1,452
Views
52
CrossRef citations to date
0
Altmetric
Reviews

Multi-scale model of food drying: Current status and challenges

, , , ORCID Icon &

References

  • Abera, M. K., Fanta, S. W., Verboven, P., Ho, Q. T., Carmeliet, J. and Nicolai, B. M. (2013). Virtual fruit tissue generation based on cell growth modelling. Food Bioprocess. Technol. 6(4):859–869.
  • Aguilera, J. M. (2005). Why food microstructure? J. Food Eng. 67(1):3–11.
  • Aguilera, J. M., Chiralt, A. and Fito, P. (2003). Food dehydration and product structure. Trends Food Sci. Technol. 14(10):432–437. doi:10.1016/s0924-2244(03)00122-5
  • Aguilera, J. M. and Lillford, P. J. (2008). Structure–property relationships in foods. In: Food Materials Science (pp. 229–253): Springer.
  • Aguilera, J. M. and Stanley, D. W. (1999). Microstructural Principles of Food Processing and Engineering, Aguilera, J. M., & Lillford, P. J., Eds. New York: Springer-Verlag. Springer Science & Business Media.
  • Aguilera, J. M., Stanley, D. W. and Baker, K. W. (2000). New dimensions in microstructure of food products. Trends Food Sci. Technol. 11(1):3–9.
  • Alamar, M., Vanstreels, E., Oey, M., Moltó, E. and Nicolaï, B. (2008). Micromechanical behaviour of apple tissue in tensile and compression tests: storage conditions and cultivar effect. J. Food Eng. 86(3):324–333.
  • Aregawi, W. A., Abera, M. K., Fanta, S. W., Verboven, P. and Nicolai, B. (2014). Prediction of water loss and viscoelastic deformation of apple tissue using a multiscale model. J. Phys.: Condens. Matter 26(46):464111.
  • Attig, N., Binder, K., Grubmuller, H. and Kremer, K. (2004). Computational soft matter: from synthetic polymers to proteins. John von Neumann Inst. Comp. (NIC), Juelich. Springer-Verlag, USA.
  • Baruchel, J., Buffiere, J.-Y., Cloetens, P., Di Michiel, M., Ferrie, E., Ludwig, W., Maire, E. and Salvo, L. (2006). Advances in synchrotron radiation microtomography. Script. Material. 55(1):41–46.
  • Baschnagel, J., Binder, K., Doruker, P., Gusev, A. A., Hahn, O., Kremer, K. and Muller-Plathe, F. (2000). Bridging the gap between atomistic and coarse-grained models of polymers: status and perspectives. In: Viscoelasticity, atomistic models, statistical chemistry (pp. 41–156), Springer. Computational Soft Matter: from Synthetic Polymers to Proteins ; NIC Winter School, 29 February–6 March 2004, Gustav-Stresemann-Institut, Bonn, Germany - Poster Abstracts.
  • Bathe, K. J. (2008). Finite Element Method, Wiley Online Library.
  • Batista, L. M., da Rosa, C. A. and Pinto, L. A. (2007). Diffusive model with variable effective diffusivity considering shrinkage in thin layer drying of chitosan. J. Food Eng. 81(1):127–132.
  • Bertram, H. C., Dønstrup, S., Karlsson, A. H. and Andersen, H. J. (2002). Continuous distribution analysis of T 2 relaxation in meat—an approach in the determination of water-holding capacity. Meat Sci. 60(3):279–285.
  • Bodurka, J., Buntkowsky, G., Olechnowicz, R., Gutsze, A. and Limbach, H.-H. (1996). Investigation of water in normal and dehydrated rabbit lenses by 1 H NMR and calorimetric measurements. Coll. Surf. A: Physicochem. Eng. Aspects. 115:55–62.
  • Bouchon, P. and Pyle, D. L. (2005). Modelling oil absorption during post-frying cooling: i: model development. Food Bioprod. Process. 83(4):253–260. doi:https://doi.org/10.1205/fbp.05115
  • Bourne, M. (2002). Food Texture and Viscosity: Concept and Measurement, Academic press.
  • Carr, E. J., Turner, I. and Perre, P. (2013). A dual-scale modeling approach for drying hygroscopic porous media. Multisc. Model. Simul. 11(1):362–384.
  • Centonze, V. and Pawley, J. B. (2006). Tutorial on practical confocal microscopy and use of the confocal test specimen. In: Handbook of biological confocal microscopy (pp. 627–649), Ed. J. B. Pauley. Springer.
  • Cha, S., Lin, P. C., Zhu, L., Sun, P.-C. and Fainman, Y. (2000). Nontranslational three-dimensional profilometry by chromatic confocal microscopy with dynamically configurable micromirror scanning. Appl. Opt. 39(16):2605–2613.
  • Chatakanonda, P., Dickinson, L. C. and Chinachoti, P. (2003). Mobility and distribution of water in cassava and potato starches by 1H and 2H NMR. J. Agric. Food Chem. 51(25):7445–7449.
  • Chen, F. L., Wei, Y. M. and Zhang, B. (2010). Characterization of water state and distribution in textured soybean protein using DSC and NMR. J. Food Eng. 100(3):522–526.
  • Cuccurullo, G., Giordano, L., Albanese, D., Cinquanta, L. and Di Matteo, M. (2012). Infrared thermography assisted control for apples microwave drying. J. Food Eng. 112(4):319–325.
  • Curcio, S. (2010). A multiphase model to analyze transport phenomena in food drying processes. Drying Tech. 28(6):773–785.
  • Datta, A. (2007a). Porous media approaches to studying simultaneous heat and mass transfer in food processes. I: Problem formulations. J. Food Eng. 80(1):80–95.
  • Datta, A. (2007b). Porous media approaches to studying simultaneous heat and mass transfer in food processes. II: property data and representative results. J. Food Eng. 80(1):96–110.
  • Defraeye, T. (2014). Advanced computational modelling for drying processes—a review. Appl. Energy. 131:323–344.
  • Demers, A. M., Gosselin, R., Simard, J. S. and Abatzoglou, N. (2012). In‐line near infrared spectroscopy monitoring of pharmaceutical powder moisture in a fluidised bed dryer: an efficient methodology for chemometric model development. Can. J. Chem. Eng. 90(2):299–303.
  • Dhall, A., Halder, A. and Datta, A. K. (2012). Multiphase and multicomponent transport with phase change during meat cooking. J. Food Eng. 113(2):299–309. doi:https://doi.org/10.1016/j.jfoodeng.2012.05.030
  • Dhall, A., Squier, G., Geremew, M., Wood, W. A., George, J. and Datta, A. K. (2012). Modeling of multiphase transport during drying of honeycomb ceramic substrates. Drying Tech. 30(6):607–618.
  • Duizer, L. (2001). A review of acoustic research for studying the sensory perception of crisp, crunchy and crackly textures. Trends Food Sci. Technol. 12(1):17–24.
  • Efendiev, Y. and Hou, T. Y. (2009). Multiscale Finite Element Methods: Theory and Applications(Vol.4): Springer Science & Business Media.
  • Erbay, Z. and Icier, F. (2010). A review of thin layer drying of foods: theory, modeling, and experimental results. Critical Rev.Food Sci.Nutr. 50(5):441–464.
  • Esveld, D., Van Der Sman, R., Van Dalen, G., Van Duynhoven, J. and Meinders, M. (2012). Effect of morphology on water sorption in cellular solid foods. Part I: Pore scale network model. J. Food Eng. 109(2):301–310.
  • Esveld, D., van der Sman, R., Witek, M., Windt, C., van As, H., van Duynhoven, J. and Meinders, M. (2012). Effect of morphology on water sorption in cellular solid foods. Part II: Sorption in cereal crackers. J. Food Eng. 109(2):311–320.
  • Falcone, P., Baiano, A., Zanini, F., Mancini, L., Tromba, G., Montanari, F. and Nobile, M. (2004). A novel approach to the study of bread porous structure: phase‐contrast x‐ray microtomography. J. Food Sci. 69(1):FEP38–FEP43.
  • Fanta, S. W., Abera, M. K., Aregawi, W. A., Ho, Q. T., Verboven, P., Carmeliet, J. and Nicolai, B. M. (2014). Microscale modeling of coupled water transport and mechanical deformation of fruit tissue during dehydration. J. Food Eng. 124:86–96.
  • Fanta, S. W., Vanderlinden, W., Abera, M. K., Verboven, P., Karki, R., Ho, Q. T., … Nicolaï, B. M. (2012). Water transport properties of artificial cell walls. J. Food Eng. 108(3):393–402.
  • Farid, M. M. and Chen, X. D. (1998). The analysis of heat and mass transfer during frying of food using a moving boundary solution procedure. Heat and Mass Transfer. 34(1):69–77. doi:10.1007/s002310050233
  • Farkas, B., Singh, R. and Rumsey, T. (1996). Modeling heat and mass transfer in immersion frying. I, model development. J. Food Eng. 29(2):211–226.
  • Farkas, B. E., Singh, R. P. and Rumsey, T. R. (1996). Modeling heat and mass transfer in immersion frying. I, model development. J. Food Eng. 29(2):211–226. doi:https://doi.org/10.1016/0260-8774(95)00072-0
  • Feng, H., Tang, J., Cavalieri, R. and Plumb, O. (2001). Heat and mass transport in microwave drying of porous materials in a spouted bed. AIChE J. 47(7):1499–1512.
  • Feyissa, A. H., Gernaey, K., Ashokkumar, S. and Adler-Nissen, J. (2011). Modelling of coupled heat and mass transfer during a contact baking process. J. Food Eng. 106(3):228–235.
  • Fletcher, D., Guo, B., Harvie, D., Langrish, T., Nijdam, J. and Williams, J. (2006). What is important in the simulation of spray dryer performance and how do current CFD models perform?.Appl. Math. Model. 30(11):1281–1292.
  • Garini, Y., Vermolen, B. J. and Young, I. T. (2005). From micro to nano: recent advances in high-resolution microscopy. Curr. Opin. Biotech. 16(1):3–12.
  • Gharsallaoui, A., Roudaut, G., Chambin, O., Voilley, A. and Saurel, R. (2007). Applications of spray-drying in microencapsulation of food ingredients: An overview. Food Res. Int. 40(9):1107–1121.
  • Gou, P., Santos-Garces, E., Høy, M., Wold, J., Liland, K. and Fulladosa, E. (2013). Feasibility of NIR interactance hyperspectral imaging for on-line measurement of crude composition in vacuum packed dry-cured ham slices. Meat Sci. 95(2):250–255.
  • Gross, R. A. and Kalra, B. (2002). Biodegradable polymers for the environment. Science. 297(5582):803–807.
  • Guessasma, S., Chaunier, L., Della Valle, G. and Lourdin, D. (2011). Mechanical modelling of cereal solid foods. Trends Food Sci. Tech. 22(4):142–153.
  • Gulati, T. and Datta, A. K. (2015). Mechanistic understanding of case-hardening and texture development during drying of food materials. J. Food Eng. 166:119–138.
  • Halder, A. and Datta, A. K. (2012). Surface heat and mass transfer coefficients for multiphase porous media transport models with rapid evaporation. Food Bioprod, Process. 90(3):475–490.
  • Halder, A., Datta, A. K. and Spanswick, R. M. (2011). Water transport in cellular tissues during thermal processing. AIChE J. 57(9):2574–2588.
  • Halder, A., Dhall, A. and Datta, A. (2007a). An improved, easily implementable, porous media based model for deep-fat frying: part I: model development and input parameters. Food Bioprod. Process. 85(3):209–219.
  • Halder, A., Dhall, A. and Datta, A. (2007b). An improved, easily implementable, porous media based model for deep-fat frying: Part II: Results, validation and sensitivity analysis. Food Bioprod. Process. 85(3):220–230.
  • Halder, A., Dhall, A. and Datta, A. K. (2007). An Improved, Easily Implementable, Porous Media Based Model for Deep-Fat Frying: Part II: Results, Validation and Sensitivity Analysis. Food Bioprod. Process. 85(3):220–230. doi:https://doi.org/10.1205/fbp07034
  • Halder, A., Dhall, A. and Datta, A. K. (2010). Modeling transport in porous media with phase change: applications to food processing. J. Heat Transfer 133(3):031010–031010. doi:10.1115/1.4002463
  • Halder, A. D., Dhall, A. and Datta, A. K. (2007). An improved, easily implementable, porous media based model for deep-fat frying: part i: model development and input parameters. Food Bioprod. Process. 85(3):209–219. doi:https://doi.org/10.1205/fbp07033
  • Hills, B. P. and Remigereau, B. (1997). NMR studies of changes in subcellular water compartmentation in parenchyma apple tissue during drying and freezing. Int. J. Food Sci. Technol. 32(1):51–61.
  • Ho, Q. T., Carmeliet, J., Datta, A. K., Defraeye, T., Delele, M. A., Herremans, E., Nikolai, B. M. and van der Sman, R. (2013). Multiscale modeling in food engineering. J. Food Eng. 114(3):279–291.
  • Ho, Q. T., Verboven, P., Mebatsion, H. K., Verlinden, B., Vandewalle, S. and Nicolaï, B. (2009). Microscale mechanisms of gas exchange in fruit tissue. New Phytologist 182(1):163–174.
  • Ho, Q. T., Verboven, P., Verlinden, B. E., Herremans, E., Wevers, M., Carmeliet, J. and Nicolaï, B. M. (2011). A three-dimensional multiscale model for gas exchange in fruit. Plant Physiol. 155(3):1158–1168.
  • Ho, Q. T., Verboven, P., Verlinden, B. E. and Nicolaï, B. M. (2010). A model for gas transport in pear fruit at multiple scales. J. Exp. Bot. 61:erq026.
  • Huang, H., Yu, H., Xu, H. and Ying, Y. (2008). Near infrared spectroscopy for on/in-line monitoring of quality in foods and beverages: a review. J. Food Eng. 87(3):303–313.
  • Ingram, G., Cameron, I. and Hangos, K. (2004). Classification and analysis of integrating frameworks in multiscale modelling. Chem. Eng. Sci. 59(11):2171–2187.
  • Joardder, M. U., Brown, R. J., Kumar, C. and Karim, M. A. (2015). Effect of cell wall properties on porosity and shrinkage of dried apple. International Journal of Food Properties, 18(10):2327–2337.
  • Joardder, M. U., Karim, A., Kumar, C. and Brown, R. J. (2015). Porosity: Establishing, Springer.
  • Joardder, M. U., Karim, A., Kumar, C. and Brown, R. J. (2016a). Factors affecting porosity. In: Porosity (pp. 25–46), Springer International Publishing.
  • Joardder, M. U., Karim, A., Kumar, C. and Brown, R. J. (2016b). Pore formation and evolution during drying. In: Porosity (pp. 15–23), Springer.
  • Joardder, M. U., Kumar, C. and Karim, M. (2015). Food structure: its formation and relationships with other properties. Critical Rev. Food Sci. Nutr.
  • Joardder, M. U. H., Kumar, C., Brown, R. J. and Karim, M. A. (2015). A micro-level investigation of the solid displacement method for porosity determination of dried food. J. Food Eng. 166:156–164. doi:https://doi.org/10.1016/j.jfoodeng.2015.05.034
  • Juge, N. (2006). Plant protein inhibitors of cell wall degrading enzymes. Trends Plant Sci. 11(7):359–367.
  • Karunasena, H., Gu, Y., Brown, R. and Senadeera, W. (2015). Numerical investigation of plant tissue porosity and its influence on cellular level shrinkage during drying. Biosyst. Eng. 132:71–87.
  • Karunasena, H., Senadeera, W., Brown, R. J. and Gu, Y. (2014). A particle based model to simulate microscale morphological changes of plant tissues during drying. Soft Matter 10(29):5249–5268.
  • Karunasena, H., Senadeera, W., Gu, Y. and Brown, R. J. (2014). A coupled SPH-DEM model for micro-scale structural deformations of plant cells during drying. Appl. Math. Modell. 38(15):3781–3801.
  • Kaya, A., Aydın, O. and Dincer, I. (2008). Experimental and numerical investigation of heat and mass transfer during drying of Hayward kiwi fruits (Actinidia Deliciosa Planch). J. Food Eng. 88(3):323–330.
  • Khan, M., Kumar, C., Joardder, M. and Karim, M. (2016). Multiphase porous media modelling: A novel approach of predicting food processing performance. Crit. Rev. Food Sci. Nutr.
  • Ko, S. and Gunasekaran, S. (2007). Error correction of confocal microscopy images for in situ food microstructure evaluation. J. Food Eng. 79(3):935–944.
  • Konishi, Y., Kobayashi, M. and Miura, K. I. (2010). Characterisation of water species revealed in the drying operation of Todarodes pacificus Steenstrup using water proton NMR analysis. Int. J. Food Sci. Technol. 45(9):1889–1894.
  • Konstankiewicz, K. and Zdunek, A. (2001). Influence of turgor and cell size on the cracking of potato tissue. Int. Agrophys. 15(1):27–30.
  • Krokida, M. K., Zogzas, N. P. and Maroulis, Z. B. (1997). Modelling shrinkage and porosity during vacuum dehydration. Int. J. Food Sci. Technol. 32(6):445–458. doi:10.1111/j.1365-2621.1997.tb02119.x
  • Kumar, C., Joardder, M.U.H., Farrell, T.W. and Karim, M. A. (2015b). Multiphase porous media model for Intermittent microwave convective drying (IMCD) of food. Int. J. Thermal Sci. 104:304–314
  • Kumar, C., Joardder, M. U. H., Farrell, T. W., Millar, G. J. and Karim, A. (2014). Multiphase porous media model for heat and mass transfer during drying of agricultural products. In 19th Australasian Fluid Mechanics Conference, 8-11 December 2014, RMIT University, Melbourne, VIC.
  • Kumar, C., Joardder, M. U. H., Karim, A., Millar, G. J. and Amin, Z. (2014). Temperature redistribution modelling during intermittent microwave convective heating. Procedia Eng. 90:544–549.
  • Kumar, C., Millar, G. J. and Karim, M. (2015a). Effective diffusivity and evaporative cooling in convective drying of food material. Dry. Tech. 33(2):227–237.
  • Lee, S.-J., Saravanan, R. S., Damasceno, C. M., Yamane, H., Kim, B.-D. and Rose, J. K. (2004). Digging deeper into the plant cell wall proteome. Plant Physiol. Biochem. 42(12):979–988.
  • Li, S., Dickinson, L. and Chinachoti, P. (1996). Proton relaxation of starch and gluten by solid-state nuclear magnetic resonance spectroscopy. Cereal Chem. 73(6):736–743.
  • Li, S., Dickinson, L. and Chinachoti, P. (1998). Mobility of “unfreezable” and “freezable” water in waxy corn starch by 2H and 1H NMR. J. Agric. Food Chem. 46(1):62–71.
  • Limbach, H. J. and Kremer, K. (2006). Multi-scale modelling of polymers: perspectives for food materials. Trends Food Sci. Technol. 17(5):215–219.
  • Limodin, N., Réthoré, J., Adrien, J., Buffière, J.-Y., Hild, F. and Roux, S. (2011). Analysis and artifact correction for volumecorrelation measurements using tomographic images from a laboratory X-ray source. Exp. Mech. 51(6):959–970.
  • Ludikhuyze, L. and Hendrickx, M. E. (2001). Effects of high pressure on chemical reactions related to food quality. In: Ultra high pressure treatments of foods (pp. 167–188), Springer.
  • Madiouli, J., Sghaier, J., Lecomte, D. and Sammouda, H. (2012). Determination of porosity change from shrinkage curves during drying of food material. Food Bioprod. Process. 90(1):43–51. doi:https://doi.org/10.1016/j.fbp.2010.12.002
  • Maldague, X. P. (2002). Introduction to NDT by active infrared thermography. Mater. Eval. 60(9):1060–1073.
  • Marousis, S. and Saravacos, G. (1990). Density and porosity in drying starch materials. J. Food Sci. 55(5):1367–1372.
  • Mayor, L. and Sereno, A. (2004). Modelling shrinkage during convective drying of food materials: a review. J. Food Eng. 61(3):373–386.
  • McCann, M. C., Bush, M., Milioni, D., Sado, P., Stacey, N. J., Catchpole, G., … Ulvskov, P. (2001). Approaches to understanding the functional architecture of the plant cell wall. Phytochemistry. 57(6):811–821.
  • Mebatsion, H., Verboven, P., Verlinden, B., Ho, Q. T., Nguyen, T. A. and Nicolaï, B. (2006). Microscale modelling of fruit tissue using Voronoi tessellations. Comput. Electron. Agric. 52(1):36–48.
  • Mebatsion, H. K., Verboven, P., Ho, Q. T., Verlinden, B. and Nicolaï, B. (2008). Modelling fruit (micro) structures, why and how? Trends Food Sci. Technol. 19(2):59–66.
  • Mercier, S., Marcos, B., Moresoli, C., Mondor, M. and Villeneuve, S. (2014). Modeling of internal moisture transport during durum wheat pasta drying. J. Food Eng. 124(0):19–27. doi:https://doi.org/10.1016/j.jfoodeng.2013.09.028
  • Mercier, S., Marcos, B., Moresoli, C., Mondor, M. and Villeneuve, S. (2014). Modeling of internal moisture transport during durum wheat pasta drying. J. Food Eng. 124:19–27.
  • Miedziejko, E., Plenzler, G., NAPIERAŁA, D. and NAROŻNA, A. (1996). 1H‐NMR spin‐spin relaxation time assessment of the reflection coefficient of the Triticale seed cell wall–plasmalemma barrier to mannitol. Plant Cell Environ. 19(12):1443–1448.
  • Mitchell, J. (1998). Water and food macromolecules. Funct. Prop. Food Macromol. 50–76.
  • Mujumdar, A. S. (2007). An overview of innovation in industrial drying: current status and R&D needs. In: Drying of Porous Materials (pp. 3–18), Springer.
  • Nassehi, V. and Parvazinia, M. (2011). Finite element modeling of multiscale transport phenomena, World Scientific.
  • Nguyen, T. A., Dresselaers, T., Verboven, P., D'hallewin, G., Culeddu, N., Van Hecke, P. and Nicolaï, B. (2006). Finite element modelling and MRI validation of 3D transient water profiles in pears during postharvest storage. J. Sci. Food Agric. 86(5):745–756.
  • Nguyen, T. A., Verboven, P., Scheerlinck, N., Vandewalle, S. and Nicolaï, B. M. (2006). Estimation of effective diffusivity of pear tissue and cuticle by means of a numerical water diffusion model. J. Food Eng. 72(1):63–72.
  • Ni, H. and Datta, A. (1999a). Heat and moisture transfer in baking of potato slabs. Drying Technol. 17(10):2069–2092.
  • Ni, H. and Datta, A. (1999b). Moisture, oil and energy transport during deep-fat frying of food materials. Food Bioprod. Process. 77(3):194–204.
  • Ni, H., Datta, A. and Torrance, K. (1999). Moisture transport in intensive microwave heating of biomaterials: a multiphase porous media model. Int. J. Heat Mass Transfer 42(8):1501–1512.
  • Ni, H. and Datta, A. K. (1999). Heat and moisture transfer in baking of potato slabs. Drying Technol. 17(10):2069–2092. doi:10.1080/07373939908917673
  • Nicolai, B., Verboven, P., Scheerlinck, N. and De Baerdemaeker, J. (1998). Numerical analysis of the propagation of random parameter fluctuations in time and space during thermal food processes. J. Food Eng. 38(3):259–278.
  • Nijhuis, H., Torringa, H., Muresan, S., Yuksel, D., Leguijt, C. and Kloek, W. (1998). Approaches to improving the quality of dried fruit and vegetables. Trends Food Sci. Technol. 9(1):13–20.
  • Nobel, P. S. (1999). Physicochemical and Environmental Plant Physiology, Academic press.
  • Ousegui, A., Moresoli, C., Dostie, M. and Marcos, B. (2010). Porous multiphase approach for baking process–explicit formulation of evaporation rate. J. Food Eng. 100(3):535–544.
  • Ousegui, A., Moresoli, C., Dostie, M. and Marcos, B. (2010). Porous multiphase approach for baking process—explicit formulation of evaporation rate. J. Food Eng. 100(3):535–544. doi:https://doi.org/10.1016/j.jfoodeng.2010.05.003
  • Papasidero, D., Manenti, F. and Pierucci, S. (2015). Bread baking modeling: coupling heat transfer and weight loss by the introduction of an explicit vaporization term. J. Food Eng. 147:79–88.
  • Paredes, J., Martınez-Alonso, A. and Tascón, J. (2003). Application of scanning tunneling and atomic force microscopies to the characterization of microporous and mesoporous materials. Micropor. Mesopor. Mater. 65(2):93–126.
  • Paull, R. (1999). Effect of temperature and relative humidity on fresh commodity quality. Postharv. Biol. Technol. 15(3):263–277.
  • Pavliotis, G. A. and Stuart, A. (2008). Multiscale Methods: Averaging and Homogenization, New York: Springer Science & Business Media.
  • Perré, P. (2007). Multiscale aspects of heat and mass transfer during drying. Transp. Por. Media. 66(1–2):59–76.
  • Perré, P. (2010). Multiscale modeling of drying as a powerful extension of the macroscopic approach: Application to solid wood and biomass processing. Drying Technol. 28(8):944–959.
  • Perré, P. (2011). A review of modern computational and experimental tools relevant to the field of drying. Drying Technol. 29(13):1529–1541.
  • Perré, P. (2015). The proper use of mass diffusion equations in drying modeling: introducing the drying intensity number. Drying Technol. 33(15-16):1949–1962.
  • Perré, P. and Huber, F. (2007). Measurement of free shrinkage at the tissue level using an optical microscope with an immersion objective: results obtained for Douglas fir (Pseudotsuga menziesii) and spruce (Picea abies). Ann. Forest Sci. 64(3):255–265.
  • Perré, P. and Rémond, R. (2006). A dual-scale computational model of kiln wood drying including single board and stack level simulation. Drying Technol. 24(9):1069–1074.
  • Perré, P., Rémond, R., Colin, J., Mougel, E. and Almeida, G. (2012). Energy consumption in the convective drying of timber analyzed by a multiscale computational model. Drying Technol. 30(11–12):1136–1146.
  • Prothon, F., Ahrné, L. l. M., Funebo, T., Kidman, S., Langton, M. and Sjöholm, I. (2001). Effects of combined osmotic and microwave dehydration of apple on texture, microstructure and rehydration characteristics. LWT-Food Sci. Tech. 34(2):95–101.
  • Putranto, A. and Chen, X. D. (2015). An assessment on modeling drying processes: Equilibrium multiphase model and the spatial reaction engineering approach (S-REA). Chem. Eng. Res. Des. 94:660–672.
  • Rahman, M., Mustayen, A., Mekhilef, S. and Saidur, R. (2015). The optimization of solar drying of grain by using a genetic algorithm. Int. J. Green Energy. 12(12):1222–1231.
  • Rahman, M. S. (2001). Towards prediction of porosity in food foods during drying: A brief review. Drying Technol. 19(1):3–15.
  • Rahman, M. S. (2008). 4 Dehydration and Microstructure. Advances in Food Dehydration, 97. Ed., Cristina Ratti. CRC Press, USA.
  • Rakesh, V. and Datta, A. K. (2011). Microwave puffing: Determination of optimal conditions using a coupled multiphase porous media—Large deformation model. J. Food Eng. 107(2):152–163.
  • Rastogi, N., Raghavarao, K., Niranjan, K. and Knorr, D. (2002). Recent developments in osmotic dehydration: methods to enhance mass transfer. Trends Food Sci. Technol. 13(2):48–59.
  • Ross, K. A., Campanella, O. H. and Okos, M. R. (2002). The effect of porosity on glass transition measurement. I. J. Food Prop. 5(3):611–628. doi:10.1081/JFP-120015496
  • Sagar, V. and Kumar, P. S. (2010). Recent advances in drying and dehydration of fruits and vegetables: a review. J. Food Sci. Technol. 47(1):15–26.
  • Scheerlinck, N., Verboven, P., Stigter, J. D., De Baerdemaeker, J., Van Impe, J. F. and Nicolai, B. M. (2000). Stochastic finite-element analysis of coupled heat and mass transfer problems with random field parameters. Numer. Heat Transfer: Part B: Fundam. 37(3):309–330.
  • Stawczyk, J., Munoz, I., Collell, C. and Comaposada, J. (2009). Control system for sausage drying based on on-line NIR aw determination. Drying Tech. 27(12):1338–1343.
  • Street, H. E. (1973). Plant Tissue and Cell Culture (Vol. 11): University of California Press., California.
  • Strumiłło, C. (2006). Perspectives on developments in drying. Drying Technol. 24(9):1059–1068.
  • Van der Sman, R. (2007). Soft condensed matter perspective on moisture transport in cooking meat. AIChE J. 53(11):2986–2995.
  • Van der Sman, R. (2013). Modeling cooking of chicken meat in industrial tunnel ovens with the Flory–Rehner theory. Meat Sci. 95(4):940–957.
  • Van der Sman, R. and Van Der Goot, A. (2009). The science of food structuring. Soft Matter 5(3):501–510.
  • Van Liedekerke, P., Ghysels, P., Tijskens, E., Samaey, G., Smeedts, B., Roose, D. and Ramon, H. (2010). A particle-based model to simulate the micromechanics of single-plant parenchyma cells and aggregates. Phys. Biol. 7(2):026006.
  • Veraverbeke, E. A., Verboven, P., Van Oostveldt, P. and Nicolaï, B. M. (2003). Prediction of moisture loss across the cuticle of apple (Malus sylvestris subsp. Mitis (Wallr.)) during storage: part 1. Model development and determination of diffusion coefficients. Postharv. Biol. Tech. 30(1):75–88.
  • Vickers, Z. and Bourne, M. C. (1976). A psychoacoustical theory of crispness. J. Food Sci. 41(5):1158–1164. doi:10.1111/j.1365-2621.1976.tb14407.x
  • Wang, N. and Brennan, J. (1995). Changes in structure, density and porosity of potato during dehydration. J. Food Eng. 24(1):61–76.
  • Warning, A., Dhall, A., Mitrea, D. and Datta, A. K. (2012). Porous media based model for deep-fat vacuum frying potato chips. J. Food Eng. 110(3):428–440. doi:https://doi.org/10.1016/j.jfoodeng.2011.12.024
  • Warning, A. D., Arquiza, J. and Datta, A. K. (2015). A multiphase porous medium transport model with distributed sublimation front to simulate vacuum freeze drying. Food Bioprod. Process. 94:637–648.
  • Whitaker, S. (1977). Simultaneous heat, mass, and momentum transfer in porous media: a theory of drying. New York: Academic Press.
  • Whitaker, S. (1998). Coupled transport in multiphase systems: a theory of drying. Adv. Heat Transf. 31:1–104.
  • Witek, M., Węglarz, W., De Jong, L., Van Dalen, G., Blonk, J., Heussen, P., Van As, H. and Van Duynhoven, J. (2010). The structural and hydration properties of heat-treated rice studied at multiple length scales. Food Chem. 120(4):1031–1040.
  • Wood, S. A., Zerhouni, E. A., Hoford, J. D., Hoffman, E. A. and Mitzner, W. (1995). Measurement of three-dimensional lung tree structures by using computed tomography. J. Appl. Physiol. 79(5):1687–1697.
  • Yamsaengsung, R. and Moreira, R. (2002). Modeling the transport phenomena and structural changes during deep fat frying: Part II: model solution & validation. J. Food Eng. 53(1):11–25.
  • Yamsaengsung, R. and Moreira, R. G. (2002). Modeling the transport phenomena and structural changes during deep fat frying: Part II: model solution & validation. J. Food Eng. 53(1):11–25. doi:https://doi.org/10.1016/S0260-8774(01)00135-2
  • Yoshikawa, K. and Ohsaka, A. (1979). 1H and 13C NMR spectroscopic study of rat organs. Physiol. Chem. Phys. 12(6):515–520.
  • Yue, X. and Weinan, E. (2007). The local microscale problem in the multiscale modeling of strongly heterogeneous media: Effects of boundary conditions and cell size. J. Comput. Phys. 222(2):556–572.
  • Zhang, J. and Datta, A. (2004). Some considerations in modeling of moisture transport in heating of hygroscopic materials. Drying Technol. 22(8):1983–2008.
  • Zhang, J., Datta, A. and Mukherjee, S. (2005). Transport processes and large deformation during baking of bread. AIChE J. 51(9):2569–2580.
  • Zhang, Z. and Kong, N. (2012). Nonequilibrium thermal dynamic modeling of porous medium vacuum drying process. Math. Probl. Eng. 2012:1–22.
  • Ziaiifar, A. M., Achir, N., Courtois, F., Trezzani, I. and Trystram, G. (2008). Review of mechanisms, conditions, and factors involved in the oil uptake phenomenon during the deep‐fat frying process. Int. J. Food Sci. Technol. 43(8):1410–1423.
  • Zienkiewicz, O. C. and Taylor, R. L. (2005). The Finite Element Method for Solid and Structural Mechanics, Butterworth-Heinemann. Elsevier Ltd.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.