film and coating applications. J. Plast. Film Sheeting 24:239–241.
  • Sanla-Ead, N., Jangchud, A., Chonhenchob, V. and Suppakul, P. (2012). Antimicrobial activity of cinnamaldehyde and eugenol and their activity after incorporation into cellulose-based edible films. Packag. Technol. Sci. 25:7–17.
  • Santos, C. M., Tria, M. C. R., Vergara, R. A. M. V., Ahmed, F., Advincula, R. C. and Rodriques, D. F. (2011). Antimicrobial grapheme polymer (PVK-GO) nanocomposite films. Chem. Commun. 47:8892–8894.
  • Scully, A. D. and Horsham, M. A. (2006). Emerging packaging technologies for enhanced food preservation. Food Sci. Technol. 20:16–19.
  • Shimoni, E. and Labuza, T. P. (2000). Degassing kinetics and sorption equilibrium of carbon dioxide in fresh roasted and ground coffee. J. Food Proc. Eng. 23:419–436.
  • Shin, D. Y., Lee, Y. and Kim, C. H. (2009). Performance characterization of screen printed radio frequency identification antennas with silver nanopaste. Thin Solid Films 517:6112–6118.
  • Smith, A. W. J., Poulston, S. and Rowsell, L. (2009). A new palladium-based ethylene scavenger to control ethylene-induced ripening of climacteric fruit. Platinum Met. Rev. 53:112–122.
  • Smolander, M., Hurme, E., Latva-Kala, K., Alakomi, H. L. and Ahvenainen, R. (2002). Myoglobin-based indicators for the evaluation of freshness of unmarinated broiler cuts. Innov. Food Sci. Emerg. Technol. 3:279–288.
  • Solovyov, S. E. (2009). Oxygen scavenger. In: The Wiley Encyclopedia of Packaging Technology, 3rd edition, pp. 824–849. Yam, K. L., Ed., John Wiley & Sons, Inc, West Sussex.
  • Sonkaew, P., Sane, A. and Suppakul, P. (2012). Antioxidant activities of curcumin and ascorbyl dipalmitate nanoparticles and their activities after incorporation into cellulose-based packaging films. J. Agric. Food Chem. 60:5388–5399.
  • Sonneveld, K. (2000). What drives (food) packaging innovation? Packag. Technol. Sci. 13:29–35.
  • Spinner, J. (2014). Active/intelligent packaging capturing global attention. [On-line]. Available: http://www.foodproductiondaily.com/Packaging/Active-intelligent-packaging-capturing-global-attention. Accessed August, 2015.
  • Srour, R. K. and McDonald, L. M. (2008). Determination of the acidity constants of methyl red and phenol red indicators in binary methanol- and ethanol-water mixtures. J. Chem. Eng. Data 53:116–127.
  • Summers, L. (1992). Intelligent packaging. Cent. Exploit. Sci. Technol. London.
  • Sung, S. Y., Sin, T. Y., Tee, T. T., Bee, S. T., Rahmat, A. R., Rahman, W. A.W. A., Tan, A. C. and Vikhraman, M. (2013). Animicrobial agents for food packaging applications. Trends Food Sci. Technol. 33:110–123.
  • Suppakul, P. (2012). Intelligent packaging. Part VII: Trends in frozen food packing. In: Handbook of Frozen Food Processing and Packaging, 2nd ed., pp. 837–860. Sun, D. W., Ed., CRC Press, Boca Raton, FL.
  • Suppakul, P. (2015). Active and Intelligent Packaging. In: Polymers for Packaging Applications, pp. 393–428. Alavi, S., Thomas, S., Sandeep, K. P., Kalarikkal, N., Varghese, J., Yaragalla, S., Eds., Apple Academic Press Inc, Waretown.
  • Suppakul, P., Boonlert, R., Buaphet, W., Sonkaew, P. and Luckanatinvong, V. (2016). Efficacy of superior antioxidant Indian gooseberry extract-incorporated edible Indian gooseberry puree/methylcellulose composite films on enhancing the shelf life of roasted cashew nut. Food Control 69:51–60.
  • Suppakul, P., Miltz, J., Sonneveld, K. and Bigger, S. W. (2003). Active packaging technologies with an emphasis on antimicrobial packaging and its applications. J. Food Sci. 68:408–420.
  • Suppakul, P., Miltz, J., Sonneveld, K. and Bigger, S. W. (2008). Efficacy of polyethylene-based antimicrobial films containing principal constituents of basil. LWT− Food Sci. Technol. 41:779–788.
  • Suppakul, P., Thanathammathorn, T., Samerasut, O. and Khankaew, S. (2016). Shelf life extension of “fios de ovos”, an intermediate-moisture egg-based dessert, by active and modified atmosphere packaging. Food Control 70:58–63.
  • Taboada-Rodríguez, A., García-García, I., Cava-Roda, R., López-Gómez, A. and Marín-Iniesta, F. (2013). Hydrophobic properties of cardboard coated with polylactic acid and ethylene scavengers. J. Coat. Technol. Res. 10:749–7550.
  • Taechutrakul, S., Netpradit, S. and Tanprasert, K. (2009). Development of recycled paper-based ethylene scavenging packages for tomatoes. Acta Hortic. 837:365–370.
  • Taoukis, P. S. (2008). Application of time-temperature integrators for monitoring and management of perishable product quality in the cold chain. In: Smart Packaging Technologies, pp. 61–74. Kerry, J. and Butler, P., Eds., John Wiley & Sons, Ltd, West Sussex.
  • Taoukis, P. S. and Labuza, T. P. (1989). Applicability of time-temperature indicators as shelf life monitors of food products. J. Food Sci. 54:783–788.
  • Taoukis, P. S. (2001). Modeling the use of time-temperature indicators in distribution and stock rotation. In: Food Process Modeling, pp. 402–432. Tijkskens, L. M. M., Hertog, M. L. A. T. M. and Nicolaï, B. M., Eds., CRC Press, Washington, DC.
  • Taoukis, P. S. and Labuza, T. P. (2003). Time-temperature indicators (TTIs). In: Novel Food Packaging Techniques, pp. 103–126. Ahvenainen, R., Ed., Woodhead Publishing Ltd, Cambridge.
  • Thiesse, F. and Michahelles, F. (2006). An overview of EPC technology. Sensor Rev. 26:101–105.
  • Thuong, V. T., Jitareerat, P., Uthairatanakij, A., Aryusuk, K. and Limmatvapirat, S. (2014). Delaying the physiological and quality changes of mangosteen fruit (Garcinia mangostana L.) by packaging and 1-MCP. Agricultural Sci. J. 45:97–100.
  • Tippayatum, P., Fuongfuchat, A., Jangchud, K., Jangchud, A. and Chonhenchob, V. (2009). Development of antimicrobial EVA/LDPE films incorporated with thymol and eugenol. Food Manufac. Effic. 2:1–7.
  • Tiru, M. O. and Tiru, M. B.-I. (1979). Thermochromic composition, method of making, and use. United States Patent Publication US 4149852.
  • Trindade, M. A., Villanueva, N. D. M., Antunes, C. V. and Freire, M. T. A. (2013). Active packaged lamb with oxygen scavenger/carbon dioxide emitter sachet: physical-chemical and microbiological stability during refrigerated storage. Braz. J. Food Technol. 16:216–225.
  • Tripathi, S., Mehrotra, G. K. and Dutta, P. K. (2011). Chitosan-silver oxide nanocomposite film: Preparation and antimicrobial activity. Bull. Mater. Sci. 34:29–35.
  • Unal, H., Unal, S., Menceloglu, Y. Z. and Cebeci, F. C. (2016). Food packaging material with antibacterial, ethylene scavenging and barrier properties. United States Patent Publication US 9332751.
  • Vaillant, R. (2010). Method, system and component for controlling the preservation of a product. United States Patent Publication US 7691634.
  • Vermeiren, L., Devlieghere, F., van Beest, M., de Kruijf, N. and Debevere, J. (1999). Development in the active packaging of foods. Trends Food Sci. Technol. 10:77–86.
  • Vermeiren, L., Devlieghere, F. and Debevere, J. (2002). Effectiveness of some recent antimicrobial packaging concepts. Food Addit. Contam. 19:163–171.
  • Vermeiren, L., Heirlings, L., Devlieghere, F. and Debevere, F. (2003). Oxygen, ethylene and other scavengers, In: Novel Food Packaging Techniques, pp. 22–49. Ahvenainen, R., Ed., CRC Press, Boca Raton.
  • Vest, R. W. (1993). Electronics films from metallo-organic precursors. In: Ceramic Films and Coatings, pp. 303–341. Wachtman, J. B. and Haber, R. A., Eds., Noyes Publications, Park Ridge.
  • Vitsab International (2007). CheckPoint® III Product Details. Available Source: http://www.vitsab.com/Products.htm, May 31, 2010.
  • Vo, E., Murray, D. K., Scott, T. L. and Attar, A. J. (2007). Development of a novel colorimetric indicator pad for detecting aldehydes. Talanta 73:87–94.
  • Wang, H. J., An, D. S., Rhim, J. -W. and Lee, D. S. (2015a). A multi-functional biofilm used as an active insert in modified atmosphere packaging for fresh produce. Packag. Technol. Sci. 28:999–1010.
  • Wang, H. J., Jo, Y. H., An, D. S., Rhim, J. -W. and Lee, D. S. (2015b). Properties of agar-based CO2 absorption film containing Na2CO3 as active compound. Food Packag. Shelf. 4:36–42.
  • Wani, A. A., Singh, P., Pant, A. and Langoski, H. C. (2015). Packaging methods for minimally processed foods. In: Minimally Processed Foods: Technologies for Safety, Quality, and Convenience, pp. 35–57. Siddiqui, M. W. and Rahman, M. S., Eds., Springer, England.
  • Wan, X. and Knoll, M. (2016). A new type of TTI based on an electrochemical pseudo transistor. J. Food Eng. 168:79–83.
  • White, A., Johnson, M. and Wilson, H. (2008). RFID in the supply chain: lessons from European early adopters. Int. J. Phys. Distrib. Logist. Manag. 38:88–107.
  • Wilding, R. and Delgado, T. (2004). RFID demystified company case studies. Logist. Transp. Focus June, 32–42.
  • Winestrand, S., Johansson, K., Järnström, L. and Jönsson, L. J. (2013). Co-immobilization of oxalate oxidase and catalase in films for scavenging of oxygen or oxalic acid. Biochem. Eng. J. 72:96–101.
  • Wu, D., Wang, Y., Chen, J., Ye, X., Wu, Q., Liu, D. and Ding, T. (2013). Preliminary study on time–temperature indicator (TTI) system based on urease. Food Control 34:230–234.
  • Wyld, D. C. (2006). RFID 101: The next big thing for management. Manag. Res. News 29:154–173.
  • Yahiaoui, F., Benhacine, F., Ferfera-Harrar, H., Habi, A., Hadj-Hamou, A. S. and Grohens, Y. (2015). Development of antimicrobial PCL/nanoclay nanocomposite films with enhanced mechanical and water vapor barrier properties for packaging applications. Polym. Bull. 72:235–254.
  • Yam, K. L., Takhistov, P. T. and Miltz, J. (2005). Intelligent packaging: Concepts and applications. J. Food Sci. 70:R1–R10.
  • Zabala, S. and Martínez, J. C. C. (2015). Development of a time–temperature indicator (TTI) label by rotary printing technologies. Food Control 50:57–64.
  • Zaritzky, N. (2006). Physical-chemical principles in freezing. In: Handbook of Frozen Food Processing and Packaging, pp. 3–31. Sun, D. W., Ed., CRC Press, Boca Raton, FL.
  • Zhang, M., Meng, X., Bhandari, B. and Fang, Z. (2016). Recent developments in film and gas research in modified atmosphere packaging for fresh foods. Crit. Rev. Food Sci. Nutr. 56:2174–2182.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.