5,623
Views
161
CrossRef citations to date
0
Altmetric
Articles

Oleogels, a promising structured oil for decreasing saturated fatty acid concentrations: Production and food-based applications

, ORCID Icon, ORCID Icon, , ORCID Icon & ORCID Icon

References

  • Abdallah, D. J., Sirchio, S. A. and Weiss, R. G. (2000). Hexatriacontane organogels. The first determination of the conformation and molecular packing of a low-molecular-mass organogelator in its gelled state. Langmuir 16:7558–7561.
  • Aiache, J. M., Gauthier, P. and Aiache, S. (1992). New gelification method for vegetable oils I: Cosmetic application. Int. J. Cosmetic Sci. 14:228–234.
  • Almedia, I. F. and Bahia, M. F. (2006). Evaluation of the physical stability of two oleogels. Int. J. Pharm. 327:73–77.
  • Ambrosini, G. L. (2014). Childhood dietary patterns and later obesity: A review of the evidence. Proc. Nutr. Soc. 73:137–146.
  • American Heart Association Statistics Committee and Stroke Statistics Subcommittee. (2012). Heart disease and stroke statistics–2012 update: A report from the American Heart Association. Circulation. J. Am. Heart Assoc. 125:e2–e220.
  • Başoğlu, F. (2014). Yemeklik Yağ Teknolojisi. Dora Publications, 4 press, Bursa, Turkey.
  • Bemer, H. L. and Limbaugh, M., et al. (2016). Vegetable organogels incorporation in cream cheese products. Food Res. Int. 85:67–75.
  • Bot, A., Veldhuizen, Y. S. J., den Adel, R. and Roijers, E. C. (2009). Non-TAG structuring of edible oils and emulsions. Food Hydrocolloid. 23:1184–1189.
  • Bot, A., Flöter, E., Lammers, J. G. and Pelan, E. G. (2007). Understanding and Controlling the Microstructure of Complex Foods, pp. 575–599. McClements, D. J., Ed., Woodhead Publishing, Cambridge.
  • Botega, D. C. Z. (2012). Application of rice bran wax organogel to substitute solid fat and enhance unsaturated fat content in ice cream. Thesis, The University of Guelph, Guelph, Ontario, Canada.
  • Brouwer, I. A., Wanders, A. J. and Katan, M. B. (2010). Effect of animal and industrial trans fatty acids on HDL and LDL cholesterol levels in humans e a quantitative review. Plos One 5(3):1–10.
  • Calligaris, S., Da Pieve, S., Arrighetti, G. and Barba, L. (2010). Effect of the structure of monoglyceride–oil–water gels on aroma partition. Food Res. Int. 43:671–677.
  • Ceballos, M. R., Brailovsky, V., Bierbrauer, K. L., Cuffini, S. L., Beltramo, D. M. and Bianco, I. D. (2014). Effect of ethylcellulose on the structure and stability of non-aqueous oil based propylene glycol emulsions. Food Res. Int. 62:416–423.
  • Co, E. D. and Marangoni, A. G. (2012). Organogels: An alternative edible oil-structuring method. J. Am. Oil Chem. Soc. 89:749–780.
  • Dassanayake, L. S. K., Kodali, D. R., Ueno, S. and Sato, K. (2009). Physical properties of rice bran wax in bulk and organogels. J. Am. Oil Chem. Soc. 86(12):1163–1173.
  • Dassanayake, L. S. K., Kodali, D. R. and Ueno, S. (2011). Formation of oleogels based on edible lipid materials. Curr. Opin. Colloid In. 16:432–439.
  • Dassanayake, L. S. T., Rodali, D. R., Ueno, S. and Sato, K. (2012). Crystallization kinetics of organogels prepared by rice bran wax and vegetable oils. J. Oleo Sci. 61:1–9.
  • Da Pieve, S., Calligaris, S., Co, E., Nicoli, M. C. and Marangoni, A. G. (2010). Shear nanostructuring of monoglyceride organogels. Food Biophys. 5:211–217.
  • Davidovich-Pinhas, M., Barbut, S. and Marangoni, A. G. (2015). The role of surfactans on ethylcelluloseoleogel structure and mechanical properties. Carbohyd. Polym. 127:355–362.
  • Davidovich-Pinhas, M., Gravelle, A. J., et al. (2015a). Temperature effects on the gelation of ethylcelluloseoleogels. Food Hydrocolloids. 46:76–83.
  • Davidovich-Pinhas, M., Barbut, S. and Marangoni, A. G. (2015b). The role of surfactans on ethylcelluloseoleogel structure and mechanical properties. Carbohyd. Polym. 127:355–362.
  • Davidovich-Pinhas, M., Barbut, S., et al. (2016). Development, characterization, and utilization of Food-grade polymer oleogels. Annu Rev. Food Sci. Technol. 7(1):65–91.
  • Demirci, M. (2003). Beslenme, Rebel Publication, 1. Ed., Tekirdağ, Turkey.
  • Doan, C. D., de Walle, D. V., Dewettinck, K. and Patel, A. R. (2015). Evaluating the oil-gelling properties of natural waxes in rice bran oil: Rheological, thermal and microstructural study. J. Am. Oil Chem. Soc. 92:801–811.
  • Doan, C. D., Patel, A. R., Tavernier, I., De Clercq, N., Van Raemdonck, K., Van de Walle, D., Delbaere, C. and Dewettinck, K. (2016). The feasibility of wax-based oleogel as a potential co-structurant with palm oil in low-saturated fat confectionery fillings. Eur. J. Lipid Sci. Technol. 118:1903–1914. doi:10.1002/ejlt.201500172.
  • Domingues, M. A. F., Ribeiro, A. P. B., Chiu, M. C.and Gonçalves, L. A. G. (2015). Sorbitan and sucrose esters as modifiers of the solidification properties of zero trans fats. LWT-Food Sci. Technol. 62(1):122–130.
  • Eitel, W. (1975). Silicate Structures and Dispersion System. Academic Press Inc, New York.
  • Gallego, R., Arteaga, J. F., Valencia, C. and Franco, J. M. (2013). Rheology and thermal degradation of isocyanate-functionalized methyl cellulose-based oleogels. Carbohyd. Polym. 98(1):152–160.
  • Gandolfo, F. G., Bot, A. and Flöter, E. (2004). Structuring of edible oils by long-chain FA, fatty alcohols, and their mixtures. J. Am. Oil Chem. Soc. 81(1):1–6.
  • Gravelle, A. J., Barbut, S. and Marangoni, A. G. (2012a). Ethylcelluloseoleogels: Manufacturing considerations and effects of oil oxidation. Food Res. Int. 48:578–583.
  • Gravelle, A. J., Barbut, S., Quinton, M. and Marangoni, A. G. (2014). Towards the development of predictive model of the formulation-dependent mechanical behavior of edible oil-based ethylcelluloseoleogels. J. Food Eng. 143:114–122.
  • Gravelle, A. J., Davidovich-Pinhas, M., Zetzl, A. K., Barbut, S., & Marangoni, A. G. (2016). Influence of solvent quality on the mechanical strength of ethylcellulose oleogels. Carbohyd Polymers, 135:169–179.
  • Grob, K, Giuffré, A. M., Leuzzi, U. and Mincione, B. (1994). Recognition of adulterated oils by direct analysis of the minor components. Lipid/Fett. 96(8):286–290.
  • Gronwald, O., Snip, E. and Shinkai, S. (2002). Gelators for organic liquids based on self-assembly: A new facet of supramolecular and combinatorial chemistry. Curr. Opin. Colloid In. 7:148–156.
  • Guenet, J. M. (2008). Polymer-Solvent Molecular Compounds. Elsevier Ltd., Oxford.
  • Hinze, W. L., Uemasu, I., Dai, F. and Braun, J. M. (1996). Analytical and related applications of organogels. Curr. Opin. Colloid In. 1:502–513.
  • Hughes, N. E., Marangoni, A. G., Wright, A. J., Rogers, M. A. and Rush, J. W. E. (2009). Potential applications of edible oil organogels. Trends Food Sci. Tech. 20:470–480.
  • Hwang, H.- S., Kim, S., Singh, M., Winkler-Moser, J. K. and Liu, S. X. (2012). Organogel formation of soybean oil with waxes. J. Am. Oil Chem. Soc. 89(4):639–647.
  • Hwang, H. S., Kim, S., Evans, K. O., Koga, C. and Lee, Y. (2015). Morphology and networks of sunflower wax crystals in soybean oil organogel. Food Struct. 5:10–20.
  • Jang, A., Bae, W., Hwang, H. S., Lee, H. G. and Lee, S. (2015). Evaluation of canola oil oleogels with candelilla wax as an alternative to shortening in baked goods. Food Chem. 187:525–529.
  • Kolattukudy, P. E. (1976). Chemistry and Biochemistry of Natural Waxes. Elsevier Scientific Pub. Co, Amsterdam.
  • Lakmali, S. K. D., Dharma, R. K. and Ueno, S. (2011). Formation of oleogels based on edible lipid materials. Curr. Opin. Colloid In. 16:432–439.
  • Lopez-Martínez, A., Charó-Alonso, M. A., Marangoni, A. G. and Toro-Vazquez, J. F. (2015). Monoglycerideorganogels developed in vegetable oil with and without ethylcellulose. Food Res. Int. 72:37–46.
  • Lupi, F. R., Gabriele, D. and de Cindio, B. (2012). Effect of shear rate on crystallisation phenomena in olive oil based organogels. Food Bioprocess Tech. 5:2880–2888.
  • Lupi, F. R., Gabriele, D., Greco, V., Baldino, N., Seta, L. and De Cindio, B. (2013). A rheological characterisation of an olive oil/fatty alcohols organogel. Food Res. Int. 51(2):510–517.
  • Marangoni, A. G. (2012). Organogels: an alternative edible oilstructuring method. J. Am. Oil Chem. Soc. 89(5):749–780.
  • Marangoni, A. G. and Garti, N. (2011). Edible Oleogels: Structure and Health Implications. AOCS Press, Urbana, Illinois.
  • Marangoni, A. G. (2000). Elasticity of high-volume-fraction fractal aggregate networks: A thermodynamic approach. Phys. Rev. B. 62:13951–13955.
  • Marangoni, A. G. (2004). Fat Crystal Networks. Marcel Dekker, New York.
  • Marangoni, A. G. and Rogers, M. A. (2003). Structural basis for the yield stress in plastic disperse systems. Appl. Phys. Lett. 82:3239–3241.
  • Martín-Alfonso, J. E. and Franco, J. M. (2015). Influence of polymer reprocessing cycles on the microstructure and rheological behavior of polypropylene/mineral oil oleogels. Polymer Test. 45:12–19.
  • Martini, S., Carelli, A. A. and Lee, J. (2008). Effect of the addition of waxes on the crystallization behavior of anhydrous milk fat. J. Am. Oil Chem. Soc. 85(12):1097–1104.
  • Mensink, R. P., Zock, P. L., Kester, A. D. M. and Katan, M. B. (2003). Effects of dietary fatty acids and carbohydrates on the ratio of serum total to HDL cholesterol and on serum lipids and apolipoproteins: A meta-analysis of 60 controlled trials. Am. J. Clin. Nutr. 77(5):1146–1155.
  • Mert, B. and Demirkesen, I. (2016a). Reducing saturated fat with oleogel/shortening blends in baked product. Food Chem. 199:809–816.
  • Mert, B. and Demirkesen, I. (2016b). Evaluation of highly unsaturated oleogels as shortening replacer in short dough product. LWT–Food Sci. Tech. 68:477–484.
  • Micha, R. and Mozaffarian, D. (2009). Trans fatty acids: Effects on metabolic syndrome, heart disease and diabetes. Nat. Rev. Endocrinol. 5:335–344.
  • Mozaffarain, D., Aro, A. and Willet, W. C. (2009). Health effects of trans-fatty acids: experimental and observational evidence. Europ. J. Clin. Nutr. 63:S5–S21.
  • Muguerza, E., Fista, G., Ansorena, D., Astiasaran, I. and Bloukas, J. G. (2002). Effect of fat level and partial replacement of pork backfat with olive oil on processing and quality characteristics of fermented sausages. Meat Sci. 61:397–404.
  • Mukkamala, R. and Weiss, R. G. (1996). Physical gelation of organic fluids by anthraquinone-steroid-based molecules. Structural features influencing the properties of gels. Langmuir 12:1474–1482.
  • Narine, S. S. and Marangoni, A. G. (1999a). Fractal nature of fat crystal networks. Phys. Rev. E. 59:1908–1920.
  • Nikiforidis, C. V. and Scholten, E. (2015). High internal phase emulsion gels (HIPE-gels) created through assembly of natural oil bodies. Food Hydrocolloid. 43:283–289.
  • O'Brien, R. D. (2004). Fats and Oils: Formulating and Processing for Applications, 2nd edn. CRC Press, Boca Raton, FL, ABD.
  • O'Brien, R. D. (2003). Fats and Oils, 2nd edition, pp. 92–104. CRC Press, Boca Raton, FL.
  • Öǧütcü, M. and Yılmaz, E. (2014). Oleogels of virgin olive oil with carnauba wax and monoglyceride as spreadable products. Grasas y Aceites 65(3):e040.
  • Öğütcü, M. and Yılmaz, E. (2015a). Characterization of hazelnut oil oleogels prepared with sunflower and carnauba waxes. Int. J. Food Prop. 18(8):1741–1755.
  • Öğütcü, M. and Yılmaz, E. (2015b). Comparison of the pomegranate seed oil organogels of carnauba wax and monoglyceride. J. Appl. Polym. Sci. 132:41343, doi: 10.1002/app.41343.
  • Ogutcu, M., Arifoglu, N. and Yilmaz, E. (2015). Preparation and characterization of virgin olive oil-beeswax oleogel emulsion products. J. Am. Oil Chem. Soc. 92:459–471.
  • Ojijo, N. K. O., Neeman, I., Eger, S. and Shimoni, E. (2004). Effects of monoglyceride content, cooling rate and shear on the rheological properties of olive oil/monoglyceride gel networks. J. Sci. Food Agr. 84:1585–1593.
  • Patel, A. R., Schatteman, D., De Vos, W. H., Lesaffer, A. and Dewettinck, K. (2013). Preparation and rheological characterization of shellac oleogels and oleogel-based emulsions. J. Colloid and Interf. Sci. 411:114–121.
  • Patel, A. R., Cludts, N., Sintang, M. D. B., Lesaffer, A. and Dewettinck, K. (2014a). Edible oleogels based on water soluble food polymers: preparation, characterization and potential application. Food Function 5(11):2833–2841.
  • Patel, A. R., Rajarethinem, P. S., Gredowska, A., Turhan, O., Lesaffer, A., De Vos, W. H. and Dewettinck, K. (2014b). Edible applications of shellac oleogels: spreads, chocolate paste and cakes. Food Function. 5(4):645–652.
  • Patel, A. R. (2015). Alternative Routes to oil Structuring. Hartel, R. W., Clark, P. J., Finley, J. W., Rodriguez-Lazaro, D., Roos, Y. and Topping, D., Eds. 1st ed., Springer International Publishing, New York.
  • Patel, A. R. and Dewettinck, K. (2015). Comparative evaluation of structured oil systems: Shellac oleogel, HPMC oleogel, and HIPE gel. Eur. J. Lip. Sci. Tech. 117:1772–1781.
  • Pérez-Monterroza, E. J., Márquez-Cardozo, C. J. and Ciro-Velásquez, H. J. (2014). Rheological behavior of avocado (Perseaamericana Mill, cv. Hass) oleogels considering the combined effect of structuring agents. LWT-Food Sci. Tech. 59:673–679.
  • Pernetti, M., van Malssen, K. F., Floter, E. and Bot, A. (2007a). Structuring of edible oils by alternatives to crystalline fat. Curr. Opin. Coll. In. 12:221–231.
  • Pernetti, M., van Malssen, K. F., Floter, E. and Bot, A. (2007b). Structuring edible oils by alternatives to crystalline fat. Curr. Opin. Coll. In. 84:989–1000.
  • Riccardi, G., Giacco, R. and Rivellese, A. A. (2004). Dietary fat, insulin sensitivity and the metabolic syndrome. Clin. Nutr. 23:447–456.
  • Rogers, M. A., Wright, A. J. and Marangoni, A. G. (2008). Engineering the oil binding capacity and crystallinity of self-assembled fibrillar networks of 12-hydroxystearic acid in edible oils. Soft Matter. 4(7):1483–1490.
  • Rogers, M. A., Wright, A. J. and Marangoni, A. G. (2009). Oil organogels: the fat of the future. Soft Matter. 5:1594–1596.
  • Sahoo, S., Kumar, N., Bhattacharya, C., Sagiri, S. S., Jain, K., Pal, K. and Nayak, B. (2011). Organogels: properties and applications in drug delivery. Des. Monomers Polym. 14(2):95–108.
  • Sánchez, R., Franco, J. M., Delgado, M. A., Valencia, C. and Gallegos, C. (2008). Effect of thermo-mechanical processing on the rheology of oleogels potentially applicable as biodegradable lubricating greases. Chem. Eng. Res. Des. 86(10):1073–1082.
  • Sánchez, R., Stringari, G. B., Franco, J. M., Valencia, C. and Gallegos, C. (2011). Use of chitin, chitosan and acylated derivatives as thickener agents of vegetable oils for bio-lubricant applications. Carbohyd. Polym. 85(3):705–714.
  • Sagiri, S. S., Singh, V. K., Pal, K., Banerjee, I. and Basak, P. (2015). Stearic acid based oleogels: A study on the molecular, thermal and mechanical properties. Mater. Sci. Eng. C. 48:688–699.
  • Soomro, R. K. and Sherazi, S. T. H. (2013). Extraction and characterization of seed oil waxes by using chromatographic techniques. Int. J. Ind. Chem. 4(1):1–7.
  • Stauffer, C. E. (1996). Fats and Oils Practical Guide for the Food Industry. An Eagan Press Handbook AACC Inc, Minnesota, ABD.
  • Stortz, T. A., De Moura, D. C., Laredo, T. and Marangoni, A. G. (2014). Molecular interactions of ethylcellulose with sucrose particles. RSC Advances 4(98):55048–55061.
  • Stortz, T. A. and Marangoni, A. G. (2013). Ethylcellulose solvent substitution method of preparing heat resistant chocolate. Food Res. Int. 51(2):797–803.
  • Stortz, T. A., Zetzl, A. K., Barbut, S., Cattaruzza, A. and Marangoni, A. G. (2012). Edible oleogels in food products to help maximize health benefits and improve nutritional profiles. Lipid Tech. 24(7):151–154.
  • Stortz, T. A., Laredo, T. and Marangoni, A. G. (2015). The role of lecithin and solvent addition in ethylcellulose-stabilized heat resistant chocolate. Food Biophys. 10:253–263.
  • Tanti, R. (2015). Hydroxypropyl-methylcellulose and methylcellulose structured oils as an alternative low saturated fat stabilizer and shortening replacement for food applications, Thesis, The University of Guelph, Guelph, Ontario, Canada.
  • Terech, P. and Weiss, R. G. (1997). Low molecular mass gelators of organic liquids and the properties of their gels. Chem. Rev. 97:3133–3159.
  • Toro-Vazquez, J. F., Morales-Rueda, J., Mallia, V. A. and Weiss, R. G. (2010). Relationship between molecular structure and thermo-mechanical properties of candelilla wax and amides derived from (R)12-hydroxystearic acid as gelators of safflower oil. Food Biophys. 5(3):193–202.
  • Toro-Vazquez, J. F., Morales-Rueda, J. A., Dibildox-Alvarado, E., Charó-Alonso, M., Alonzo-Macias, M. and González-Chávez, M. (2007). Thermal and textural properties of organogels developed by candelilla wax in safflower oil. J. Am. Oil Chem. Soc. 84(11):989–1000.
  • Tulloch, A. P. (1973). Comparison of some commercial waxes by gas liquid chromatography. J. Am. Oil Chem. Soc. 50(9):367–371.
  • Uauy, R., Aro, A., Clarke, R., Ghafoorunissa, R., L'Abbe, M., Mozaffarian, D., Skeaff, M., Stender, S. and Tavella, M. (2009). WHO update on trans fatty acids: summary and conclusions. Eur. J. Clin. Nutr. 63:S68–S75.
  • Vaclavik, V. A. and Christian, E. W. (2014). Essentials of Food Science. Heldman, D.R., Ed., 4th edition, Springer, New York.
  • Vali, S. R., Ju, Y. H., Kaimal, T. N. and Chern, Y. T. (2005). A process for the preparation of food grade rice bran wax and the determination of its composition. J. Am. Oil Chem. Soc. 82(1):57–64.
  • Van Esch, J. H. and Feringa, B. L. (2000). New functional materials based on selfassembling organogels: from serendipity towards design. Angew. Chem. Int. Edit. 39:2263–2266.
  • Vandana, D., Neelam, G., Kulveer Singh, A. and Bhupender, S. K. (2011). Trans fats-sources, health risks and alternative approach—a review. J. Food Sci. Tech. 48:534–541.
  • Vintiloiu, A. and Leroux, J. C. (2008). Organogels and their use in drug delivery—a review. J. Control. Release 125(3):179–192.
  • W.H.O. (2002). The World Health Report, 2002: Reducing Risks, Promoting Healthy Life. World Health Organization, Geneva.
  • Warth, A. H. (1956). The Chemistry and Technology of Waxes, pp. 940. Reinhold Publishing Corporation, New York (NY).
  • Weiss, R. G. (2006). Terech, P. Introduction. In: Molecular Gels Materials with Self-Assembled Fibrillar Networks, pp. 1–13. Weiss, R. G. and Terech, P., Eds., Springer, Dordrecht, The Netherlands.
  • Wright, A. and Marangoni, A. (2006). Formation, structure, and rheological properties of ricinelaidic acid-vegetable oil organogels. J. Am. Oil Chem. Soc. 83(6):497–503.
  • Wright, A. J., Marangoni, A. G. and Garti, N. (2011). Vegetable oil-based ricinelaidic acid organogels—phase behavior, microstructure and rheology. Edible Oleogels: Structure and Health Implications, pp. 81–99. AOCS Press, Urbana.
  • Yılmaz, E. and Ogutcu, M. (2015). The texture, sensory properties and stability of cookies prepared with wax oleogels. Food Funct. 6(4):1194–1204.
  • Yılmaz, E. and Öğütcü, M. (2014a). Comparative analysis of olive oil organogels containing beeswax and sunflower wax with breakfast margarine. J. Food Sci. 79(9):E1732–E1738.
  • Yılmaz, E. and Öğütcü, M. (2014b). Properties and stability of hazelnut oil organogels with beeswax and monoglyceride. J. Am. Oil Chem. Soc. 91(6):1007–1017.
  • Zetzl, A. K., Marangoni, A. G. and Barbut, S. (2012). Mechanical properties of ethylcelluloseoleogels and their potential for saturated fat reduction in frankfurters. Food Funct. 3(3):327–337.
  • Zetzl, A. K., Gravelle, A. J., Kurylowicz, M., Dutcher, J., Barbut, S. and Marangoni, A. G. (2014). Microstructure of ethylcelluloseoleogels and its relationship to mechanical properties. Food Struct. 2:27–40.
  • Zahi, M. R., Liang, H. and Yuan, Q. (2015). Improving the antimicrobial activity of D-limonene using a novel organogel-based nanoemulsion. Food Control. 50:554–559.
  • Zulim, B. D. C., Marangoni, A. G., Smith, A. K. and Goff, H. D. (2013a). The potential application of rice bran wax oleogel to replace solid fat and enhance unsaturated fat content in ice cream. J. Food Sci. 78(9):C1334–C1339.
  • Zulim Botega, D. C., Marangoni, A. G., Smith, A. K. and Goff, H. D. (2013b). Development of formulations and processes to incorporate wax oleogels in ice cream. J. Food Sci. 78:C1845–C1851.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.