5,307
Views
240
CrossRef citations to date
0
Altmetric
Articles

Short-chain fatty acids in control of energy metabolism

, , &

References

  • Aberdein, N., Schweizer, M., and Ball, D. (2014). Sodium acetate decreases phosphorylation of hormone sensitive lipase in isoproterenol-stimulated 3T3-L1 mature adipocytes. Adipocyte 3(2):121–125.
  • Al-Lahham, S. H., Roelofsen, H., Priebe, M., Weening, D., Dijkstra, M., Hoek, A., Rezaee, F., Venema, K., and Vonk, R. J. (2010). Regulation of adipokine production in human adipose tissue by propionic acid. Eur. J. Clin. Invest. 40(5):401–407.
  • Bergman, E. N. (1990). Energy contributions of volatile fatty acids from the gastrointestinal tract in various species. Physiol. Rev. 70(2):567–590.
  • Binder, H. J. (2010). Role of colonic short-chain fatty acid transport in diarrhea. Annu. Rev. Physiol. 72:297–313.
  • Bjursell, M., Admyre, T., Goransson, M., Marley, A. E., Smith, D. M., Oscarsson, J. and Bohlooly, Y. M. (2011). Improved glucose control and reduced body fat mass in free fatty acid receptor 2-deficient mice fed a high-fat diet. Am. J. Physiol. Endocrinol. Metab. 300(1):E211–220.
  • Bloemen, J. G., Olde Damink, S. W., Venema, K., Buurman, W. A., Jalan, R., and Dejong, C. H. (2010). Short chain fatty acids exchange: Is the cirrhotic, dysfunctional liver still able to clear them? Clin. Nutr. 29(3):365–369.
  • Bloemen, J. G., Venema, K., van de Poll, M. C., Olde Damink, S. W., Buurman, W. A., and Dejong, C. H. (2009). Short chain fatty acids exchange across the gut and liver in humans measured at surgery. Clin. Nutr. 28(6):657–661.
  • Boers, H. M., MacAulay, K., Murray, P., Seijen Ten Hoorn, J., Hoogenraad, A. R., Peters, H. P., Vente-Spreeuwenberg, M. A., and Mela, D. J. (2016). Efficacy of different fibres and flour mixes in South-Asian flatbreads for reducing post-prandial glucose responses in healthy adults. Eur. J. Nutr. 1–12.
  • Boets, E., Deroover, L., Houben, E., Vermeulen, K., Gomand, S. V., Delcour, J. A., and Verbeke, K. (2015). Quantification of in vivo colonic short chain fatty acid production from inulin. Nutrients 7(11):8916–8929.
  • Braniste, V., Al-Asmakh, M., Kowal, C., Anuar, F., Abbaspour, A., Toth, M., Korecka, A., Bakocevic, N., Ng, L G., Kundu, P., Gulyas, B., Halldin, C., Hultenby, K., Nilsson, H., Hebert, H., Volpe, B. T., Diamond, B., and Pettersson, S. (2014). The gut microbiota influences blood-brain barrier permeability in mice. Sci. Transl. Med. 6(263):263ra158.
  • Brown, A. J., Goldsworthy, S. M., Barnes, A. A., Eilert, M. M., Tcheang, L., Daniels, D., Muir, A. I., Wigglesworth, M. J., Kinghorn, I., Fraser, N. J., Pike, N B., Strum, J. C., Steplewski, K. M., Murdock, P. R., Holder, J. C., Marshall, F. H., Szekeres, P. G., Wilson, S., Ignar, D. M., Foord, S M., Wise, A. and Dowell, S. J. (2003). The Orphan G protein-coupled receptors GPR41 and GPR43 are activated by propionate and other short chain carboxylic acids. J. Biol. Chem. 278(13):11312–11319.
  • Brown, L., Rosner, B., Willett, W. W., and Sacks, F. M. (1999). Cholesterol-lowering effects of dietary fiber: A meta-analysis. Am. J. Clin. Nutr. 69(1):30–42.
  • Byrne, C. S., Chambers, E. S., Alhabeeb, H., Chhina, N., Morrison, D .J., Preston, T., Tedford, C., Fitzpatrick, J., Irani, C., Busza, A., Garcia-Perez, I., Fountana, S., Holmes, E., Goldstone, A. P., and Frost, G. S. (2016). Increased colonic propionate reduces anticipatory reward responses in the human striatum to high-energy foods. Am. J. Clin. Nutr. 104(1):5–14.
  • Canfora, E. E., Jocken, J. W., and Blaak, E. E. (2015). Short-chain fatty acids in control of body weight and insulin sensitivity. Nat. Rev. Endocrinol. 11(10):577–591.
  • Cani, P. D., Neyrinck, A. M., Fava, F., Knauf, C., Burcelin, R. G., Tuohy, K. M., Gibson, G. R., and Delzenne, N. M. (2007). Selective increases of bifidobacteria in gut microflora improve high-fat-diet-induced diabetes in mice through a mechanism associated with endotoxaemia. Diabetologia 50(11):2374–2383.
  • Causey, J. L., Feirtag, J. M., Gallaher, D. D., Tungland, B. C., and Slavin, J. L. (2000). Effects of dietary inulin on serum lipids, blood glucose and the gastrointestinal environment in hypercholesterolemic men. Nutr. Res. 20(2):191–201.
  • Chambers, E. S., Viardot, A., Psichas, A., Morrison, D. J., Murphy, K. G., Zac-Varghese, S. E., MacDougall, K., Preston, T., Tedford, C., Finlayson, G. S., Blundell, J. E., Bell, J. D., Thomas, E. L., Mt-Isa, S., Ashby, D., Gibson, G. R., Kolida, S., Dhillo, W. S., Bloom, S. R., Morley, W., Clegg, S. and Frost, G. (2015). Effects of targeted delivery of propionate to the human colon on appetite regulation, body weight maintenance and adiposity in overweight adults. Gut 64(11):1744–1754.
  • Charney, A. N., Micic, L., and Egnor, R. W. (1998). Nonionic diffusion of short-chain fatty acids across rat colon. Am. J. Physiol. 274(3 Pt 1):G518–524.
  • De Vadder, F., Kovatcheva-Datchary, P., Zitoun, C., Duchampt, A., Backhed, F., and Mithieux, G. (2016). Microbiota-produced succinate improves glucose homeostasis via intestinal gluconeogenesis. Cell Metab. 24(1):151–157.
  • Demigne, C., Yacoub, C., Remesy, C., and Fafournoux, P. (1986). Propionate and butyrate metabolism in rat or sheep hepatocytes. Biochim. Biophys. Acta 875(3):535–542.
  • den Besten, G., Bleeker, A., Gerding, A., van Eunen, K., Havinga, R., van Dijk, T. H., Oosterveer, M. H., Jonker, J. W., Groen, A. K., Reijngoud, D. J., and Bakker, B. M. (2015). Short-Chain fatty acids protect against high-fat diet-induced obesity via a PPAR gamma-dependent switch fom lipogenesis to fat oxidation. Diabetes 64(7):2398–2408.
  • den Besten, G., Lange, K., Havinga, R., van Dijk, T H., Gerding, A., van Eunen, K., Muller, M., Groen, A. K., Hooiveld, G. J., Bakker, B. M., and Reijngoud, D. J. (2013). Gut-derived short-chain fatty acids are vividly assimilated into host carbohydrates and lipids. Am. J. Physiol. Gastrointest Liver Physiol. 305(12):G900–910.
  • Dewulf, E. M., Cani, P. D., Claus, S. P., Fuentes, S., Puylaert, P. G., Neyrinck, A. M., Bindels, L. B., de Vos, W. M., Gibson, G. R., Thissen, J. P., and Delzenne, N. M. (2013). Insight into the prebiotic concept: lessons from an exploratory, double blind intervention study with inulin-type fructans in obese women. Gut 62(8):1112–1121.
  • Dewulf, E. M., Ge, Q., Bindels, L. B., Sohet, F. M., Cani, P. D., Brichard, S. M., and Delzenne, N. M. (2013). Evaluation of the relationship between GPR43 and adiposity in human. Nutr. Metab. (Lond) 10(1):11.
  • Frost, G., Cai, Z., Raven, M., Otway, D. T., Mushtaq, R., and Johnston, J. D. (2014). Effect of short chain fatty acids on the expression of free fatty acid receptor 2 (Ffar2), Ffar3 and early-stage adipogenesis. Nutr. Diabetes 4:e128.
  • Frost, G., Sleeth, M. L., Sahuri-Arisoylu, M., Lizarbe, B., Cerdan, S., Brody, L., Anastasovska, J., Ghourab, S., Hankir, M., Zhang, S., Carling, D., Swann, J R., Gibson, G., Viardot, A., Morrison, D., Louise Thomas, E. and Bell, J. D. (2014). The short-chain fatty acid acetate reduces appetite via a central homeostatic mechanism. Nat. Commun. 5:3611.
  • Fushimi, T., Tayama, K., Fukaya, M., Kitakoshi, K., Nakai, N., Tsukamoto, Y., and Sato, Y. (2001). Acetic acid feeding enhances glycogen repletion in liver and skeletal muscle of rats. J. Nutr. 131(7):1973–1977.
  • Gao, Z., Yin, J., Zhang, J., Ward, R. E., Martin, R. J., Lefevre, M., Cefalu, W. T., and Ye, J. (2009). Butyrate improves insulin sensitivity and increases energy expenditure in mice. Diabetes 58(7): 1509–1517.
  • Ge, H., Li, X., Weiszmann, J., Wang, P., Baribault, H., Chen, J. L., Tian, H., and Li, Y. (2008). Activation of G protein-coupled receptor 43 in adipocytes leads to inhibition of lipolysis and suppression of plasma free fatty acids. Endocrinology 149(9):4519–4526.
  • Hara, H., Haga, S., Aoyama, Y., and Kiriyama, S. (1999). Short-chain fatty acids suppress cholesterol synthesis in rat liver and intestine. J. Nutr. 129(5):942–948.
  • Harig, J. M., Ng, E. K., Dudeja, P. K., Brasitus, T. A., and Ramaswamy, K. (1996). Transport of n-butyrate into human colonic luminal membrane vesicles. Am. J. Physiol. 271(3 Pt 1):G415–422.
  • Harig, J. M., Soergel, K. H., Barry, J. A., and Ramaswamy, K. (1991). Transport of propionate by human ileal brush-border membrane vesicles. Am. J. Physiol. 260(5 Pt 1):G776–782.
  • Hong, Y. H., Nishimura, Y., Hishikawa, D., Tsuzuki, H., Miyahara, H., Gotoh, C., Choi, K. C., Feng, D. D., Chen, C., Lee, H. G., Katoh, K., Roh, S. G., and Sasaki, S. (2005). Acetate and propionate short chain fatty acids stimulate adipogenesis via GPCR43. Endocrinology 146(12):5092–5099.
  • Hu, J., Kyrou, I., Tan, B. K., Dimitriadis, G. K., Ramanjaneya, M., Tripathi, G., Patel, V., James, S., Kawan, M., Chen, J., and Randeva, H. S. (2016). Short-chain fatty acid acetate stimulates adipogenesis and mitochondrial biogenesis via GPR43 in brown adipocytes. Endocrinology 157(5):1881–1894.
  • Kimura, I., Inoue, D., Maeda, T., Hara, T., Ichimura, A., Miyauchi, S., Kobayashi, M., Hirasawa, A., and Tsujimoto, G. (2011). Short-chain fatty acids and ketones directly regulate sympathetic nervous system via G protein-coupled receptor 41 (GPR41). Proc. Natl. Acad. Sci. U S A 108(19):8030–8035.
  • Kimura, I., Ozawa, K., Inoue, D., Imamura, T., Kimura, K., Maeda, T., Terasawa, K., Kashihara, D., Hirano, K., Tani, T., Takahashi, T., Miyauchi, S., Shioi, G., Inoue, H., and Tsujimoto, G. (2013). The gut microbiota suppresses insulin-mediated fat accumulation via the short-chain fatty acid receptor GPR43. Nat. Commun. 4:1829.
  • Lappi, J., Mykkanen, H., Bach Knudsen, K. E., Kirjavainen, P., Katina, K., Pihlajamaki, J., Poutanen, K., and Kolehmainen, M. (2014). Postprandial glucose metabolism and SCFA after consuming wholegrain rye bread and wheat bread enriched with bioprocessed rye bran in individuals with mild gastrointestinal symptoms. Nutr. J. 13:104.
  • Li, G., Yao, W., and Jiang, H. (2014). Short-chain fatty acids enhance adipocyte differentiation in the stromal vascular fraction of porcine adipose tissue. J. Nutr. 144(12):1887–1895.
  • Maric, G., Gazibara, T., Zaletel, I., Labudovic Borovic, M., Tomanovic, N., Ciric, M., and Puskas, N. (2014). The role of gut hormones in appetite regulation (review). Acta Physiol. Hung 101(4):395–407.
  • Mascolo, N., Rajendran, V. M., and Binder, H. J. (1991). Mechanism of Short-chain fatty acid uptake by apical membrane vesicles of rat distal colon. Gastroenterology 101(2):331–338.
  • McNelis, J. C., Lee, Y. S., Mayoral, R., van der Kant, R., Johnson, A. M., Wollam, J. and Olefsky, J. M. (2015). GPR43 potentiates beta-cell function in obesity. Diabetes 64(9):3203–3217.
  • Muir, D., Berl, S. and Clarke, D. D. (1986). Acetate and fluoroacetate as possible markers for glial metabolism in vivo. Brain Res. 380(2):336–340.
  • Must, A., Spadano, J., Coakley, E. H., Field, A. E., Colditz, G., and Dietz, W H. (1999). The disease burden associated with overweight and obesity. JAMA 282(16):1523–1529.
  • Nagashima, H., Morio, Y., Meshitsuka, S., Yamane, K., Nanjo, Y., and Teshima, R. (2010). High-resolution nuclear magnetic resonance spectroscopic study of metabolites in the cerebrospinal fluid of patients with cervical myelopathy and lumbar radiculopathy. Eur. Spine J. 19(8):1363–1368.
  • Nedjadi, T., Moran, A. W., Al-Rammahi, M. A., and Shirazi-Beechey, S. P. (2014). Characterization of butyrate transport across the luminal membranes of equine large intestine. Exp. Physiol. 99(10):1335–1347.
  • Nilsson, A., Johansson, E., Ekstrom, L., and Bjorck, I. (2013). Effects of a brown beans evening meal on metabolic risk markers and appetite regulating hormones at a subsequent standardized breakfast: a randomized cross-over study. PLoS One 8(4):e59985.
  • Nilsson, A. C., Johansson-Boll, E. V., and Bjorck, I. M. (2015). Increased gut hormones and insulin sensitivity index following a 3-d intervention with a barley kernel-based product: A randomised cross-over study in healthy middle-aged subjects. Br. J. Nutr. 114(6):899–907.
  • Parnell, J. A., and Reimer, R. A. (2009). Weight loss during oligofructose supplementation is associated with decreased ghrelin and increased peptide YY in overweight and obese adults. Am. J. Clin. Nutr. 89(6):1751–1759.
  • Patel, D. G., and Singh, S. P. (1979). Effect of ethanol and its metabolites on glucose mediated insulin release from isolated islets of rats. Metabolism 28(1):85–89.
  • Perry, R. J., Peng, L., Barry, N. A., Cline, G. W., Zhang, D., Cardone, R. L., Petersen, K. F., Kibbey, R. G., Goodman, A. L., and Shulman, G. I. (2016). Acetate mediates a Microbiome-brain-beta-cell axis to promote metabolic syndrome. Nature 534(7606):213–217.
  • Pollock, N., Grogan, C., Perry, M., Pedlar, C., Cooke, K., Morrissey, D., and Dimitriou, L. (2010). Bone-mineral density and other features of the female athlete triad in elite endurance runners: A longitudinal and cross-sectional observational study. Int. J. Sport Nutr. Exerc. Metab. 20(5):418–426.
  • Priyadarshini, M. and Layden, B. T. (2015). FFAR3 modulates insulin secretion and global gene expression in mouse islets. Islets 7(2):e1045182.
  • Priyadarshini, M., Villa, S. R., Fuller, M., Wicksteed, B., Mackay, C. R., Alquier, T., Poitout, V., Mancebo, H., Mirmira, R. G., Gilchrist, A., and Layden, B. T. (2015). An Acetate-specific GPCR, FFAR2, regulates insulin secretion. Mol. Endocrinol. 29(7):1055–1066.
  • Psichas, A., Sleeth, M. L., Murphy, K. G., Brooks, L., Bewick, G. A., Hanyaloglu, A. C., Ghatei, M. A., Bloom, S. R., and Frost, G. (2015). The short chain fatty acid propionate stimulates GLP-1 and PYY secretion via free fatty acid receptor 2 in rodents. Int. J. Obes (Lond) 39(3):424–429.
  • Roediger, W. E. (1980). Role of anaerobic bacteria in the metabolic welfare of the colonic mucosa in man. Gut 21(9):793–798.
  • Rosen, E. D., and Spiegelman, B. M. (2006). Adipocytes as regulators of energy balance and glucose homeostasis. Nature 444(7121):847–853.
  • Sahuri-Arisoylu, M., Brody, L. P., Parkinson, J R., Parkes, H., Navaratnam, N., Miller, A. D., Thomas, E. L., Frost, G., and Bell, J. D. (2016). Reprogramming of hepatic fat accumulation and 'browning' of adipose tissue by the short-chain fatty acid acetate. Int. J. Obes (Lond).
  • Sellin, J. H. (1999). SCFAs: The enigma of weak electrolyte transport in the colon. News Physiol. Sci. 14:58–64.
  • Shah, J. H., Wongsurawat, N., and Aran, P. P. (1977). Effect of ethanol on stimulus-induced insulin secretion and glucose tolerance. A study of mechanisms. Diabetes 26(4): 271–277.
  • Shen, M., and Shi, H. (2015). Sex hormones and their receptors regulate liver energy homeostasis. Int. J. Endocrinol. 2015:294278.
  • Tang, C., Ahmed, K., Gille, A., Lu, S., Grone, H. J., Tunaru, S., and Offermanns, S. (2015). Loss of FFA2 and FFA3 increases insulin secretion and improves glucose tolerance in type 2 diabetes. Nat. Med. 21(2):173–177.
  • Tarini, J., and Wolever, T. M. (2010). The fermentable fibre inulin increases postprandial serum short-chain fatty acids and reduces free-fatty acids and ghrelin in healthy subjects. Appl. Physiol. Nutr. Metab. 35(1):9–16.
  • Teramae, H., Yoshikawa, T., Inoue, R., Ushida, K., Takebe, K., Nio-Kobayashi, J., and Iwanaga, T. (2010). The cellular expression of SMCT2 and its comparison with other transporters for monocarboxylates in the mouse digestive tract. Biomed. Res. 31(4):239–249.
  • Tiengo, A., Valerio, A., Molinari, M., Meneghel, A., and Lapolla, A. (1981). Effect of ethanol, acetaldehyde, and acetate on insulin and glucagon secretion in the perfused rat pancreas. Diabetes 30(9):705–709.
  • Tolhurst, G., Heffron, H., Lam, Y. S., Parker, H. E., Habib, A. M., Diakogiannaki, E., Cameron, J., Grosse, J., Reimann, F., and Gribble, F. M. (2012). Short-chain fatty acids stimulate glucagon-like peptide-1 secretion via the G-protein-coupled receptor FFAR2. Diabetes 61(2):364–371.
  • Topping, D. L., and Clifton, P. M. (2001). Short-chain fatty acids and human colonic function: roles of resistant starch and nonstarch polysaccharides. Physiol. Rev. 81(3):1031–1064.
  • van der Beek, C. M., Canfora, E. E., Lenaerts, K., Troost, F. J., Olde Damink, S. W., Holst, J. J., Masclee, A. A., and Blaak, E. E. (2016). Distal, not proximal, colonic acetate infusions promote fat oxidation and improve metabolic markers in overweight/obese men. Clin. Sci. (Lond).
  • Velazquez, O. C., Lederer, H. M., and Rombeau, J. L. (1997). Butyrate and the colonocyte. Production, absorption, metabolism, and therapeutic implications. Adv. Exp. Med. Biol. 427:123–134.
  • Verhoef, S. P., Meyer, D., and Westerterp, K. R. (2011). Effects of oligofructose on appetite profile, glucagon-like peptide 1 and peptide YY3-36 concentrations and energy intake. Br. J. Nutr. 106(11):1757–1762.
  • Vijay, N., and Morris, M. E. (2014). Role of monocarboxylate transporters in drug delivery to the brain. Curr. Pharm. Des. 20(10):1487–1498.
  • Villa, S. R., Priyadarshini, M., Fuller, M. H., Bhardwaj, T., Brodsky, M. R., Angueira, A. R., Mosser, R. E., Carboneau, B. A., Tersey, S. A., Mancebo, H., Gilchrist, A., Mirmira, R. G., Gannon, M., and Layden, B. T. (2016). Loss of Free Fatty Acid Receptor 2 leads to impaired islet mass and beta cell survival. Sci. Rep. 6:28159.
  • Waniewski, R. A., and Martin, D. L. (1998). Preferential utilization of acetate by astrocytes is attributable to transport. J. Neurosci. 18(14):5225–5233.
  • Wolever, T. M., Josse, R. G., Leiter, L. A., and Chiasson, J. L. (1997). Time of day and glucose tolerance status affect serum short-chain fatty acid concentrations in humans. Metabolism 46(7):805–811.
  • Wong, J. M., de Souza, R., Kendall, C. W., Emam, A., and Jenkins, D. J. (2006). Colonic health: Fermentation and short chain fatty acids. J. Clin. Gastroenterol. 40(3):235–243.
  • Woods, S. C. (1998). Signals that regulate food intake and energy homeostasis. Science 280(5368):1378–1383.
  • Ximenes, H. M., Hirata, A. E., Rocha, M. S., Curi, R., and Carpinelli, A. R. (2007). Propionate inhibits glucose-induced insulin secretion in isolated rat pancreatic islets. Cell Biochem. Funct. 25(2):173–178.
  • Yamashita, H., Maruta, H., Jozuka, M., Kimura, R., Iwabuchi, H., Yamato, M., Saito, T., Fujisawa, K., Takahashi, Y., Kimoto, M., Hiemori, M., and Tsuji, H. (2009). Effects of acetate on lipid metabolism in muscles and adipose tissues of type 2 diabetic Otsuka Long-Evans Tokushima Fatty (OLETF) rats. Biosci. Biotechnol. Biochem. 73(3):570–576.
  • Zaibi, M. S., Stocker, C. J., O'Dowd, J., Davies, A., Bellahcene, M., Cawthorne, M. A., Brown, A. J., Smith, D. M., and Arch, J. R. (2010). Roles of GPR41 and GPR43 in leptin secretory responses of murine adipocytes to short chain fatty acids. FEBS Lett. 584(11):2381–2386.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.