1,359
Views
25
CrossRef citations to date
0
Altmetric
Reviews

Influence of factors on release of antimicrobials from antimicrobial packaging materials

, ORCID Icon, & ORCID Icon

References

  • Akrami, F., Rodríguez-Lafuente, A., Bentayeb, K., Pezo, D., Ghalebi, S. R. and Nerín, C. (2015). Antioxidant and antimicrobial active paper based on Zataria (Zataria multiflora) and two cumin cultivars (Cuminum cyminum). LWT-Food Sci. Technol. 60:929–933.
  • Arcan, I. and Yemenicioglu, A. (2013). Development of flexible zein-wax composite and zein-fatty acid blend films for controlled release of lysozyme. Food Res. Int. 51:208–216.
  • Arvanitoyannis, I. S. and Stratakos, A. C. (2012). Application of modified atmosphere packaging and active/smart technologies to red meat and poultry: A Review. Food Bioprocess Technol. 5:1423–1446.
  • Auffan, M., Rose, J., Bottero, J. Y., Lowry, G. V., Jolivet, J. P. and Wiesner, M. R. (2009). Towards a definition of inorganic nanoparticles from an environmental, health and safety perspective. Nat. Nanotechnol. 4:634–641.
  • Aznar, M., Rodriguez-Lafuente, A., Alfaro, P. and Nerín, C. (2012). UPLC-Q-TOF-MS analysis of non-volatile migrants from new active packaging materials. Anal. Bioanal. Chem. 404:1945–1957.
  • Bajpai, S. K., Chand, N. and Ahuja, S. (2015). Investigation of curcumin release from chitosan/cellulose micro crystals (CMC) antimicrobial films. Int. J. Biol. Macromol. 79:440–448.
  • Baldino, L., Cardea, S. and Reverchon, E. (2014). Supercritical assisted enzymatic membranes preparation, for active packaging applications. J. Membr. Sci. 453:409–418.
  • Bane, A., Brandsch, J., Franz, R. and Piringer, O. G. (1996). The application of a predictive migration model for evaluating the compliance of plastic materials with European food regulations. Food Addit. Contam. 13:587–601.
  • Barba, C., Eguinoa, A. and Mate, J. I. (2015). Preparation and characterization of beta-cyclodextrin inclusion complexes as a tool of a controlled antimicrobial release in whey protein edible films. LWT-Food Sci. Technol. 64:1362–1369.
  • Barzegar, H., Azizi, M. H., Barzegar, M. and Hamidi-Esfahani, Z. (2014). Effect of potassium sorbate on antimicrobial and physical properties of starch–clay nanocomposite films. Carbohydr. Polym. 110:26–31.
  • Bayarri, M., Oulahal, N., Degraeve, P. and Gharsallaoui, A. (2014). Properties of lysozyme/low methoxyl (LM) pectin complexes for antimicrobial edible food packaging. J. Food Eng. 131:18–25.
  • Becerril, R., Gómez-Lus, R., Goñi, P., López, P. and Nerín, C. (2007). Combination of analytical and microbiological techniques to study the antimicrobial activity of a new active food packaging containing cinnamon or oregano on E.coli and S. aureus. Anal. Bioanal. Chem. 388:1003–1011.
  • Benn, T., Cavanagh, B., Hristovski, K., Posner, J. D. and Westerhoff, P. (2010). The release of nanosilver from consumer products used in the home. J. Environ. Qual. 39:1875–1882.
  • Bie, P., Liu, P., Yu, L., Li, X., Chen, L. and Xie, F. (2013). The properties of antimicrobial films derived from poly(lactic acid)/starch/chitosan blended matrix. Carbohydr. Polym. 98:959–66.
  • Birck, C., Degoutin, S., Maton, M., Neut, C., Bria, M., Moreau, M., Fricoteaux, F., Miri, V. and Bacquet, M. (2016). Antimicrobial citric acid/poly(vinyl alcohol) crosslinked films: Effect of cyclodextrin and sodium benzoate on the antimicrobial activity. LWT-Food Sci. Technol. 68:27–35.
  • Bolea, E., Jiménez-Lamana, J., Laborda, F., Abad-Álvaro, I., Bladé, C., Arola, L. and Castillo, J. R. (2014). Detection and characterization of silver nanoparticles and dissolved species of silver in culture medium and cells by AsFIFFF-UV-Vis-ICPMS: application to nanotoxicity tests. Analyst. 139:914–922.
  • Brandsch, J., Mercea, P., Ruter, M., Tosa, V. and Piringer O. G. (2002). Migration modeling as a tool for quality assurance of food packaging. Food Addit. Contam. 19:29–41.
  • Busolo, M. A., Fernandez, P., Ocio, M. J. and Lagaron, J. M. (2010). Novel silver-based nanoclay as an antimicrobial in polylactic acid food packaging coatings. Food Addit. Contam. Part A-Chem. 27:1617–1626.
  • Campos-Requena, V. H., Rivas, B. L., Perez, M. A., Figueroa, C. R. and Sanfuentes, E. A. (2015). The synergistic antimicrobial effect of carvacrol and thymol in clay/polymer nanocomposite films over strawberry gray mold. LWT-Food Sci. Technol. 64:390–396.
  • Campos, C. A., Gerschenson, L. N. and Flores, S. K. (2011). Development of edible films and coatings with antimicrobial activity. Food Bioprocess Technol. 4:849–875.
  • Caro, N., Medina, E., Diaz-Dosque, M., Lopez, L., Abugoch, L. and Tapia, C. (2016). Novel active packaging based on films of chitosan and chitosan/quinoa protein printed with chitosan-tripolyphosphate-thymol nanoparticles via thermal ink-jet printing. Food Hydrocolloid. 52:520–532.
  • Carrizo, D., Taborda, G., Nerín, C. and Bosetti, O. (2015). Extension of shelf life of two fatty foods using a new antioxidant multilayer packaging containing green tea extract. Innov. Food Sci. Emerg. 33:534–541.
  • Cerisuelo, J. P., Bermudez, J. M., Aucejo, S., Catala, R., Gavara, R. and Hernandez-Munoz, P. (2013). Describing and modeling the release of an antimicrobial agent from an active PP/EVOH/PP package for salmon. J. Food Eng. 116:352–361.
  • Cerisuelo, J. P., Muriel-Galet, V., Bermudez, J. M., Aucejo, S., Catala, R., Gavara, R. and Hernandez-Munoz, P. (2012). Mathematical model to describe the release of an antimicrobial agent from an active package constituted by carvacrol in a hydrophilic EVOH coating on a PP film. J. Food Eng. 110:26–37.
  • Cha, D. S. and Chinnan, M. S. (2003). Emerging role of nisin in food and packaging systems. Food Sci. Biotechnol. 12:206–212.
  • Chalier, P., Ben Arfa, A., Guillard, V. and Gontard, N. (2009). Moisture and temperature triggered release of a volatile active agent from soy protein coated paper: effect of glass transition phenomena on carvacrol diffusion coefficient. J. Agric. Food Chem. 57:658–665.
  • Chaudhry, Q., Scotter, M., Blackburn, J., Ross, B., Boxall, A., Castle, L., Aitken, R. and Watkins, R. (2008). Applications and implications of nanotechnologies for the food sector. Food Addit. Contam. 25:241–258.
  • Chen, G. and LiuB. (2016). Cellulose sulfate based film with slow-release antimicrobial properties prepared by incorporation of mustard essential oil and beta-cyclodextrin. Food Hydrocolloid. 55:100–107.
  • Chen, J. H., Ren, Y., Seow, J., Liu, T., Bang, W. S. and Yuk, H. G. (2012a). Intervention technologies for ensuring microbiological safety of meat: Current and future trends. Compr. Rev. Food. Sci. Food Saf. 11:119–132.
  • Chen, M., Wang, Z.-W., Hu, C.-Y. and Wang, J.-L. (2012b). Effects of temperature on release of eugenol and isoeugenol from soy protein isolate films into simulated fatty food. Packag. Technol. Sci. 25:485–492.
  • Chollet, E., Swesi, Y., Degraeve, P. and Sebti, I. (2009). Monitoring nisin desorption from a multi-layer polyethylene-based film coated with nisin loaded HPMC film and diffusion in agarose gel by an immunoassay (ELISA) method and a numerical modeling. Innov. Food Sci. Emerg. Technol. 10:208–214.
  • Coleman, J. G., Kennedy, A. J., Bednar, A. J., Ranville, J. F., Laird, J. G., Harmon, A. R., Hayes, C. A., Gray, E. P., Higgins, C. P., Lotufo, G. and Steevens, J. A. (2013). Comparing the effects of nanosilver size and coating variations on bioavailability, internalization, and elimination, using Lumbriculus variegatus. Environ. Toxicol. Chem. 32:2069–77.
  • Conte, A., Longano, D., Costa, C., Ditaranto, N., Ancona, A., Cioffi, N., Scrocco, C., Sabbatini, L., Conto, F. and Del Nobile, M. A. (2013). A novel preservation technique applied to fiordilatte cheese. Innov. Food Sci. Emerg. Technol. 19:158–165.
  • Corradini, C., Alfieri, I., Cavazza, A., Lantano, C., Lorenzi, A., Zucchetto, N. and Montenero, A. (2013). Antimicrobial films containing lysozyme for active packaging obtained by sol-gel technique. J. Food Eng. 119:580–587.
  • Cozzolino, C. A., Nilsson, F., Iotti, M., Sacchi, B., Piga, A. and Farris, S. (2013). Exploiting the nano-sized features of microfibrillated cellulose (MFC) for the development of controlled-release packaging. Colloids Surf. B-Biointerfaces 110:208–216.
  • Cran, M. J., Rupika, L. A. S., Sonneveld, K., Miltz, J. and Bigger, S. W. (2010). Release of naturally derived antimicrobial agents from LDPE films. J. Food Sci. 75:E126–E133.
  • Cumberland, S. A. and Lead, J. R. (2009). Particle size distributions of silver nanoparticles at environmentally relevant conditions. J. Chromatogr. A 1216:9099–105.
  • Cushen, M., Kerry, J., Morris, M., Cruz-Romero, M. and Cummins, E. (2013). Migration and exposure assessment of silver from a PVC nanocomposite. Food Chem. 139:389–397.
  • da Silva, M. A., Bierhalz, A. C. K. and Bierhalz, A. C. K. (2012). Modelling natamycin release from alginate/chitosan active films. Int. J. Food Sci. Technol. 47:740–746.
  • de Souza, P. M., Fernandez, A., Lopez-Carballo, G., Gavara, R. and Hernandez-Munoz, P. (2010). Modified sodium caseinate films as releasing carriers of lysozyme. Food Hydrocolloids 24:300–306.
  • Del Nobile, M. A., Conte, A., Incoronato, A. L. and Panza, O. (2008). Antimicrobial efficacy and release kinetics of thymol from zein films. J. Food Eng. 89:57–63.
  • Duncan, T. V. and PillaiK. (2015). Release of engineered nanomaterials from polymer nanocomposites: diffusion, dissolution, and desorption. ACS Appl. Mater. Interfaces 7:2–19.
  • Dutta, J., Tripathi, S. and Dutta, P. K. (2012). Progress in antimicrobial activities of chitin, chitosan and its oligosaccharides: a systematic study needs for food applications. Food Sci. Technol. Int. 18:3–34.
  • Echegoyen, Y. and Nerín, C. (2013). Nanoparticle release from nano-silver antimicrobial food containers. Food Chem. Toxicol. 62:16–22.
  • Echegoyen, Y., Rodríguez, S. and Nerín, C. (2016). Nanoclay migration from food packaging materials. Food Addit. Contam. Part A-Chem. 11:530–539.
  • Efrati, R., Natan, M., Pelah, A., Haberer, A., Banin, E., Dotan, A. and Ophir, A. (2014a). The combined effect of additives and processing on the thermal stability and controlled release of essential oils in antimicrobial films. J. Appl. Polym. Sci. 131(40564):1–10.
  • Efrati, R., Natan, M., Pelah, A., Haberer, A., Banin, E., Dotan, A. and Ophir, A. (2014b). The effect of polyethylene crystallinity and polarity on thermal stability and controlled release of essential oils in antimicrobial films. J. Appl. Polym. Sci. 131(40309):1–11.
  • Emamifar, A., Kadivar, M., Shahedi, M. and Solimanian-Zad, S. (2012). Effect of nanocomposite packaging containing ag and zno on reducing pasteurization temperature of orange juice. J. Food Process Preserv. 36:104–112.
  • Espitia, P. J. P., Soares, N. D. F., Coimbra, J. S. D., de Andrade, N. J., Cruz, R. S. and Medeiros, E. A. A. (2012). Zinc oxide nanoparticles: Synthesis, antimicrobial activity and food packaging applications. Food Bioprocess Technol. 5:1447–1464.
  • Fabra, M. J., Sanchez-Gonzalez, L. and Chiralt, A. (2014). Lysozyme release from isolate pea protein and starch based films and their antimicrobial properties. LWT-Food Sci. Technol. 55:22–26.
  • Fajardo, P., Balaguer, M. P., Gomez-Estaca, J., Gavara, R. and Hernandez-Munoz, P. (2014). Chemically modified gliadins as sustained release systems for lysozyme. Food Hydrocolloids 41:53–59.
  • Fernandez-Pan, I., Mate, J. I., Gardrat, C. and Coma, V. (2015). Effect of chitosan molecular weight on the antimicrobial activity and release rate of carvacrol-enriched films. Food Hydrocolloids 51:60–68.
  • Fernandez-Saiz, P., Lagaron, J. M., Hemandez-Munoz, P. and Ocio, M. J. (2008). Characterization of antimicrobial properties on the growth of S-aureus of novel renewable blends of gliadins and chitosan of interest in food packaging and coating applications. Int. J. Food Microbiol. 124:13–20.
  • Fernandez-Saiz, P., Lagaron, J. M. and Ocio, M. J. (2009a). Optimization of the biocide properties of chitosan for its application in the design of active films of interest in the food area. Food Hydrocolloids 23:913–921.
  • Fernandez-Saiz, P., Lagaron, J. M. and Ocio, M. J. (2009b). Optimization of the film-forming and storage conditions of chitosan as an antimicrobial agent. J. Agric. Food Chem. 57:3298–3307.
  • Fernandez-Saiz, P., Ocio, M. J. and Lagaron, J. M. (2010). Antibacterial chitosan-based blends with ethylene-vinyl alcohol copolymer. Carbohydr. Polym. 80:874–884.
  • Fernández, A., Soriano, E., Hernandez-Munoz, P. and Gavara, R. (2010). Migration of antimicrobial silver from composites of polylactide with silver zeolites. J. Food Sci. 75:E186–E193.
  • Fucinos, C., Miguez, M., Cerqueira, M. A., Costa, M. J., Vicente, A. A., Rua, M. L. and Pastrana, L. M. (2015). Functional characterisation and antimicrobial efficiency assessment of smart nanohydrogels containing natamycin incorporated into polysaccharide-based films. Food Bioprocess Technol. 8:1430–1441.
  • Gemili, S., Yemenicioglu, A. and Altinkaya, S. A. (2009). Development of cellulose acetate based antimicrobial food packaging materials for controlled release of lysozyme. J. Food Eng. 90:453–462.
  • Gherardi, R., Becerril, R., Nerín, C. and Bosetti, O. (2016). Development of a multilayer antimicrobial packaging material for tomato puree using an innovative technology. LWT-Food Sci. Technol. 72:361–367.
  • Guarda, A., Rubilar, J. F., Miltz, J. and Galotto, M. J. (2011). The antimicrobial activity of microencapsulated thymol and carvacrol. Int. J. Food Microbiol. 146:144–150.
  • Gutiérrez, L., Batlle, R., Andújar, S., Sánchez, C. and Nerín, C. (2011). Evaluation of an antimicrobial active packaging to increase shelf-life of gluten-free sliced bread. Packag. Technol. Sci. 24:485–494.
  • Gutiérrez, L., Batlle, R., Sánchez, C. and Nerín, C. (2010). New approach to study the mechanism of antimicrobial protection of an active packaging. Foodborne Pathog. Dis. 7:1063–1069.
  • Gutiérrez, L., Escudero, A., Batlle, R. and Nerín, C. (2009a). Effect of mixed antimicrobial agents and flavours in active packaging films. J. Agric. Food Chem. 57:8564–8571.
  • Gutiérrez, L., Sánchez, C., Batlle, R., López, P. and Nerín, C. (2009b). New Antimicrobial Active Package for Bakery Products. Trends Food Sci. Technol. 20:92–99.
  • Han, J., Castell-Perez, M. E. and Moreira, R. G. (2008). Effect of food characteristics, storage conditions, and electron beam irradiation on active agent release from polyamide-coated LDPE films. J. Food Sci. 73:E37–E43.
  • Han, J. H. (2005). Antimicrobial packaging systems.In: Innovations in Food Packaging, pp. 80–107. Han, H. J., Eds., ElsevierAcademic Press, Amsterdam.
  • Hanusova, K., Vapenka, L., Dobias, J. and Miskova, L. (2013). Development of antimicrobial packaging materials with immobilized glucose oxidase and lysozyme. Cent. Eur. J. Chem. 11:1066–1078.
  • Higueras, L., Lopez-Carballo, G., Gavara, R. and Hernandez-Munoz, P. (2015). Reversible covalent immobilization of cinnamaldehyde on chitosan films via schiff base formation and their application in active food packaging. Food Bioprocess Technol. 8:526–538.
  • Higueras, L., Lopez-Carballo, G., Hernandez-Munoz, P., Gavara, R. and Rollini, M. (2013). Development of a novel antimicrobial film based on chitosan with LAE (ethyl-N(alpha)-dodecanoyl-l-arginate) and its application to fresh chicken. Int. J. Food Microbiol. 165:339–345.
  • Hu, C. Y., Chen, M. and Wang, Z. W. (2012). Release of thymol, cinnamaldehyde and vanillin from soy protein isolate films into olive oil. Packag. Technol. Sci. 25:97–106.
  • Huang, Y. M., Chen, S. X., Bing, X., Gao, C. L., Wang, T. and Yuan, B. (2011). Nanosilver Migrated into food-simulating solutions from commercially available food fresh containers. Packag. Technol. Sci. 24:291–297.
  • Imran, M., Revol-Junelles, A. M., Martyn, A., Tehrany, E. A., Jacquot, M., Linder, M. and Desobry, S. (2010). Active food packaging evolution: Transformation from Micro- to Nanotechnology. Crit. Rev. Food Sci. Nutr. 50:799–821.
  • Jamshidian, M., Tehrany, E. A., Imran, M., Jacquot, M. and Desobry, S. (2010). Poly-Lactic acid: Production, applications, nanocomposites, and release studies. Compr. Rev. Food. Sci. Food Saf. 9:552–571.
  • Jipa, I. M., Stoica-Guzun, A. and Stroescu, M. (2012). Controlled release of sorbic acid from bacterial cellulose based mono and multilayer antimicrobial films. LWT-Food Sci. Technol. 47:400–406.
  • Kara, H. H., Xiao, F., Sarker, M., Jin, T. Z., Sousa, A. M. M., Liu, C.-K., Tomasula, P. M. and Liu, L. (2016). Antibacterial poly(lactic acid) (PLA) films grafted with electrospun PLA/allyl isothiocyanate fibers for food packaging. J. Appl. Polym. Sci. 133.42475(1–8).
  • Kriegel, C., Arrechi, A., Kit, K., McClements, D. J. and Weiss, J. (2008). Fabrication, functionalization, and application of electrospun biopolymer nanofibers. Crit. Rev. Food Sci. Nutr. 48:775–797.
  • Kuorwel, K. K., Cran, M. J., Sonneveld, K., Miltz, J. and Bigger, S. W. (2011). Essential oils and their principal constituents as antimicrobial agents for synthetic packaging films. J. Food Sci. 76:R164–R177.
  • Kurek, M., Guinault, A., Voilley, A., Galic, K. and Debeaufort, F. (2014). Effect of relative humidity on carvacrol release and permeation properties of chitosan based films and coatings. Food Chem. 144:9–17.
  • LaCoste, A., Schaich, K. M., Zumbrunnen, D. and Yam, K. L. (2005). Advancing controlled release packaging through smart blending. Packag. Technol. Sci. 18:77–87.
  • Lago, M. A., de Quiros, A. R. B., Sendon, R., Sanches-Silva, A., Costa, H. S., Sanchez-Machado, D. I., Lopez-Cervantes, J., Valdez, H. S., Aurrekoetxea, G. P., Angulo, I. and Losada, P. P. (2011). Compilation of analytical methods to characterize and determine chitosan, and main applications of the polymer in food active packaging. CyTA-J. Food 9:319–328.
  • Lavorgna, M., Attianese, I., Buonocore, G. G., Conte, A., Del Nobile, M. A., Tescione, F. and Amendola, E. (2014). MMT-supported Ag nanoparticles for chitosan nanocomposites: Structural properties and antibacterial activity. Carbohydr. Polym. 102:385–392.
  • Lei, J. Q., Yang, L. X., Zhan, Y. F., Wang, Y. T., Ye, T., Li, Y., Deng, H. B. and Li, B. (2014). Plasma treated polyethylene terephthalate/polypropylene films assembled with chitosan and various preservatives for antimicrobial food packaging. Colloid Surf. B-Biointerfaces 114:60–66.
  • Li, T., Dane, O. K. and Kinam, P. (1997). Computer simulation of molecular diffusion in amorphous polymers. J. Control Release 48:57–66.
  • Licciardello, F., Muratore, G., Mercea, P., Tosa, V. and Nerín, C. (2013). Diffusional behaviour of essential oil components in active packaging polypropylene films by multiple headspace solid phase microextraction-gas chromatography. Packag. Technol. Sci. 26:173–185.
  • Lin, Q. B., Li, H., Zhong, H. N., Zhao, Q., Xiao, D. H. and Wang, Z. W. (2014). Migration of Ti from nano-TiO2-polyethylene composite packaging into food simulants. Food Addit. Contam. Part A-Chem. 31:1284–1290.
  • Liu, J. F., Yu, S. J., Yin, Y. G. and Chao, J. B. (2012). Methods for separation, identification, characterization and quantification of silver nanoparticles. Trends Anal. Chem. 33:95–106.
  • Llorens, A., Lloret, E., Picouet, P. A., Trbojevich, R. and Fernandez, A. (2012). Metallic-based micro and nanocomposites in food contact materials and active food packaging. Trends Food Sci. Technol. 24:19–29.
  • Lopes, F. A., de Fátima Ferreira Soares, N., de Cássia Pires Lopes, C., da Silva, W. A., Júnior, J. C. B. and Medeiros, E. A. A. (2014). Conservation of bakery products through cinnamaldehyde antimicrobial films. Packag. Technol. Sci. 27:293–302.
  • López, P., Sánchez, C., Batlle, R. and Nerín, C. (2007). Development of flexible antimicrobial films using essential oils as active agents. J. Agric. Food Chem. 55:8814–8824.
  • Lopez-Rubio, A., Almenar, E., Hernandez-Munoz, P., Lagaron, J. M., Catala, R. and Gavara, R. (2004). Overview of active polymer-based packaging technologies for food applications. Food Rev. Int. 20:357–387.
  • Maillard, J. Y. and Hartemann, P. (2013). Silver as an antimicrobial: facts and gaps in knowledge. Crit. Rev. Microbiol. 39:373–383.
  • Manso, S., Pezo, D., Gómez-Lus, R. and Nerín, C. (2014). Diminution of Aflatoxin B1 production caused by an active packaging containing cinnamon essential oil. Food Control 45:101–108.
  • Martínez-Abad, A., Lagaron, J. M. and Ocio, M. J. (2012). Development and characterization of silver-based antimicrobial ethylene-vinyl alcohol copolymer (EVOH) films for food-packaging applications. J. Agric. Food Chem. 60:5350–5359.
  • Martínez-Abad, A., Lagarón, J. M. and Ocio, M. J. (2014a). Characterization of transparent silver loaded poly(l-lactide) films produced by melt-compounding for the sustained release of antimicrobial silver ions in food applications. Food Control 43:238–244.
  • Martínez-Abad, A., Lagaron, J. M. and Ocio, M. J. (2014b). Antimicrobial beeswax coated polylactide films with silver control release capacity. Int. J. Food Microbiol. 174:39–46.
  • Martínez-Abad, A., Ocio, M. J., Lagaron, J. M. and Sanchez, G. (2013a). Evaluation of silver-infused polylactide films for inactivation of Salmonella and feline calicivirus in vitro and on fresh-cut vegetables. Int. J. Food Microbiol. 162:89–94.
  • Martínez-Abad, A., Sanchez, G., Fuster, V., Lagaron, J. M. and Ocio, M. J. (2013b). Antibacterial performance of solvent cast polycaprolactone (PCL) films containing essential oils. Food Control 34:214–220.
  • Martínez, I., Partal, P., Garcia-Morales, M., Guerrero, A. and Gallegos, C. (2013). Development of protein-based bioplastics with antimicrobial activity by thermo-mechanical processing. J. Food Eng. 117:247–254.
  • Mascheroni, E., Capretti, G., Limbo, S. and Piergiovanni, L. (2012). Study of cellulose-lysozyme interactions aimed to a controlled release system for bioactives. Cellulose 19:1855–1866.
  • Mascheroni, E., Capretti, G., Marengo, M., Iametti, S., Mora, L., Piergiovanni, L. and Bonomi, F. (2010). Modification of cellulose-based packaging materials for enzyme immobilization. Packag. Technol. Sci. 23:47–57.
  • Mascheroni, E., Fuenmayor, C. A., Cosio, M. S., Di Silvestro, G., Piergiovanni, L., Mannino, S. and Schiraldi, A. (2013). Encapsulation of volatiles in nanofibrous polysaccharide membranes for humidity-triggered release. Carbohydr. Polym. 98:17–25.
  • Mascheroni, E., Guillard, V., Gastaldi, E., Gontard, N. and Chalier, P. (2011). Anti-microbial effectiveness of relative humidity-controlled carvacrol release from wheat gluten/montmorillonite coated papers. Food Control 22:1582–1591.
  • Mastromatteo, M., Barbuzzi, G., Conte, A. and Del Nobile, M. A. (2009). Controlled release of thymol from zein based film. Innov.Food Sci. Emerg. Technol. 10:222–227.
  • Mastromatteo, M., Conte, A. and Del Nobile, M. A. (2010). Advances in controlled release devices for food packaging applications. Trends Food Sci. Technol. 21:591–598.
  • Mastromatteo, M., Lecce, L., De Vietro, N., Favia, P. and del Nobile, M. A. (2011). Plasma deposition processes from acrylic/methane on natural fibres to control the kinetic release of lysozyme from PVOH monolayer film. J. Food Eng. 104:373–379.
  • Mayachiew, P., Devahastin, S., Mackey, B. M. and Niranjan, K. (2010). Effects of drying methods and conditions on antimicrobial activity of edible chitosan films enriched with galangal extract. Food Res. Int. 43:125–132.
  • Mondal, D., Bhowmick, B., Maity, D., Mollick, M. M. R., Rana, D., Rangarajan, V., Sen, R. and Chattopadhyay, D. (2015). Investigation on sodium benzoate release from poly(butylene adipate-co-terephthalate)/organoclay/sodium benzoate based nanocomposite film and their antimicrobial activity. J. Food Sci. 80:E602–E609.
  • Montero, P., Rodríguez, A. and Nerín, C. (2011). Active label-based packaging to extend the shelf-life of “Calanda” peach fruit.Changes in the quality and enzymatic activity of peach fruits. Postharvest Biol. Technol. 60:211–219.
  • Narayanan, A., Mallesha, N, and Ramana, K. V. (2013). Synergized antimicrobial activity of eugenol incorporated polyhydroxybutyrate films against food spoilage microorganisms in conjunction with pediocin. Appl. Biochem. Biotechnol. 170:1379–1388.
  • Neo, Y. P., Swift, S., Ray, S., Gizdavic-Nikolaidis, M., Jin, J. and Perera, C. O. (2013). Evaluation of gallic acid loaded zein sub-micron electrospun fibre mats as novel active packaging materials. Food Chem. 141:3192–3200.
  • Nerín, C. (2012). Essential oils in active packaging.In: Essential Oils as Natural Food Additives: Composition, Applications, Antioxidant and Antimicrobial Properties, pp. 397–412. Valgimigli, L., Ed., Nova Science Publishers, New York.
  • Nerín, C., Becerril, R., Manso, S. and Silva, F. (2016). Ethyl lauroyl arginate (LAE): Antimicrobial activity and applications in food systems. In: Antimicrobial Food Packaging, pp. 305–312. Barros-Velázquez, J., Ed., Academic Press, New York.
  • Nithya, V., Murthy, P. S. K. and Halami, P. M. (2013). Development and application of active films for food packaging using antibacterial peptide of Bacillus licheniformis Me1. J. Appl. Microbiol. 115:475–483.
  • Oliver, H. and Damian, A. (1999). A new mechanism for penetrant diffusion in amorphous polymers: Molecular dynamics simulations of phenol diffusion in bisphenol-A-polycarbonate. J. Chem. Phys. 111:6061–6068.
  • Otero, V., Becerril, R., Santos, J., Rodríguez-Calleja, J. M., Nerín, C. and García-López, M. L. (2014). Evaluation of two antimicrobial packaging films against Escherichia coli O157:H7 strains in vitro and during storage of a Spanish ripened sheep cheese (Zamorano). Food Control 42:296–302.
  • Ouattara, B., Simard, R. E., Piette, G., Begin, A. and Holley, R. A. (2000). Diffusion of acetic and propionic acids from chitosan-based antimicrobial packaging films. J. Food Sci. 65:768–773.
  • Ozdemir, M. and Floros, J. D. (2004). Active food packaging technologies. Crit. Rev. Food Sci. Nutr. 44:185–193.
  • Palomo, M. PhD Thesis, Univ. Complutense de Madrid, 2015.
  • Piringer, O. G. (1994). Evaluation of plastics for food packaging. Food Addit. Contam. 11:221–230.
  • Vera, P., Echegoyen, Y., Canellas, E., NerínC., Palomo, M., Madrid, Y. and Cámara, C. (2016). Nano Selenium as antioxidant agent in a multilayer food packaging material. Anal. Bioanal. Chem., Pres.
  • Raheem, D. (2012). Application of plastics and paper as food packaging materials—an overview. Emir. J. Food Agric. 25:177–188.
  • Raouche, S., Mauricio-Iglesias, M., Peyron, S., Guillard, V. and Gontard, N. (2011). Combined effect of high pressure treatment and anti-microbial bio-sourced materials on microorganisms' growth in model food during storage. Innov. Food Sci. Emerg. Technol. 12:426–434.
  • Rivero, S., Giannuzzi, L., Garcia, M. A. and Pinotti, A. (2013). Controlled delivery of propionic acid from chitosan films for pastry dough conservation. J. Food Eng. 116:524–531.
  • Rodriguez, F., Sepulveda, H. M., Bruna, J., Guarda, A. and Galotto, M. J. (2013). Development of cellulose eco-nanocomposites with antimicrobial properties oriented for food packaging. Packag. Technol. Sci. 26:149–160.
  • Rodriguez, F. J., Torres, A., Penaloza, A., Sepulveda, H., Galotto, M. J., Guarda, A. and Bruna, J. (2014). Development of an antimicrobial material based on a nanocomposite cellulose acetate film for active food packaging. Food Addit. Contam. 31:342–53.
  • Rodríguez-Lafuente, A., Batlle, R. and Nerín, C. (2007a). The use of natural essential oils as antimicrobials solutions in paper packaging. Part I. Ital. J. Food Sci. 19:146–150.
  • Rodríguez-Lafuente, A., Batlle, R. and Nerín, C. (2007b). The use of natural essential oils as antimicrobial solutions in paper packaging. Part II. Prog. Org. Coat. 60:33–38.
  • Rodríguez-Lafuente, A., Batlle, R. and Nerín, C. (2010). Active Paraffin-Based Paper Packaging for Extending the Shelf Life of Cherry Tomatoes. J. Agric. Food Chem. 58:6780–6786.
  • Rodríguez-Lafuente, A., Nerín, C. and Batlle, R. (2009). Determination of fifteen active compounds released from paraffin-based active packaging in tomato samples via microextraction techniques. Anal. Bioanal. Chem. 395:203–211.
  • Rojas, A., Cerro, D., Torres, A., Galotto, M. J., Guarda, A. and Romero, J. (2015). Supercritical impregnation and kinetic release of 2-nonanone in LLDPE films used for active food packaging. J. Supercrit. Fluid 104:76–84.
  • Sánchez-García, M. D., Gimenez, E., Ocio, M. J. and Lagaron, J. M. (2008). Novel polycaprolactone nanocomposites containing thymol of interest in antimicrobial film and coating applications. J. Plast. Film Sheet. 24:239–251.
  • Sadeghnejad, A., Aroujalian, A., Raisi, A. and Fazel, S. (2014). Antibacterial nano silver coating on the surface of polyethylene films using corona discharge. Surf.Coat. Technol. 245:1–8.
  • Salmieri, S., Islam, F., Khan, R. A., Hossain, F. M., Ibrahim, H. M. M., Miao, C., Hamad, W. Y. and Lacroix, M. (2014). Antimicrobial nanocomposite films made of poly(lactic acid)-cellulose nanocrystals (PLA-CNC) in food applications: part A—effect of nisin release on the inactivation of Listeria monocytogenes in ham. Cellulose 21:1837–1850.
  • Sanchez-Garcia, M. D., Lopez-Rubio, A. and Lagaron, J. M. (2010). Natural micro and nanobiocomposites with enhanced barrier properties and novel functionalities for food biopackaging applications. Trends Food Sci. Technol. 21:528–536.
  • Sánchez-González, L., Cháfer, M., González-Martínez, C., Chiralt, A. and Desobry, S. (2011). Study of the release of limonene present in chitosan films enriched with bergamot oil in food simulants. J. Food Eng. 105:138–143.
  • Sanchez-Valdes, S., Ortega-Ortiz, H., Valle, L., Medellin-Rodriguez, F. J. and Guedea-Miranda, R. (2009). Mechanical and antimicrobial properties of multilayer films with a polyethylene/silver nanocomposite layer. J. Appl. Polym. Sci. 111:953–962.
  • Shemesh, R., Krepker, M., Goldman, D., Danin-Poleg, Y., Kashi, Y., Nitzan, N., Vaxman, A., and Segal, E. (2015). Antibacterial and antifungal LDPE films for active packaging. Polym Advan. Technol. 26:110–116.
  • Silvestre, C., Duraccio, D. and Cimmino, S. (2011). Food packaging based on polymer nanomaterials. Prog. Polym. Sci. 36:1766–1782.
  • Smulders, F. J. M., Paulsen, P., Vali, S. and Wanda, S. (2013). Effectiveness of a polyamide film releasing lactic acid on the growth of E. coli O157:H7, Enterobacteriaceae and Total Aerobic Count on vacuum-packed beef. Meat Sci. 95:160–165.
  • Song, H., Li, B., Lin, Q. B., Wu, H. J. and Chen, Y. (2011). Migration of silver from nanosilver-polyethylene composite packaging into food simulants. Food Addit. Contam. 28:1758–1762.
  • Sotiriou, G. A., Meyer, A., Knijnenburg, J. T. N., Panke, S. and Pratsinis, S. E. (2012). Quantifying the origin of released Ag+ ions from nanosilver. Langmuir 28:15929–15936.
  • Souza, A. C., Goto, G. E. O., Mainardi, J. A., Coelho, A. C. V. and Tadini, C. C. (2013). Cassava starch composite films incorporated with cinnamon essential oil: Antimicrobial activity, microstructure, mechanical and barrier properties. LWT—Food Sci. Technol. 54:346–352.
  • Su, Q. Z., Lin, Q. B., Chen, C. F., Wu, Y. M., Wu, L. B. and Qing, X. (2015). Effect of antioxidants and light stabilisers on silver migration from nanosilver-polyethylene composite packaging films into food simulants. Food Addit. Contam. Part A-Chem. 32:1561–1566.
  • Sung, S. Y., Sin, L. T., Tee, T. T., Bee, S. T., Rahmat, A. R., Rahman, W., Tan, A. C. and Vikhraman, M. (2013). Antimicrobial agents for food packaging applications. Trends Food Sci. Technol. 33:110–123.
  • Suppakul, P., Sonneveld, K., Bigger, S. W. and Miltz, J. (2011). Diffusion of linalool and methylchavicol from polyethylene-based antimicrobial packaging films. LWT—Food Sci. Technol. 44:1888–1893.
  • Tawakkal, I. S. M. A., Cran, M. J. and Bigger, S. W. (2016). Interaction and quantification of thymol in active PLA-based materials containing natural fibers. J. Appl. Polym. Sci. 133(42160):1–11.
  • Tongnuanchan, P. and Benjakul, S. (2014). Essential oils: Extraction, bioactivities, and their uses for food preservation. J. Food Sci. 79:R1231–R1249.
  • Torres-Giner, S., Martínez-Abad, A. and Lagaron, J. M. (2014). Zein-based ultrathin fibers containing ceramic nanofillers obtained by electrospinning. II. Mechanical properties, gas barrier, and sustained release capacity of biocide thymol in multilayer polylactide films. J. Appl. Polym. Sci. 131(40768):9270–9276.
  • Torres, A., Romero, J., Macan, A., Guarda, A. and Galotto, M. J. (2014). Near critical and supercritical impregnation and kinetic release of thymol in LLDPE films used for food packaging. J. Supercrit Fluid 85:41–48.
  • Tunc, S. and Duman, O. (2011). Preparation of active antimicrobial methyl cellulose/carvacrol/montmorillonite nanocomposite films and investigation of carvacrol release. LWT-Food Sci. Technol. 44:465–472.
  • Uz, M. and Altinkaya, S. A. (2011). Development of mono and multilayer antimicrobial food packaging materials for controlled release of potassium sorbate. LWT-Food Sci. Technol. 44:2302–2309.
  • Vermeiren, L., Devlieghere, F., van Beest, M., de Kruijf, N. and Debevere, J. (1999). Developments in the active packaging of foods. Trends Food Sci. Technol. 10:77–86.
  • Wang, H. L., Liu, H., Chu, C. J., She, Y., Jiang, S. W., Zhai, L. F., Jiang, S. T. and Li, X. J. (2015a). Diffusion and antibacterial properties of nisin-loaded chitosan/poly (l-Lactic acid) towards development of active food packaging film. Food Bioprocess Technol. 8:1657–1667.
  • Wang, H. L., Zhang, R., Zhang, H., Jiang, S. W., Liu, H., Sun, M. and Jiang, S. T. (2015b). Kinetics and functional effectiveness of nisin loaded antimicrobial packaging film based on chitosan/poly(vinyl alcohol). Carbohydr. Polym. 127:64–71.
  • Wang, Z. W., Wang, P. L. and Hu, C. Y. (2010). Molecular dynamics simulation on diffusion of 13 kinds of small molecules in polyethylene terephthalate. Packag. Technol. Sci. 23:457–469.
  • Wang, Z. W., Wang, P. L. and Hu, C. Y. (2012). Investigation in influence of types of polypropylene material on diffusion by using molecular dynamics simulation. Packag. Technol. Sci. 25:329–339.
  • Wu, J. L., Liu, H., Ge, S. Y., Wang, S., Qin, Z. Q., Chen, L., Zheng, Q. H., Liu, Q. Y. and Zhang, Q. Q. (2015). The preparation, characterization, antimicrobial stability and in vitro release evaluation of fish gelatin films incorporated with cinnamon essential oil nanoliposomes. Food Hydrocolloids 43:427–435.
  • Yoshida, C. M. P., Bastos, C. E. N. and Franco, T. T. (2010). Modeling of potassium sorbate diffusion through chitosan films. LWT-Food Sci. Technol. 43:584–589.
  • Yu, W. X., Hu, C. Y. and Wang, Z. W. (2016). Release of potassium sorbate from pectin-carboxymethyl cellulose films into food simulant. J. Food Process. Pres. DOI: 10.1111/jfpp.12860.
  • Zactiti, E. M. and Kieckbusch, T. G. (2009). Release of potassium sorbate from active films of sodium alginate crosslinked with calcium chloride. Packag. Technol. Sci. 22:349–358.
  • Zhu, X. T. (2008). Development of target release rate concept for controlled release packaging. Rutgers the State University of New Jersey, New Brunswick.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.