851
Views
29
CrossRef citations to date
0
Altmetric
Articles

Extraction and purification of high added value compounds from by-products of the winemaking chain using alternative/nonconventional processes/technologies

, , , , , & show all

References

  • Agati, G., Azzarello, E., Pollastri, S. and Tattini, M. (2012). Flavonoids as antioxidants in plants: location and functional significance. Plant Sci. 196:67–76.
  • Aliakbarian, B., Fathi, A., Perego, P. and Dehghani, F. (2012). Extraction of antioxidants from winery wastes using subcritical water. J. Supercrit. Fluids 65:18–24.
  • Appeldoorn, M. M., Sanders, M., Vincken, J. P., Cheynier, V., Le Guernevé, C., Hollman, P. C. H. and Gruppen, H. (2009). Efficient isolation of major procyanidin A-type dimers from peanut skins and B-type dimers from grape seeds. Food Chem. 117(4):713–720.
  • Arvanitoyannis, I. S., Ladas, D. and Mavromatis, A. (2006). Potential uses and applications of treated wine waste: a review. Int. J. Food Sci. Technol. 41(5):475–487.
  • Barba, F. J., Brianceau, S., Turk, M., Boussetta, N. and Vorobiev, E. (2015). Effect of alternative physical treatments (ultrasounds, pulsed electric fields, and high-voltage electrical discharges) on selective recovery of bio-compounds from fermented grape pomace. Food Bioprocess Technol. 8(5):1139–1148.
  • Barbosa-Cánovas, G. (1999). Preservation of Foods with Pulsed Electric Fields. Cambridge, Mass., USA: Academic Press.
  • Bhattacharya, S. (2014). Conventional and Food Processing Technologies. Chichester, New York: Wiley & Sons.
  • Bleve, M., Ciurlia, L., Erroi, E., Lionetto, G., Longo, L., Rescio, L., …Vasapollo, G. (2008). An innovative method for the purification of anthocyanins from grape skin extracts by using liquid and sub-critical carbon dioxide. Sep. Purif. Technol. 64(2):192–197.
  • Boussetta, N., Lanoisellé, J.-L., Bedel-Cloutour, C. and Vorobiev, E. (2009). Extraction of soluble matter from grape pomace by high voltage electrical discharges for polyphenol recovery: Effect of sulphur dioxide and thermal treatments. J. Food Eng. 95(1):192–198.
  • Boussetta, N., Lebovka, N., Vorobiev, E., Adenier, H., Bedel-Cloutour, C. and Lanoisellé, J. L. (2009a). Electrically assisted extraction of soluble matter from chardonnay grape skins for polyphenol recovery. J. Agric. Food Chem. 57(4):1491–1497.
  • Boussetta, N., Lesaint, O. and Vorobiev, E. (2013). A study of mechanisms involved during the extraction of polyphenols from grape seeds by pulsed electrical discharges. Innovative Food Sc. Emerging Technol. 19:124–132.
  • Boussetta, N., Reess, T., Vorobiev, E. and Lanoisellé, J. L. (2012). Pulsed electrical discharges: Principles and application to extraction of biocompounds. In Enhancing extraction processes in the food industry Eds., Nikolai Lebovka, Eugene Vorobiev, Farid Chemat. (pp. 145–172.). Boca Raton, Florida: Taylor & Francis Group.
  • Boussetta, N., & Vorobiev, E. (2014). Extraction of valuable biocompounds assisted by high voltage electrical discharges: A review. C. R. Chim. 17(3):197–203.
  • Boussetta, N., Vorobiev, E., Deloison, V., Pochez, F., Falcimaigne-Cordin, A. and Lanoisellé, J. L. (2011). Valorisation of grape pomace by the extraction of phenolic antioxidants: Application of high voltage electrical discharges. Food Chem 128:364–370.
  • Boussetta, N., Vorobiev, E., Le Guernevé, C., Cordinfalcimaigne, A. and Lanoisellé, J.-L.(2012a). Application of electrical treatments in alcoholic solvent for polyphenols extraction from grape seeds. LWT—Food Sci. Technol. 46:127–134.
  • Boussetta, N., Vorobiev, E., Reess, T., De Ferron, A., Pecastaing, L., Ruscassié, R. and Lanoisellé, J.-L. (2012b). Scale-up of high voltage electrical discharges for polyphenols extraction from grape pomace: Effect of the dynamic shock waves. Innov. Food Sci. Emerg. Technol., 16:129–136.
  • Bozan, B., Tosun, G. and Özcan, D. (2008). Study of polyphenol content in the seeds of red grape (Vitis vinifera L.) varieties cultivated in Turkey and their antiradical activity. Food Chem. 109(2): 426–430.
  • Brazinha, C., Cadima, M. and Crespo, J. G. (2014). Optimization of extraction of bioactive compounds from different types of grape pomace produced at wineries and distilleries. J. Food Sci. 79(6): E1142–E1149.
  • Brianceau, S., Mohammad, T., Vitrac, X. and Vorobiev, E. (2014). Combined densification and pulsed electric field treatment for selective polyphenols recovery from fermented grape pomace. Combined densification and pulsed electric field treatment for selective polyphenols recovery from fermented grape pomace. Innovative Food Science & Emerging Technologies, 29:2–8.
  • Brianceau, S., Vitrac, X., Turk, M. and Vorobiev, E. (2015). High voltage electric discharges assisted extraction of stilbenes from grape stems. In 1st World Congress on Electroporation and Pulsed Electric Fields (Vol. 53). Available from http://doi.org/10.1007/978-981-287-871-5_25
  • Bucić-Kojić, A., Planinić, M., Tomas, S., Bilić, M. and Velić, D. (2007). Study of solid–liquid extraction kinetics of total polyphenols from grape seeds. J. Food Eng. 81(1):236–242.
  • Carr, A. G., Mammucari, R. and Foster, N. R. (2011). A review of subcritical water as a solvent and its utilisation for the processing of hydrophobic organic compounds. Chem. Eng. J. 172(1): 1–17.
  • Casas, L., Mantell, C., Rodríguez, M., Ossa, E. J. M. de la, Roldán, A., Ory, I. De, …Blandino, A. (2010). Extraction of resveratrol from the pomace of Palomino fino grapes by supercritical carbon dioxide. J. Food Eng. 96(2):304–308.
  • Casazza, A. a., Aliakbarian, B., Mantegna, S., Cravotto, G., & Perego, P. (2010). Extraction of phenolics from Vitis vinifera wastes using non-conventional techniques. J. Food Eng. 100(1):50–55.
  • Chakkaravarthi, A., Math, R. G., Walde, S. G. and Rao, D. G. (1993). Grinding characteristics of carrots (Daucus carota L.). J. Food Eng. 20(4):381–389.
  • Chemat, F., Zill-e-Huma and Khan, M. K. (2011). Applications of ultrasound in food technology: Processing, preservation and extraction. Ultrason. Sonochem. 18(4):813–835.
  • Cheng, V. J., Bekhit, A. E.-D. A., McConnell, M., Mros, S., & Zhao, J. (2012). Effect of extraction solvent, waste fraction and grape variety on the antimicrobial and antioxidant activities of extracts from wine residue from cool climate. Food Chem. 134(1):474–482.
  • Cholet, C., Delsart, C., Petrel, M., Gontier, E., Grimi, N., L'hyvernay, A., …Gény, L. (2014). Structural and biochemical changes induced by pulsed electric field treatments on Cabernet Sauvignon grape berry skins: impact on cell wall total tannins and polysaccharides. J. Agric. Food Chem. 62(13):2925–2934.
  • Corrales, M., Toepfl, S., Butz, P., Knorr, D. and Tauscher, B. (2008). Extraction of anthocyanins from grape by-products assisted by ultrasonics, high hydrostatic pressure or pulsed electric fields: A comparison. Innov. Food Sci. Emerg. Technol. 9(1):85–91.
  • Coupland, J. N. (2004). Low intensity ultrasound. Food Res. Int. 37(6):537–543.
  • Cowan, M. M. (1999). Plant products as antimicrobial agents. Clin. Microbiol. Rev. 12(4): 564–582.
  • Craft, B. D., Kerrihard, A. L., Amarowicz, R. and Pegg, R. B. (2012). Phenol-based antioxidants and the in vitro methods used for their assessment. Compr. Rev. Food Sci. Food Saf. 11(2):148–173.
  • Crespo, J. G. and Brazinha, C. (2010). Membrane processing: Natural antioxidants from winemaking by-products. Filtr. Sep., 47(2):32–35.
  • Da Porto, C., Decorti, D. and Natolino, A. (2014). Water and ethanol as co-solvent in supercritical fluid extraction of proanthocyanidins from grape marc: A comparison and a proposal. J. Supercrit. Fluids 87:1–8.
  • Da Porto, C., Natolino, A., & Decorti, D. (2014). Extraction of proanthocyanidins from grape marc by supercritical fluid extraction using CO2 as solvent and ethanol–water mixture as co-solvent. J. Supercrit. Fluids 87:59–64.
  • Darra, N. El, Grimi, N., Vorobiev, E., Louka, N. and Maroun, R. (2012). Extraction of polyphenols from red grape pomace assisted by pulsed ohmic heating. Food Bioprocess Technol. 6(5):1281–1289.
  • Delgado-Torre, M. P., Ferreiro-Vera, C., Priego-Capote, F., Pérez-Juan, P. M. and Luque de Castro, M. D. (2012). Comparison of accelerated methods for the extraction of phenolic compounds from different vine-shoot cultivars. J. Agric. Food Chem. 60(12): 3051–3060.
  • Delsart, C., Cholet, C., Ghidossi, R., Grimi, N., Gontier, E., Gény, L., …Mietton-Peuchot, M. (2013). Effects of pulsed electric fields on Cabernet Sauvignon grape berries and on the characteristics of wines. Food Bioprocess Technol. 7(2):424–436.
  • Díaz-Reinoso, B., Moure, A., Domínguez, H. and Parajó, J. C. (2006). Supercritical CO2 extraction and purification of compounds with antioxidant activity. J. Agric. Food Chem., 54(7):2441–2469.
  • Díaz-Reinoso, B., Moure, A., Domínguez, H. and Parajó, J. C. (2009). Ultra- and nanofiltration of aqueous extracts from distilled fermented grape pomace. J. Food Eng. 91(4):587–593.
  • Dolatowski, Z. J., Stadnik, J. and D., S. (2007). Applications of ultrasound in food technology. ACTA Sci. Polonorum Technologia Alimentaria, 6(3):88–99.
  • Donsì, F., Ferrari, G. and Pataro, G. (2010). Applications of pulsed electric field treatments for the enhancement of mass transfer from vegetable tissue. Food Eng. Rev. 2(2):109–130.
  • Dopico-García, M. S., Valentão, P., Jagodziñska, A., Klepczyñska, J., Guerra, L., Andrade, P. B. and Seabra, R. M. (2007). Solid-phase extraction versus matrix solid-phase dispersion: Application to white grapes. Talanta 74(1):20–31.
  • FAOSTAT. (2014). Food and Agriculture Organization of the United Nations: Database on Agriculture. Retrieved June 12, 2015, from http://faostat.fao.org/site/339/default.aspx
  • Farías-Campomanes, A. M., Rostagno, M. A. and Meireles, M. A. A. (2013). Production of polyphenol extracts from grape bagasse using supercritical fluids: Yield, extract composition and economic evaluation. J. Supercrit. Fluids 77:70–78.
  • Fincan, M. and Dejmek, P. (2002). In situ visualization of the effect of a pulsed electric field on plant tissue. J. Food Eng. 55:223–230.
  • Fu, B., Liu, J., Li, H., Li, L., Lee, F. S. C. and Wang, X. (2005). The application of macroporous resins in the separation of licorice flavonoids and glycyrrhizic acid. J. Chromatogr. A, 1089(1–2):18–24.
  • Gamse, T. (2002). Liquid–Liquid Extraction and Solid–Liquid Extraction. Available at: www.iq.uva.es/separacion/archivos/SkriptumExtraction.pdf
  • García-Marino, M., Rivas-Gonzalo, J. C., Ibáñez, E. and García-Moreno, C. (2006). Recovery of catechins and proanthocyanidins from winery by-products using subcritical water extraction. Anal. Chim. Acta 563(1–2):44–50.
  • Ghafoor, K., Al-Juhaimi, F. and Choi, Y. (2011). Effects of grape (Vitis labrusca B.) peel and seed extracts on phenolics, antioxidants and anthocyanins in grape juice. Pak. J. Bot. 43(3):1581–1586.
  • Ghafoor, K., Choi, Y. H., Jeon, J. Y. and Jo, I. H. (2009). Optimization of ultrasound-assisted extraction of phenolic compounds, antioxidants, and anthocyanins from grape (Vitis vinifera) seeds. J. Agric. Food Chem. 57(11):4988–4094.
  • Ghafoor, K., Park, J. and Choi, Y.-H.(2010). Optimization of supercritical fluid extraction of bioactive compounds from grape (Vitis labrusca B.) peel by using response surface methodology. Innov. Food Sci. Emerg. Technol. 11(3):485–490.
  • Gogate, P. R. and Pandit, A. B. (2004). Sonochemical reactors: Scale up aspects. Ultrason. Sonochem. 11(3–4):105–117.
  • Gogate, P. R., Sutkar, V. S. and Pandit, A. B. (2011). Sonochemical reactors: Important design and scale up considerations with a special emphasis on heterogeneous systems. Chem. Eng. J., 166(3):1066–1082.
  • González-Centeno, M. R., Comas-Serra, F., Femenia, A., Rosselló, C. and Simal, S. (2015). Effect of power ultrasound application on aqueous extraction of phenolic compounds and antioxidant capacity from grape pomace (Vitis vinifera L.): experimental kinetics and modeling. Ultrason. Sonochem. 22:506–514.
  • González-Centeno, M. R., Knoerzer, K., Sabarez, H., Simal, S., Rosselló, C., & Femenia, A. (2014). Effect of acoustic frequency and power density on the aqueous ultrasonic-assisted extraction of grape pomace (Vitis vinifera L.)—a response surface approach. Ultrason. Sonochem., 21(6):2176–2184.
  • Guerrero, M. S., Torres, J. S., & Nuñez, M. J. (2008). Extraction of polyphenols from white distilled grape pomace: Optimization and modelling. Bioresour. Technol. 99(5):1311–1318.
  • Hashim, S. N. N. S., Schwarz, L. J., Boysen, R. I., Yang, Y., Danylec, B. and Hearn, M. T. W. (2013). Rapid solid-phase extraction and analysis of resveratrol and other polyphenols in red wine. J. Chromatogr. A 1313:284–290.
  • Howard, L. and Pandjaitan, N. (2008). Pressurized liquid extraction of flavonoids from spinach. J. Food Sci. 73(3):151–157.
  • Jackson, R. (2008). Wine science: Principles and applications. Vasa (4th ed.). Cambridge, Massachusetts: Academic Press.
  • Jayaprakasha, G. K., Singh, R. P. and Sakariah, K. K. (2001). Antioxidant activity of grape seed (Vitis vinifera) extracts on peroxidation models in vitro. Food Chem., 73(3),285–290
  • Jiang, B., Zheng, J., Qiu, S., Wu, M., Zhang, Q., Yan, Z. and Xue, Q. (2014). Review on electrical discharge plasma technology for wastewater remediation. Chem. Eng. J. 236:348–368.
  • Joshi, A. A., Locke, B. R., Arce, P. and Finney, W. C. (1995). Formation of hydroxyl radicals, hydrogen peroxide and aqueous electrons by pulsed streamer corona discharge in aqueous solution. J. Hazard. Mater. 41(1):3–30.
  • Ju, Z. Y. and Howard, L. R. (2003). Effects of solvent and temperature on pressurized liquid extraction of anthocyanins and total phenolics from dried red grape skin. J. Agric. Food Chem. 51(18):5207–5213.
  • Kähkönen, M. P. and Heinonen, M. (2003). Antioxidant activity of anthocyanins and their aglycons. J. Agric. Food Chem. 51(3):628–633.
  • Kammerer, D., Gajdos Kljusuric, J., Carle, R. and Schieber, A. (2005). Recovery of anthocyanins from grape pomace extracts (Vitis vinifera L. cv. Cabernet Mitos) using a polymeric adsorber resin. Eur. Food Res. Technol., 220(3–4):431–437.
  • Karvela, E., Makris, D. P., Kalogeropoulos, N. and Karathanos, V. T. (2009). Deployment of response surface methodology to optimise recovery of grape (Vitis vinifera) stem polyphenols. Talanta 79(5):1311–1321.
  • Khanal, R. C., Howard, L. R. and Prior, R. L. (2010). Effect of heating on the stability of grape and blueberry pomace procyanidins and total anthocyanins. Food Res. Int. 43(5):1464–1469.
  • Knorr, D., Angersbach, A., Eshtiaghi, M. N., Heinz, V. and Lee, D.-U. (2001). Processing concepts based on high intensity electric field pulses. Trends Food Sci. Technol. 12(3–4):129–135.
  • Ko, M.-J., Cheigh, C.-I. and Chung, M.-S.(2014). Relationship analysis between flavonoids structure and subcritical water extraction (SWE). Food Chem. 143:147–155.
  • Köhler, N., Wray, V. and Winterhalter, P. (2008). Preparative isolation of procyanidins from grape seed extracts by high-speed counter-current chromatography. J. Chromatogr. A, 1177(1):114–125.
  • Kotnik, T., Kramar, P., Pucihar, G., Miklavcic, D. and Tarek, M. (2012). Cell membrane electroporation- Part 1: The phenomenon. IEEE Electr. Insul. Mag. 28(5):14–23.
  • Lapornik, B., Prošek, M. and Golc Wondra, A. (2005). Comparison of extracts prepared from plant by-products using different solvents and extraction time. J. Food Eng. 71(2):214–222.
  • Lebovka, N.., Bazhal, M. and Vorobiev, E. (2002). Estimation of characteristic damage time of food materials in pulsed-electric fields. J. Food Eng. 54(4):337–346.
  • Liazid, A., Guerrero, R. F., Cantos, E., Palma, M. and Barroso, C. G. (2011). Microwave assisted extraction of anthocyanins from grape skins. Food Chem. 124(3):1238–1243.
  • Liu, D., Vorobiev, E., Savoire, R. and Lanoisellé, J.-L. (2011). Intensification of polyphenols extraction from grape seeds by high voltage electrical discharges and extract concentration by dead-end ultrafiltration. Sep. Purif. Technol. 81(2):134–140.
  • Luque-Rodríguez, J. M., Luque de Castro, M. D. and Pérez-Juan, P. (2007). Dynamic superheated liquid extraction of anthocyanins and other phenolics from red grape skins of winemaking residues. Bioresour. Technol. 98(14):2705–2713.
  • Makris, D. P., Boskou, G. and Andrikopoulos, N. K. (2007). Recovery of antioxidant phenolics from white vinification solid by-products employing water/ethanol mixtures. Bioresour. Technol. 98(15):2963–2967.
  • McClements, D. J. (1995). Advances in the application of ultrasound in food analysis and processing. Trends Food Sci. Technol. 6(9):293–299.
  • Meireles, M. A. A. (2008). Extracting Bioactive Compounds for Food Products: Theory and Applications (2008). CRC Press.
  • Monrad, J. K., Howard, L. R., King, J. W., Srinivas, K., & Mauromoustakos, A. (2010a). Subcritical solvent extraction of anthocyanins from dried red grape pomace. J. Agric. Food Chem. 58(5):2862–2868.
  • Monrad, J. K., Srinivas, K., Howard, L. R. and King, J. W. (2012). Design and optimization of a semicontinuous hot-cold extraction of polyphenols from grape pomace. J. Agric. Food Chem. 60(22):5571–5582.
  • Monrad, J. K., Suárez, M., Motilva, M. J., King, J. W., Srinivas, K. and Howard, L. R. (2014). Extraction of anthocyanins and flavan-3-ols from red grape pomace continuously by coupling hot water extraction with a modified expeller. Food Res. Int. 65:77–87.
  • Murga, R., Ruiz, R., Beltrán, S. and Cabezas, J. L. (2000). Extraction of natural complex phenols and tannins from grape seeds by using supercritical mixtures of carbon dioxide and alcohol. J. Agric. Food Chem. 48(8):3408–3412.
  • Mustafa, A. and Turner, C. (2011). Pressurized liquid extraction as a green approach in food and herbal plants extraction: A review. Anal. Chim. Acta 703(1):8–18.
  • Nawaz, H., Shi, J., Mittal, G. S. and Kakuda, Y. (2006). Extraction of polyphenols from grape seeds and concentration by ultrafiltration. Sep. Purif. Technol. 48(2):176–181.
  • Ngamnikom, P. and Songsermpong, S. (2011). The effects of freeze, dry, and wet grinding processes on rice flour properties and their energy consumption. J. Food Eng., 104(4):632–638.
  • Pakhomov, A. G., Miklavcic, D. and Markov, M. S. (2010). Advanced Electroporation Techniques in Biology and Medicine. CRC Press.
  • Pascual-Martí, M. (2001). Supercritical fluid extraction of resveratrol from grape skin of Vitis vinifera and determination by HPLC. Talanta 54(4):735–740.
  • Patist, A. and Bates, D. (2011). Ultrasound technologies for food and bioprocessing. (H. Feng, G. Barbosa-Canovas, & J. Weiss, Eds.) Ultrasound Technologies for Food and Bioprocessing. New York, NY: Springer New York.
  • Pekić, B., Kovač, V., Alonso, E. and Revilla, E. (1998). Study of the extraction of proanthocyanidins from grape seeds. Food Chem. 61(1–2):201–206.
  • Peralbo-Molina, Á., Priego-Capote, F. and Luque de Castro, M. D. (2013). Characterization of grape seed residues from the ethanol-distillation industry. Anal. Methods 5(8), 1922.
  • Pinelo, M., Fabbro, P., Manzoco, L., Nunez, M. and Nicoli, M. (2005). Optimization of continuous phenol extraction from byproducts. Food Chem. 92(1):109–117.
  • Pinelo, M., Laurie, V. F. and Waterhouse, A. L. (2006). A simple method to separate red wine nonpolymeric and polymeric phenols by solid-phase extraction. J. Agric. Food Chem. 54(8):2839–2844.
  • Pinelo, M., Rubilar, M., Jerez, M., Sineiro, J., & Núñez, M. J. (2005a). Effect of solvent, temperature, and solvent-to-solid ratio on the total phenolic content and antiradical activity of extracts from different components of grape pomace. J. Agric. Food Chem. 53(6):2111–2117.
  • Pinelo, M., Ruiz-Rodríguez, A., Sineiro, J., Señoráns, F. J., Reglero, G. and Núñez, M. J. (2006). Supercritical fluid and solid–liquid extraction of phenolic antioxidants from grape pomace: a comparative study. Eur. Food Res. Technol. 226(1–2):199–205.
  • Pingret, D., Fabiano-Tixier, A.-S. and Chemat, F. (2013). Degradation during application of ultrasound in food processing: A review. Food Control 31(2):593–606.
  • Povey, M. J. W. and Mason, T. J. (1998). Ultrasound in Food Processing. Berlin-Heidelberg: Springer Science & Business Media.
  • Prado, J. M., Dalmolin, I., Carareto, N. D. D., Basso, R. C., Meirelles, A. J. A., Vladimir Oliveira, J., … Meireles, M. A. A. (2012). Supercritical fluid extraction of grape seed: Process scale-up, extract chemical composition and economic evaluation. J. Food Eng. 109(2):249–257.
  • Puértolas, E., Cregenzán, O., Luengo, E. and Álvarez, I. (2012). Pulsed-electric-field-assisted extraction of anthocyanins from purple-fleshed potato. Food Chem., 136(3):1330–1336.
  • Quideau, S., Deffieux, D., Douat-Casassus, C. and Pouységu, L. (2011). Plant polyphenols: chemical properties, biological activities, and synthesis. Angew. Chem. (Int. Ed. Engl.) 50(3):586–621.
  • Rajha, H. N., Boussetta, N., Louka, N., Maroun, R. G. and Vorobiev, E. (2014). A comparative study of physical pretreatments for the extraction of polyphenols and proteins from vine shoots. Food Res. Int. 65:462–468.
  • Rajha, H. N., Chacar, S., Afif, C., Vorobiev, E., Louka, N. and Maroun, R. G. (2015). β-Cyclodextrin-assisted extraction of polyphenols from vine shoot cultivars. J. Agric. Food Chem. 63(13):3387–3393.
  • Rajha, H. N., Louka, N., Darra, N. El, Hobaika, Z., Boussetta, N., Vorobiev, E. and Maroun, R. G. (2014). Multiple response optimization of high temperature, low time aqueous extraction process of phenolic compounds from grape byproducts. Food Nutr. Sci. 5(4):351–360.
  • Rajha, H. N., Ziegler, W., Louka, N., Hobaika, Z., Vorobiev, E., Boechzelt, H. G. and Maroun, R. G. (2014). Effect of the drying process on the intensification of phenolic compounds recovery from grape pomace using accelerated solvent extraction. Int. J. Mol. Sci. 15(10):18640–18658.
  • Rastogi, N. K. (2011). Opportunities and challenges in application of ultrasound in food processing. Crit. Rev. Food Sci. Nutr. 51(8):705–722.
  • Rodríguez-Meizoso, I., Jaime, L., Santoyo, S., Cifuentes, A., García-Blairsy Reina, G., Señoráns, F.J. and Ibáñez, E. (2008). Pressurized fluid extraction of bioactive compounds from Phormidium species. J. Agric. Food Chem. 56(10):3517–3523.
  • Sack, M., Sigler, J., Frenzel, S., Eing, C., Arnold, J., Michelberger, T., …Müller, G. (2010). Research on industrial-scale electroporation devices fostering the extraction of substances from biological tissue. Food Eng. Rev. 2(2):147–156.
  • Sahena, F., Zaidul, I. S. M., Jinap, S., Karim, A. A., Abbas, K. A., Norulaini, N. A. N., & Omar, A. K. M. (2009). Application of supercritical CO2 in lipid extraction—A review. J. Food Eng. 95(2):240–253.
  • Santos, H. M. and Capelo, J. L. (2007). Trends in ultrasonic-based equipment for analytical sample treatment. Talanta 73(5):795–802.
  • Sarker, S. D., Latif, Z. and Gray, A. I. (2005). Natural Products Isolation. Berlin-Heidelberg: Springer Science & Business Media.
  • Schieber, A., Hilt, P., Streker, P., Endreß, H.-U., Rentschler, C. and Carle, R. (2003). A new process for the combined recovery of pectin and phenolic compounds from apple pomace. Innov. Food Sci. Emerg. Technol. 4(1):99–107.
  • Schultheiss, C., Sack, M., Bluhm, H., Mayer, H.-G., Kern, M., & Lutz, W. (2003). Operation of 20 Hz Marx generators on a common electrolytic load in an electroporation chamber. In Digest of Technical Papers. PPC-2003.14th IEEE International Pulsed Power Conference (IEEE Cat.No.03CH37472) (Vol. 1, pp. 669–672). New York: IEEE. Available from http://doi.org/10.1109/PPC.2003.1277798
  • Shirsath, S. R., Sonawane, S. H. and Gogate, P. R. (2012). Intensification of extraction of natural products using ultrasonic irradiations—A review of current status. Chem. Eng. Process.: Process Intensif. 53:10–23.
  • Shrikhande, A. J., Race, E. J., Wightman, J. D. and Sambueso, R. D. (2003). U.S. Patent No.6,544,581. Washington, DC: U.S. Patent and Trademark Office.
  • Silva, E., Pompeu, D., Larondelle, Y. and Rogez, H. (2007). Optimisation of the adsorption of polyphenols from Inga edulis leaves on macroporous resins using an experimental design methodology. Sep. Purif. Technol. 53(3):274–280.
  • Soto, M. L., Moure, A., Domínguez, H. and Parajó, J. C. (2011). Recovery, concentration and purification of phenolic compounds by adsorption: A review. J. Food Eng. 105(1):1–27.
  • Spigno, G. and De Faveri, D. M. (2007). Antioxidants from grape stalks and marc: Influence of extraction procedure on yield, purity and antioxidant power of the extracts. J. Food Eng., 78(3):793–801.
  • Spigno, G., Tramelli, L. and De Faveri, D. M. (2007). Effects of extraction time, temperature and solvent on concentration and antioxidant activity of grape marc phenolics. J. Food Eng. 81(1):200–208.
  • Srinivas, K., King, J. W., Monrad, J. K., Howard, L. R. and Zhang, D. (2011). Pressurized solvent extraction of flavonoids from grape pomace utilizing organic acid additives. Ital. J. Food Sci. 23(1):90–105.
  • Stintzing, F. C., Stintzing, A. S., Carle, R., Frei, B. and Wrolstad, R. E. (2002). Color and antioxidant properties of cyanidin-based anthocyanin pigments. J. Agric. Food Chem. 50(21):6172–6181.
  • Toepfl, S. (2012). Pulsed electric field food processing—industrial equipment design and commercial applications. Stewart Postharv. Rev. 8(2):1–7.
  • Torres, J. L., and Bobet, R. (2001). New flavanol derivatives from grape (vitis vinifera) byproducts. Antioxidant aminoethylthio-flavan-3-ol conjugates from a polymeric waste fraction used as a source of flavanols. J. Agric. Food Chem. 49(10):4627–4634.
  • Vatai, T., Škerget, M. and Knez, Ž. (2009). Extraction of phenolic compounds from elder berry and different grape marc varieties using organic solvents and/or supercritical carbon dioxide. J. Food Eng. 90(2):246–254.
  • Vinatoru, M. (2001). An overview of the ultrasonically assisted extraction of bioactive principles from herbs. Ultrason. Sonochem. 8(3):303–313.
  • Vorobiev, E. and Lebovka, N. (2008). Electrotechnologies for Extraction from Food Plants and Biomaterials. Berlin-Heidelberg: Springer. Retrieved from http://www.springer.com/us/book/9780387793733
  • Vorobiev, E. and Lebovka, N. (2009). Electrotechnologies for extraction from food plants and biomaterials. Berlin-Heidelberg: Springer Science & Business Media.
  • Vorobiev, E., & Lebovka, N. (2009). Pulsed-electric-fields-induced effects in plant tissues: fundamental aspects and perspectives of applications. Electrotechnologies for Extraction from Food Plants and Biomaterials. Springer New York.
  • Vorobiev, E., & Lebovka, N. I. (2012). New and promising applications of pulsed electric field treatments in bio & food processing. In Proceeding of the International Conference Bio & Food Electrotechnologies BFE 2012 Book of Full Papers 26–28 September 2012 Salerno, Italy (pp. 88–92).
  • Walde, S. G., Balaswamy, K., Velu, V. and Rao, D. G.. (2002). Microwave drying and grinding characteristics of wheat (Triticum aestivum). J. Food Eng., 55(3):271–276.
  • Weaver, J. C. and Chizmadzhev, Y. A. (1996). Theory of electroporation: A review. Bioelectrochem. Bioenerg. 41(2):135–160.
  • Wijngaard, H., Hossain, M. B., Rai, D. K. and Brunton, N. (2012). Techniques to extract bioactive compounds from food by-products of plant origin. Food Res. Int. 46(2):505–513.
  • Xia, E. Q., Yu, Y. Y., Xu, X. R., Deng, G. F., Guo, Y. J. and Li, H. Bin.(2012). Ultrasound-assisted extraction of oleanolic acid and ursolic acid from Ligustrum lucidum Ait. Ultrason. Sonochem. 19(4):772–776.
  • Yang, Y., Miller, D. J. and Hawthorne, S. B. (1997). Toluene solubility in water and organic partitioning from gasoline and diesel fuel into water at elevated temperatures and pressures. J. Chem. Eng. Data 42(5):908–913.
  • Yilmaz, Y. and Toledo, R. T. (2006). Oxygen radical absorbance capacities of grape/wine industry byproducts and effect of solvent type on extraction of grape seed polyphenols. J. Food Compos. Anal. 19(1):41–48.
  • Yu, H. B., Ding, L. F., Wang, Z. and Shi, L. X. (2013). Study on extraction of polyphenol from grape peel microwave-assisted activity. Adv. Mater. Res. 864, 520–525.
  • Zhao, R., Yan, Y., Li, M. and Yan, H. (2008). Selective adsorption of tea polyphenols from aqueous solution of the mixture with caffeine on macroporous crosslinked poly(N-vinyl-2-pyrrolidinone). React. Funct. Polym. 68(3):768–774.
  • Zimmermann, U. (1986). Electrical breakdown, electropermeabilization and electrofusion. Rev. Physiol., Biochem. Pharmacol. 105:176–256.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.