1,577
Views
63
CrossRef citations to date
0
Altmetric
Articles

Mucus and microbiota as emerging players in gut nanotoxicology: The example of dietary silver and titanium dioxide nanoparticles

ORCID Icon, , , ORCID Icon & ORCID Icon

References

  • AFSSET (2010). Evaluation des risques liés aux nanomatériaux pour la population générale et pour l'environnement. [https://www.anses.fr/fr/system/files/AP2008et0005Ra.pdf].
  • Ahamed, M., AlSalhi, M. S., and Siddiqui, M. K. J. (2010). Silver nanoparticle applications and human health. Clin. Chim. Acta. 411:1841–1848.
  • ANSES (2015). Mise à jour des connaissances sur l'évaluation des risques sanitaires et environnementaux liés à l'exposition aux nanoparticules d'argent. [https://www.anses.fr/fr/system/files/AP2011sa0224Ra.pdf].
  • Asharani, P. W., Gong, Z. Y., and Valiyaveettil, S. (2008). Toxicity of silver nanoparticles in zebrafish models. Nanotechnology. 19:1–8.
  • Backhed, F., Ley, R. E., Sonnenburg, J. L., Peterson, D. A., and Gordon, J. I. (2005). Host-bacterial mutualism in the human intestine. Science. 307:1915–1920.
  • Bansil, R. R. and Turner, B. S. (2006). Mucin structure, aggregation, physiological functions and biomedical applications. Curr. Opin. Colloid. Interface Sci. 11:164–170.
  • Behrens, I., Vila Pena, A. I., Alonso, M. J., and Kissel, T. (2002). Comparative uptake studies of bioadhesive and non-bioadhesive nanoparticles in human intestinal cell lines and rats: the effect of mucus on particle adsorption and transport. Pharm. Res. 19:1185–1193.
  • Bettini, S. and Houdeau, E. (2014). Oral exposure to titanium dioxide (TiO2) nanoparticles: from translocation through oral and intestinal epithelia to fate and effects in the organism. Biol. Aujourdhui. 208:167–175.
  • Bilberga, K., Malte, H., Wang, T., and Baatrup, E. (2010). Silver nanoparticles and silver nitrate cause respiratory stress in Eurasian perch (Perca fluviatilis). Aquat. Toxicol. 96:159–165.
  • Böhmert, L., Girod, M., Hansen, U., Maul, R., Knappe, P., Niemann, B., et al. (2014). Analytically monitored digestion of silver nanoparticles and their toxicity on human intestinal cells. Nanotoxicology. 8:631–642.
  • Böhmert, L., Niemann, B., Lichtenstein, D., Juling, S., and Lampen, A. (2015). Molecular mechanism of silver nanoparticles in human intestinal cells. Nanotoxicology. 9:852–860.
  • Bouwmeester, H., Poortman, J., Peters, R. J., Wijma, E., Kramer, E., Makama, S., et al. (2011). Characterization of translocation of silver nanoparticles and effects on whole-genome gene expression using an in vitro intestinal epithelium coculture model. ACS Nano. 5:4091–4103.
  • Brun, E., Barreau, F., Veronesi, G., Fayard, B., Sorieul, S., Chanéac, C., et al. (2014). Titanium dioxide nanoparticle impact and translocation through ex vivo, in vivo and in vitro gut epithelia. Part Fibre Toxicol. 11:13.
  • Burger-van Paassen, N., Vincent, A., Puiman, P. J., van der Sluis, M., Bouma, J., et al. (2009). The regulation of intestinal mucin MUC2 expression by short-chain fatty acids: implications for epithelial protection. Biochem. J. 420:211–219.
  • Chaudhry, Q., Scotter, M., Blackburn, J., Ross, B., Boxall, A., Castle, L., et al. (2008). Applications and implications of nanotechnologies for the food sector. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 25:241–258.
  • Chen, E. Y., Garnica, M., Wang, Y. C., Chen, C. S., and Chin, W. C. (2011). Mucin secretion induced by titanium dioxide nanoparticles. PLoS One. 6:e16198.
  • Chen, X. X., Cheng, B., Yang, Y. X., Cao, A., Liu, J. H., Du, L. J., et al. (2013). Characterization and preliminary toxicity assay of nano-titanium dioxide additive in sugar-coated chewing gum. Small. 9:1765–1774.
  • Cho, W. S., Kang, B. C., Lee, J. K., Jeong, J., Che, J. H., and Seok, S. H. (2013). Comparative absorption, distribution, and excretion of titanium dioxide and zinc oxide nanoparticles after repeated oral administration. Part Fibre Toxicol. 10:9.
  • Das, P., McDonald, J. A. K., Petrof, E. O., Allen-Vercoe, E., and Walker, V. K. (2014). Nanosilver-mediated change in human intestinal microbiota. J. Nanomed Nanotechnol. 5:5.
  • Donaldson, G. P., Lee, S. M., and Mazmanian, S. K. (2016). Gut biogeography of the bacterial microbiota. Nat. Rev. Microbiol. 14:20–32.
  • EFSA (2014). External scientific report, Inventory of Nanotechnology applications in the agricultural, feed and food sector. [http://www.efsa.europa.eu/sites/default/files/scientific_output/files/main_documents/621e.pdf].
  • EFSA Panel on Food Additives and Nutrient Sources Added to Food. (2005). Opinion of the Scientific Panel on food additives, flavourings, processing aids and materials in contact with food (AFC) on Titanium dioxide. EFSA J. 3:163.
  • EFSA (2016). Scientific opinion on the re-evaluation of silver (E 174) as food additive. [http://www.efsa.europa.eu/sites/default/files/scientific_output/files/main_documents/4364.pdf].
  • El Kaoutari, A., Armougom, F., Gordon, J. I., Raoult, D., and Henrissat, B. (2013). The abundance and variety of carbohydrate-active enzymes in the human gut microbiota. Nat. Rev. Micro. 11:497–504.
  • Ensign, L. M., Cone, R., and Hanes, J. (2012). Oral drug delivery with polymeric nanoparticles: The gastrointestinal mucus barriers. Adv. Drug Deliv. Rev. 64:557–570.
  • Epstein, M., Emri, I., Hartemann, P., Hoet, P., Leitgeb, N., Martínez Martínez, L., et al. Scientific Committee on Emerging and Newly Identified Health Risks (SCENIHR), Opinion on Nanosilver: safety, health and environmental effects and role in antimicrobial resistance (2014). [http://www.agh2o.cz/download/scenihr_o_039.pdf].
  • Ermund, A., Schütte, A., Johansson, M. E., Gustafsson, J. K., and Hansson, G. C. (2013). Studies of mucus in mouse stomach, small intestine, and colon. I. Gastrointestinal mucus layers have different properties depending on location as well as over the Peyer's patches. Am. J. Physiol. Gastrointest Liver Physiol. 305:G341–G347.
  • Fondevila, M., Herrer, R., Casallasa, M. C., Abeciaa, L., and Duchab, J. J. (2009). Silver nanoparticles as a potential antimicrobial additive for weaned pigs. Anim. Feed Sci. Technol. 150:259–269.
  • French Administration (2014). Bilan des déclarations des substances importées, fabriquées ou distribuées en France en2013, Déclaration des substances à l'état nanoparticulaire, R-Nano.fr, Ministère de l'Ecologie, du Développement durable et de l'Energie. [http://www.developpement-durable.gouv.fr/IMG/pdf/rapport-nano-2014.pdf].
  • Fröhlich, E. E. and Fröhlich, E. (2016). Cytotoxicity of nanoparticles contained in food on intestinal cells and the gut microbiota. Int. J. Mol. Sci. 17:509.
  • Fröhlich, E. and Roblegg, E. (2012). Models for oral uptake of nanoparticles in consumer products. Toxicology. 291:10–17.
  • García-Alonso, J., Khan, F. R., Misra, S. K., Turmaine, M., Smith, B. D., Rainbow, P. S., et al. (2011). Cellular internalization of silver nanoparticles in gut epithelia of the estuarine Polychaete Nereis diversicolor. Environ. Sci. Technol. 45:4630–4636.
  • Georgantzopoulou, A., Serchi, T., Cambier, S., Leclercq, C. C., Renaut, J., Shao, J., et al. (2016). Effects of silver nanoparticles and ions on a co-culture model for the gastrointestinal epithelium. Part Fibre Toxicol. 13:9.
  • Gerloff, K., Fenoglio, I., Carella, E., Kolling, J., Albrecht, C., Boots, A. W., et al. (2012). Distinctive toxicity of TiO2 rutile/anatase mixed phase nanoparticles on Caco-2 cells. Chem. Res. Toxicol. 25:646–655.
  • Gerloff, K., Pereira, D. I., Faria, N., Boots, A. W., Kolling, J., Förster, I., et al. (2013). Influence of simulated gastrointestinal conditions on particle-induced cytotoxicity and interleukin-8 regulation in differentiated and undifferentiated Caco-2 cells. Nanotoxicology. 7:353–366.
  • Gill, S. R., Pop, M., Deboy, R. T., Eckburg, P. B., Turnbaugh, P. J., Samuel, B. S., et al. (2006). Metagenomic analysis of the human distal gut microbiome. Science. 312:1355–1359.
  • Hadrup, N. and Lam, H. R. (2014). Oral toxicity of silver ions, silver nanoparticles and colloidal silver – A review. Regul. Toxicol. Pharmacol. 68:1–7.
  • Hadrup, N., Loeschner, K., Bergstrom, A., Wilcks, A., Gao, X., Vogel, U., et al. (2012). Subacute oral toxicity investigation of nanoparticulate and ionic silver in rats. Arch. Toxicol. 86:543–551.
  • Hlidek, P., Biederman, H., Choukourov, A., and Slavinska, D. (2009). Behavior of polymeric matrices containing silver inclusions, 2 – Oxidative aging of nanocomposite Ag/C:H and Ag/C:H:O films. Plasma Process. Polym. 6:34–44.
  • Jakobsson, H. E., Rodríguez-Piñeiro, A. M., Schütte, A., Ermund, A., Boysen, P., Bemark, M., et al. (2015). The composition of the gut microbiota shapes the colon mucus barrier. EMBO Rep. 16:164–177.
  • Jeong, G. N., Jo, U. B., Ryu, H. Y., Kim, Y. S., Song, K. S., and Yu, I. J. (2010). Histochemical study of intestinal mucins after administration of silver nanoparticles in Sprague-Dawley rats. Arch. Toxicol. 84:63–69.
  • Johansson, M. E. V., Phillipson, M., Petersson, J., Holm, L., Velcich, A., and Hansson, G. C. (2008). The inner of the two Muc2 mucin-dependent mucus layers in colon is devoid of bacteria. Proc. Natl. Acad. Sci. USA. 105:15064–15069.
  • Johansson, M. E., Larsson, J. M., and Hansson, G. C. (2011). The two mucus layers of colon are organized by the MUC2 mucin, whereas the outer layer is a legislator of host-microbial interactions. Proc. Natl. Acad. Sci. USA. 108:4659–4665.
  • Johansson, M. E., Sjövall, H., and Hansson, G. C. (2013). The gastrointestinal mucus system in health and disease. Nat. Rev. Gastroenterol Hepatol. 10:352–361.
  • Joint FAO/WHO Expert Committee on Food Additives (2006). Combined Compendium of Food Additive Specifications, Food and Agriculture Organization of the United Nations, Rome.
  • Juge, N. (2012). Microbial adhesins to gastrointestinal mucus. Trends Microbiol. 20:30–39.
  • Kehoe, R. A., Cholak, J., and Story, R. V. (1940). Manganese, lead, tin, aluminum, copper, and silver in normal biological material. J. Nutr. 20:85–89.
  • Kim, Y. S., Kim, J. S., Cho, H. S., Rha, D. S., Kim, J. M., Park, J. D., et al. (2008). Twenty-eight-day oral toxicity, genotoxicity, and gender-related tissue distribution of silver nanoparticles in Sprague-Dawley rats. Inhal. Toxicol. 20:575–583.
  • Kim, Y. S., Song, M. Y., Park, J. D., Song, K. S., Ryu, H. R., Chung, Y. H., et al. (2010). Subchronic oral toxicity of silver nanoparticles. Part Fibre Toxicol. 7:20.
  • Körner, E., Aguirre, M. H., Fortunato, G., Ritter, A., Rühe, J., and Hegemann, D. (2010). Formation and distribution of silver nanoparticles in a functional plasma polymer matrix and related Ag+ release properties. Plasma Process. Polym. 7:619–625.
  • Kumar, A., Pandey, A. K., Singh, S. S., Shanker, R., and Dhawan, A. (2011). Engineered ZnO and TiO(2) nanoparticles induce oxidative stress and DNA damage leading to reduced viability of Escherichia coli. Free Radic. Biol. Med. 51:1872–1881.
  • Kwok, K. W. H., Auffan, M., Badireddy, A. R., Nelsona, C. M., Wiesner, M. R., Chilkoti, A., et al. (2012). Uptake of silver nanoparticles and toxicity to early life stages of Japanese medaka (Oryzias latipes): Effect of coating materials. Aquat. Toxicol. 120–121:59–66.
  • Lansdown, A. B. G. (2002). Silver I: Its antibacterial properties and mechanisms of action. J. Wound. Care. 11:125–130.
  • Lecloux, H., Ibouraadaten, S., Palmai-Pallag, M., Marbaix, E., van der Brule, S., and Lison, D. You are what you eat: silica and silver nanoparticles in food affect the gut microbiota in mice, by causing a dose-dependent increase in Firmicutes counts and a decrease in Bacteroides count. (2015). [Toxsocbe.webhosting.be/wp-content/uploads/Abstract-BELTOX_H.Lecloux.pdf].
  • Lee, J. H., Kim, Y. S., Song, K. S., Ryu, H. R., Sung, J. H., Park, J. D., et al. (2013). Biopersistence of silver nanoparticles in tissues from Sprague-Dawley rats. Part Fibre Toxicol. 10:36.
  • Liu, P., Duan, W., Wang, Q., and Li, X. (2010). The damage of outer membrane of Escherichia coli in the presence of TiO2 combined with UV light. Colloids Surf. B Biointerfaces. 78:171–176.
  • Loeschner, K., Hadrup, N., Qvortrup, K., Larsen, A., Gao, X., Vogel, U., et al. (2011). Distribution of silver in rats following 28 days of repeated oral exposure to silver nanoparticles or silver acetate. Part Fibre Toxicol. 8:18.
  • Lomer, M. C. E., Hutchinson, C., Volkert, S., Greenfield, S. M., Catterall, A., Thompson, R. P., et al. (2004). Dietary sources of inorganic microparticles and their intake in healthy subjects and patients with Crohn's disease. Br. J. Nutr. 92:947–955.
  • Marchesi, J. R. (2011). Human distal gut microbiome. Environ. Microbiol. 13:3088–3102.
  • Merrifield, D. L., Shaw, B. J., Harper, G. M., Saoud, I. P., Davies, S. J., Handy, R. D., et al. (2013). Ingestion of metal-nanoparticle contaminated food disrupts endogenous microbiota in zebrafish (Danio rerio). Environ. Pollut. 174:157–163.
  • Munger, M. A., Radwanski, P., Hadlock, G. C., Stoddard, G., Shaaban, A., Falconer, J., et al. (2014). In vivo human time-exposure study of orally dosed commercial silver nanoparticles. Nanomedicine: Nanotechnology, Biol. Med. 10:1–9.
  • Mwilu, S. K., El Badawy, A. M., Bradham, K., Nelson, C., Thomas, D., Scheckel, K. G., et al. (2013). Changes in silver nanoparticles exposed to human synthetic stomach fluid: effects of particle size and surface chemistry. Sci. Total Environ. 447:90–98.
  • Nel, A., Xia, T., Madler, L., and Li, N. (2006). Toxic potential of materials at the nanolevel. Science. 311:622–627.
  • Nowack, B., Krug, H. F., and Height, M. (2011). 120 years of nanosilver history: Implications for policy makers. Environ. Sci. Technol. 45:1177–1183.
  • Olszak, T., An, D., Zeissig, S., Vera, M. P., Richter, J., Franke, A., et al. (2012). Microbial exposure during early life has persistent effects on natural killer T-cell function. Science. 336:489–493.
  • Ouwerkerk, J. P., de Vos, W. M., and Belzer, C. (2013). Glycobiome: Bacteria and mucus at the epithelial interface. Best Pract. Res. Clin. Gastroenterol. 27:25–38.
  • Park, E. J., Bae, E., Yi, J., Kim, Y., Choi, K., Lee, S. H., et al. (2010). Repeated-dose toxicity and inflammatory responses in mice by oral administration of silver nanoparticles. Environ. Toxicol. Pharmacol. 30:162–168.
  • Petersson, J., Schreiber, O., Hansson, G. C., Gendler, S. J., Velcich, A., Lundberg, J. O., et al. (2011). Importance and regulation of the colonic mucus barrier in a mouse model of colitis. Am. J. Physiol. Gastrointest Liver Physiol. 300:G327–G333.
  • Piccinno, F., Gottschalk, F., Seeger, S., and Nowack, B. (2012). Industrial production quantities and uses of ten engineered nanomaterials in Europe and the world. J. Nanopart Res. 14:1–11.
  • Pietroiusti, A., Magrini, A., and Campagnolo, L. (2016). New frontiers in nanotoxicology: Gut microbiota/microbiome-mediated effects of engineered nanomaterials. Toxicol. Appl. Pharmacol. 299:90–95.
  • Robbe, C., Capon, C., Coddeville, B., and Michalski, J. C. (2004). Structural diversity and specific distribution of O-glycans in normal human mucins along the intestinal tract. Biochem. J. 384:307–316.
  • Roblegg, E., Fröhlich, E., Meindl, C., Teubl, B., Zaversky, M., and Zimmer, A. (2012). Evaluation of a physiological in vitro system to study the transport of nanoparticles through the buccal mucosa. Nanotoxicology. 6:399–413.
  • Saulou, C., Despax, B., Raynaud, P., Zanna, S., Marcus, P., and Mercier-Bonin, M. (2009). Plasma-mediated modification of austenitic stainless steel: Application to the prevention of yeast adhesion. Plasma Process. Polym. 6:813–824.
  • Scown, T. M., Santos, E. M., Johnston, B. D., Gaiser, B., Baalousha, M., Mitov, S., et al. (2010). Effects of aqueous exposure to silver nanoparticles of different sizes in rainbow trout. Toxicol. Sci. 115:521–534.
  • Shahare, B. and Yashpal, M. (2013). Toxic effects of repeated oral exposure of silver nanoparticles on small intestine mucosa of mice. Toxicol. Mech. Methods. 23:161–167.
  • Sonnenburg, J. L., Xu, J., Leip, D. D., Chen, C. H., Westover, B. P., Weatherford, J., et al. (2005). Glycan foraging in vivo by an intestine-adapted bacterial symbiont. Science. 307:1955–1959.
  • Tap, J., Mondot, S., Levenez, F., Pelletier, E., Caron, C., Furet, J. P., et al. (2009). Towards the human intestinal microbiota phylogenetic core. Environ. Microbiol. 11:2574–2584.
  • Tay, C. Y., Fang, W., Setyawati, M. I., Chia, S. L., Tan, K. S., Hong, C. H., et al. (2014). Nano-hydroxyapatite and nano-titanium dioxide exhibit different subcellular distribution and apoptotic profile in human oral epithelium. ACS Appl. Mater. Interfaces. 6:6248–6256.
  • Taylor, A. A., Marcus, I. M., Guysi, R. L., and Walker, S. L. (2015). Metal oxide nanoparticles induce minimal phenotypic changes in a model colon gut microbiota. Environ. Eng. Sci. 32:602–612.
  • Teubl, B. J., Meindl, C., Eitzlmayr, A., Zimmer, A., Fröhlich, E., and Roblegg, E. (2013). In-vitro permeability of neutral polystyrene particles via buccal mucosa. Small. 9:457–466.
  • Teubl, B. J., Leitinger, G., Schneider, M., Lehr, C. M., Fröhlich, E., Zimmer, A., et al. (2015a). The buccal mucosa as a route for TiO2 nanoparticle uptake. Nanotoxicology. 9:253–261.
  • Teubl, B. J., Schimpel, C., Leitinger, G., Bauer, B., Fröhlich, E., Zimmer, A., et al. (2015b). Interactions between nano-TiO2 and the oral cavity: Impact of nanomaterial surface hydrophilicity/hydrophobicity. J. Hazard Mater. 286:298–305.
  • Tolaymat, T. M., El Badawy, A. M., Genaidy, A., Scheckel, K. G., Luxton, T. P., and Suidan, M. (2006). An evidence-based environmental perspective of manufactured silver nanoparticle in syntheses and applications: A systematic review and critical appraisal of peer-reviewed scientific papers. Sci. Total Environ. 408:999–1006.
  • Tomas, J., Wrzosek, L., Bouznad, N., Bouet, S., Mayeur, C., Noordine, M. L., et al. (2013). Primocolonization is associated with colonic epithelial maturation during conventionalization. FASEB J. 27:645–655.
  • US. Environmental Protection Agency (1980). Ambient water quality criteria: Silver.
  • van der Zande, M., Vandebriel, R. J., Van Doren, E., Kramer, E., Herrera Rivera, Z., Serrano-Rojero, C. S., et al. (2012). Distribution, elimination, and toxicity of silver nanoparticles and silver ions in rats after 28-day oral exposure. ACS Nano. 6:7427–7442.
  • Wang, Y., Chen, Z., Ba, T., Pu, J., Chen, T., Song, Y., et al. (2013). Susceptibility of young and adult rats to the oral toxicity of titanium dioxide nanoparticles. Small. 9:1742–1752.
  • Weir, A., Westerhoff, P., Fabricius, L., Hristovski, K., and von Goetz, N. (2012). Titanium dioxide nanoparticles in food and personal care products. Environ. Sci. Technol. 46:2242–2250.
  • Wijnhoven, S. W. P., Peijnenburg, W. J. G. M., Herberts, C. A., Hagens, W. I., Oomen, A. G., Heugens, E. H. W., et al. (2009). Nano-silver – A review of available data and knowledge gaps in human and environmental risk assessment. Nanotoxicology. 3:109–138.
  • Wilding, L. A., Bassis, C. M., Walacavage, K., Hashway, S., Leroueil, P. R., Morishita, M., et al. (2015). Repeated dose (28-day) administration of silver nanoparticles of varied size and coating does not significantly alter the indigenous murine gut microbiome. Nanotoxicology. 10:1–8.
  • Williams, K., Milner, J., Boudreau, M. D., Gokulan, K., Cerniglia, C. E., and Khare, S. (2015). Effects of subchronic exposure of silver nanoparticles on intestinal microbiota and gut-associated immune responses in the ileum of Sprague-Dawley rats. Nanotoxicology. 9:279–289.
  • Woodrow Wilson International Center for Scholars, On-line inventory of nanotechnology-based consumer products, Project on Emerging Nanotechnologies (2013), http://nanotechproject.org/cpi/about/analysis/.
  • Yang, Y., Doudrick, K., Bi, X., Hristovski, K., Herckes, P., Westerhoff, P., et al. (2014). Characterization of food-grade titanium dioxide: the presence of nanosized particles. Environ. Sci. Technol. 48:6391–6400.
  • Yu, B., Leung, K. M., Guo, Q., Lau, W. M., and Yang, J. (2011). Synthesis of Ag-TiO2 composite nano thin film for antimicrobial application. Nanotechnology. 22:115603.
  • Zanna, S., Saulou, C., Mercier-Bonin, M., Despax, B., Raynaud, P., Seyeux, A., et al. (2010). Ageing of plasma-mediated coatings with embedded silver nanoparticles on stainless steel: An XPS and ToF-SIMS investigation. Appl. Surf. Sci. 256:6499–6505.
  • Zhukova, L. V., Kiwi, J., and Nikandrov, V. V. (2012). TiO2 nanoparticles suppress Escherichia coli cell division in the absence of UV irradiation in acidic conditions. Colloids Surf. B Biointerfaces. 97:240–247.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.