1,136
Views
36
CrossRef citations to date
0
Altmetric
Articles

Gelatin controversies in food, pharmaceuticals, and personal care products: Authentication methods, current status, and future challenges

, , , , , & show all

References

  • Aida, A. A., Man, C., Yaakob, B., Raha, A. R. and Son, R. (2007). Detection of pig derivatives in food products for halal authentication by polymerase chain reaction–restriction fragment length polymorphism. J. Sci. Food Agr. 87(4):569–572.
  • Aitken, A. and Learmonth, M. P. (2002). Protein determination by UV absorption. In: The Protein Protocols Handbook, pp. 3–6. Humana Press, Totowa, New Jersey.
  • Ali, M., Hashim, U., Mustafa, S., Man, Y. C., Dhahi, T. S., Kashif, M. and Hamid, S. A. (2012). Analysis of pork adulteration in commercial meatballs targeting porcine-specific mitochondrial cytochrome b gene by TaqMan probe real-time polymerase chain reaction. Meat. Sci. 91(4):454–459.
  • Ali, M., Hashim, U., Mustafa, S., Man, Y. C., Yusop, M., Bari, M. and Hasan, M. (2011). Nanoparticle sensor for label free detection of swine DNA in mixed biological samples. Nanotechnol. 22(19):195503.
  • Ali, M. E., Razzak, M. A. and Hamid, S. B. A. (2014). Multiplex PCR in species authentication: probability and prospects-a review. Food Anal. Method 7(10):1933–1949.
  • Ali, M. E., Razzak, M. A., Hamid, S. B. A., Rahman, M. M., Al Amin, M. and Rashid, N. R. A. (2015). Multiplex PCR assay for the detection of five meat species forbidden in Islamic foods. Food Chem. 177:214–224.
  • Ali, M. E., Rahman, M. M., Dhahi, T. S., Kashif, M., Sarkar, M. S., Basirun, W. J., Hamid, S. B. A. and Bhargava, S. K. (2016). Nanostructured materials: Bioengineering platforms for sensing nucleic acids. In: Reference Module in Materials Science and Materials Engineering, pp. 1–26. S. Hashmi Ed., Elsevier, Oxford.
  • Amin, M. A., Ismail, A., Nhari, R., Hafidz, R. M. and Che Man, Y. (2013). Identification polypeptide biomarkers of porcine skin gelatin by two-dimensional electrophoresis. Food Res. Int. J. 20(3):1395–1399.
  • Aristoy, M. C. and Toldrá, F. (2004). Histidine dipeptides HPLC-based test for the detection of mammalian origin proteins in feeds for ruminants. Meat. Sci. 67(2):211–217.
  • Asensio, L., González, I., García, T. and Martín, R. (2008). Determination of food authenticity by enzyme-linked immunosorbent assay (ELISA). Food Control. 19(1):1–8.
  • Azilawati, M., Hashim, D., Jamilah, B. and Amin, I. (2015). RP-HPLC method using 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate incorporated with normalization technique in principal component analysis to differentiate the bovine, porcine and fish gelatins. Food Chem. 172:368–376.
  • Azira, T. N., Man, Y. C., Hafidz, R. R. M., Aina, M. and Amin, I. (2014). Use of principal component analysis for differentiation of gelatine sources based on polypeptide molecular weights. Food Chem. 151:286–292.
  • Barth, A. (2007). Infrared spectroscopy of proteins. Biochimica et Biophysica Acta (BBA)-Bioenergetics. 1767(9):1073–1101.
  • Berg, D. and Otley, C. C. (2002). Skin cancer in organ transplant recipients: Epidemiology, pathogenesis, and management. J. Am. Acad. Dermatol. 47(1):1–20.
  • Brandão, D., Liébana, S., Campoy, S., Cortés, M. P., Alegret, S. and Pividori, M. I. (2015). Simultaneous electrochemical magneto genosensing of foodborne bacteria based on triple-tagging multiplex amplification. Biosens. Bioelectron. 74:652–659.
  • Cai, H., Gu, X., Scanlan, M. S., Ramatlapeng, D. H. and Lively, C. R. (2012). Real-time PCR assays for detection and quantitation of porcine and bovine DNA in gelatin mixtures and gelatin capsules. J. Food Comp. Anal. 25(1):83–87.
  • Cebi, N., Durak, M. Z., Toker, O. S., Sagdic, O. and Arici, M. (2016). An evaluation of Fourier transforms infrared spectroscopy method for the classification and discrimination of bovine, porcine and fish gelatins. Food Chem. 190:1109–1115.
  • Chen, J., Kubalak, S. W. and Chien, K. R. (1998). Ventricular muscle-restricted targeting of the RXRalpha gene reveals a non-cell-autonomous requirement in cardiac chamber morphogenesis. Development. 125(10):1943–1949.
  • Cserháti, T., Forgács, E., Deyl, Z. and Miksik, I. (2005). Chromatography in authenticity and traceability tests of vegetable oils and dairy products: A review. Biomed. Chromatogr. 19(3):183–190.
  • Demirhan, Y., Ulca, P. and Senyuva, H. Z. (2012). Detection of porcine DNA in gelatine and gelatine-containing processed food products-Halal/Kosher authentication. Meat. Sci. 90(3):686–689.
  • Di Stefano, V., Avellone, G., Bongiorno, D., Cunsolo, V., Muccilli, V., Sforza, S., Dossena, A., Drahos, L. and Vékey, K. (2012). Applications of liquid chromatography–mass spectrometry for food analysis. J. Chromatogr. A 1259:74–85.
  • Doi, H., Watanabe, E., Shibata, H. and Tanabe, S. (2009). A reliable enzyme linked immunosorbent assay for the determination of bovine and porcine gelatin in processed foods. J. Agric Food Chem. 57:1721–1726.
  • Ekins, R. (1991). Immunoassay design and optimization. Principles and Practice of Immunoassay, Springer. Stockton Press: New York.pp. 96–153.
  • FDA, U. (1997). Guidance for industry: Dissolution testing of immediate-release solid oraldosage forms. Food and Drug Administration, Center for Drug Evaluation and Research (CDER).
  • Gendel, S. (2016). Development and validation of a rapid qualitative test kit for detection of raw and cooked pork meat and gelatin residues. Paper presented at the IAFP's 12th European Symposium on Food Safety.
  • Hamdan, M. H. and Righetti, P. G. (2005). Proteomics today: Protein assessment and biomarkers using mass spectrometry. In: 2D Electrophoresis, and Microarray Technology. p. 18. New York: John Wiley & Sons.
  • Hashim, D., Man, Y. C., Norakasha, R., Shuhaimi, M., Salmah, Y. and Syahariza, Z. (2010). Potential use of Fourier transform infrared spectroscopy for differentiation of bovine and porcine gelatins. Food Chem. 118(3):856–860.
  • Hermanto, S. and Fatimah, W. (2013). Differentiation of bovine and porcine gelatin based on spectroscopic and electrophoretic analysis. J. Food Pharma Sci. 1(3):68–73.
  • Hidaka, S. and Liu, S. (2003). Effects of gelatins on calcium phosphate precipitation: A possible application for distinguishing bovine bone gelatin from porcine skin gelatin. J. Food Comps Anal. 16(4):477–483.
  • Hsieh, T.-H., Lee, J.-t., Charng, Y.-y. and Chan, M.-T. (2002). Tomato plants ectopically expressing Arabidopsis CBF1 show enhanced resistance to water deficit stress. Plant Physiol. 130(2):618–626.
  • Hossain, M. M., Ali, M. E., Abd Hamid, S. B., Asing, Mustafa, S., Mohd Desa, M. N. and Sarker, M. Z. I. (2016). Double gene targeting multiplex PCR-RFLP assay discriminates beef, buffalo and pork substitution in frankfurter products. ACS 36(11):1499–1504.
  • Huang, H., Bai, W., Dong, C., Guo, R. and Liu, Z. (2015). An ultrasensitive electrochemical DNA biosensor based on graphene/Au nanorod/polythionine for human papillomavirus DNA detection. Biosens. Bioelectron. 68:442–446.
  • Ibáñez, C., García-Cañas, V., Valdés, A. and Simó, C. (2013). Novel MS-based approaches and applications in food metabolomics. Trac-Trend Anal. Chem. 52:100–111.
  • Iwobi, A. N., Huber, I., Hauner, G., Miller, A. and Busch, U. (2011). Biochip technology for the detection of animal species in meat products. Food Anal. Method. 4(3):389–398.
  • Jahangir, M., Mehmood, Z., Bashir, Q., Mehboob, F. and Ali, K. (2016). Halal status of ingredients after physicochemical alteration (Istihalah). Trends Food Sci. Tech. 47:78–81.
  • Karim, A. and Bhat, R. (2008). Gelatin alternatives for the food industry: recent developments, challenges and prospects. Trend Food Sci. Tech. 19(12):644–656.
  • Kumar, K. and Mishra, A. K. (2015). Application of partial least square (PLS) analysis on fluorescence data of 8-anilinonaphthalene-1-sulfonic acid, a polarity dye, for monitoring water adulteration in ethanol fuel. J. Fluoresc 25(4):1055–1061.
  • Kupiec, T. (2004). Quality-control analytical methods: High-performance liquid chromatography. Int. J. Pharm Comp. 8:223–227.
  • Lee, J.-H., Kim, M.-R., Jo, C.-H., Jung, Y.-K., Kwon, K. and Kang, T. S. (2016). Specific PCR assays to determine bovine, porcine, fish and plant origin of gelatin capsules of dietary supplements. Food Chem. 211:253–259.
  • Lequin, R. M. (2005). Enzyme immunoassay (EIA)/enzyme-linked immunosorbent assay (ELISA). Cln. Chem. 51(12):2415–2418.
  • Lin, C. C., Chiou, T. K. and Sung, W. C. (2015). Characteristics of gelatin from giant grouper (Epinephelus Lanceolatus) skin. Intl. J. Food Prop. 18(11):2339–2348.
  • Lin, W.-F. and Hwang, D.-F. (2007). Application of PCR-RFLP analysis on species identification of canned tuna. Food Control. 18(9):1050–1057.
  • Liu, D., Nikoo, M., Boran, G., Zhou, P. and Regenstein, J. M. (2015). Collagen and gelatin. Annu. Rev. Food Sci. Agric. 6:527–557.
  • Luo, A., Zhang, A., Ho, S. Y., Xu, W., Zhang, Y., Shi, W. and Zhu, C. (2011). Potential efficacy of mitochondrial genes for animal DNA barcoding: A case study using eutherian mammals. BMC Genom. 12(1):84–96.
  • Malik, A., Sutantyo, M. L., Hapsari, I., Sinurat, A. V., Purwati, E. M., Jufri, M. and Suryadi, H. (2016). Simultaneous identification and verification of gelatin type in capsule shells by electrophoresis and polymerase chain reaction. J. Pharma Investig. 46(5):1–11.
  • Mazumdar, D., Liu, J. and Lu, Y. (2010). Lateral Flow Devices. The Board of Trustees of the University of Illinois, Urbana, IL.
  • Mazumdar, D., Liu, J. and Lu, Y. (2010). Lateral Flow Devices. The Board of Trustees of the University of Illinois, Urbana, IL, Patent No. US7799554, Sept. 21, 2010.
  • Mohamad, N. A., Mustafa, S., Sheikha, E., Farag, A., Mokhtar, K., Fadhilah, N. and Ali, M. E. (2015). Modification of gelatin–DNA interaction for optimised DNA extraction from gelatin and gelatin capsule. J. Sci. Food Agric. 96:2344–2351.
  • Mutalib, S. A., Muin, N. M., Abdullah, A., Hassan, O., Mustapha, W. A. W., Sani, N. A. and Maskat, M. Y. (2015). Sensitivity of polymerase chain reaction (PCR)-southern hybridization and conventional PCR analysis for Halal authentication of gelatin capsules. LWT-Food Sci. Tech. 63(1):714–719.
  • Nemati, M., Oveisi, M., Abdollahi, H. and Sabzevari, O. (2004). Differentiation of bovine and porcine gelatins using principal component analysis. J. Pharma Biomed. Anal. 34(3):485–492.
  • Nhari, R. M. H. R., Ismail, A., Man, C. and Yaakob, B. (2012). Analytical methods for gelatin differentiation from bovine and porcine origins and food products. J. food Sci. 77(1):R42–R46.
  • Norziah, M., Al-Hassan, A., Khairulnizam, A., Mordi, M. and Norita, M. (2009). Characterization of fish gelatin from surimi processing wastes: Thermal analysis and effect of transglutaminase on gel properties. Food Hydrocolloids. 23(6):1610–1616.
  • Ocaña, M. F., Neubert, H., Przyborowska, A., Parker, R., Bramley, P., Halket, J. and Patel, R. (2004). BSE control: Detection of gelatine-derived peptides in animal feed by mass spectrometry. Analyst 129(2):111–115.
  • Peterson, B. L. and Cummings, B. S. (2006). A review of chromatographic methods for the assessment of phospholipids in biological samples. Biomed. Chromatography 20(3):227–243.
  • Rahman, M. M., Hamid, S. B. A., Basirun, W. J., Bhassu, S., Rashid, N. R. A., Mustafa, S. and Ali, M. E. (2016). TaqMan probe real-time polymerase chain reaction assay for the quantification of canine DNA in chicken nugget. Food Addit. Contam. A. 33(1):10–18.
  • Raraswati, M. A., Triyana, K. and Rohman, A. (2013). Differentiation of bovine and porcine gelatins in soft candy based on amino acid profiles and chemometrics. J. Food Pharma Sci. 2(1):1–6.
  • Razzak, M. A., Hamid, S. B. A. and Ali, M. E. (2015). A lab-on-a-chip-based multiplex platform to detect potential fraud of introducing pig, dog, cat, rat and monkey meat into the food chain. Food Addit Contam A. Part A 32(11):1902–1913.
  • Rezazadeh, M., Yamini, Y., Seidi, S. and Aghaei, A. (2015). Pulsed electromembrane extraction for analysis of derivatized amino acids: A powerful technique for determination of animal source of gelatin samples. Talanta 136:190–197.
  • Rohman, A. and Che Man, Y. (2012). Analysis of pig derivatives for halal authentication studies. Food Rev Int 28(1):97–112.
  • Rojas, M., González, I., Pavón, M. Á., Pegels, N., Hernández, P. E., García, T. and Martín, R. (2011). Application of a real-time PCR assay for the detection of ostrich (Struthio camelus) mislabelling in meat products from the retail market. Food Control 22(3):523–531.
  • Safdar, M., Junejo, Y., Arman, K. and Abasıyanık, M. (2014). Rapid bovine and caprine species identification in ruminant feeds by duplex real-time PCR melting curve analysis using EvaGreen fluorescence dye. Mol. Biotech. 56(8):770–776.
  • Sahilah, A., Fadly, L., Norrakiah, A., Aminah, A., Wan Aida, W., Ma'aruf, A. and Khan, A. (2012). Halal market surveillance of soft and hard gel capsules in pharmaceutical products using PCR and southern-hybridization on the biochip analysis. Int. Food Res. J. 19(1):139–148.
  • Sander, L. C. and Wise, S. A. (1987). Effect of phase length on column selectivity for the separation of polycyclic aromatic hydrocarbons by reversed-phase liquid chromatography. Anal. Chem. 59(18):2309–2313.
  • Schmid, F. X. (2001). Biological Macromolecules: UV‐visible Spectrophotometry. Schmid, F.-X. Encycl. Life Sci. 2001, 1.
  • Schrieber, R. and Gareis, H. (2007). Gelatine Handbook: Theory and Industrial Practice. John Wiley & Sons.
  • Shabani, H., Mehdizadeh, M., Mousavi, S. M., Dezfouli, E. A., Solgi, T., Khodaverdi, M., Rabiei, M., Rastegar, H. and Alebouyeh, M. (2015). Halal authenticity of gelatin using species-specific PCR. Food Chem. 184:203–206.
  • Stefano, D., Avellone, V., Bongiorno, G., Cunsolo, D., Muccilli, V., Sforza, V., Dossena, S., Drahos, A. and Vékey, K. (2012). Applications of liquid chromatography–mass spectrometry for food analysis. J. Chromatogr. A 1259:74–85.
  • Sun, J., Zhang, G. L., Li, S., Ivanov, A. R., Fenyo, D., Lisacek, F. and Brusic, V. (2014). Pathway analysis and transcriptomics improve protein identification by shotgun proteomics from samples comprising small number of cells-a benchmarking study. BMC Genomics 15(Suppl. 9):S1.
  • Švorc, L. u. r., Jambrec, D., Vojs, M., Barwe, S., Clausmeyer, J., Michniak, P. and Schuhmann, W. (2015). Doping level of boron-doped diamond electrodes controls the grafting density of functional groups for DNA assays. ACS Appl. Mater. Interfaces. 7(34):18949–18956.
  • Tasara, T., Schumacher, S. and Stephan, R. (2005). Conventional and real-time PCR–based approaches for molecular detection and quantitation of bovine species material in edible gelatin. J. Food Protect. 68(11):2420–2426.
  • Tukiran, N. A., Ismail, A., Mustafa, S. and Hamid, M. (2016a). Determination of porcine gelatin in edible bird's nest by competitive indirect ELISA based on anti-peptide polyclonal antibody. Food Control 59:561–566.
  • Tukiran, N. A., Ismail, A., Mustafa, S. and Hamid, M. (2016b). Development of antipeptide enzyme‐linked immunosorbent assay for determination of gelatin in confectionery products. Int. J. Food Sci. Tech. 51(1):54–60.
  • Venien, A. and Levieux, D. (2005). Differentiation of bovine from porcine gelatines using polyclonal anti-peptide antibodies in indirect and competitive indirect ELISA. J. Pharma Biomed. Anal. 39(3):418–424.
  • Widyaninggar, A., Triyana, K. and Rohman, A. (2012). Differentiation between porcine and bovine gelatin in capsule shells based on amino acid profiles and principal component analysis. Indonesi. J. Pharma. 104–109.
  • Wise, B., Shaver, J., Gallagher, N., Windig, W., Bro, R. and Koch, S. (2006). PLS_Toolbox 4.0. Eigenvector Research. Inc., Wenatchee, WA, USA.
  • Wolf, C. and Lüthy, J. (2001). Quantitative competitive (QC) PCR for quantification of porcine DNA. Meat. Sci. 57(2):161–168.
  • Wong, E. H.-K. and Hanner, R. H. (2008). DNA barcoding detects market substitution in North American seafood. Food Res. Int. 41(8):828–837.
  • Wong, R. C. and Harley, Y. T. (2009). Quantitative, false positive, and false negative issues for lateral flow immunoassays as exemplified by onsite drug screens. In: Lateral Flow Immunoassay pp. 1–19. Springer. Humana Press.
  • Yang, H., Wang, Y., Jiang, M., Oh, J. H., Herring, J. and Zhou, P. (2007). 2‐Step optimization of the extraction and subsequent physical properties of channel catfish (ictalurus punctatus) skin gelatin. J. Food Sci. 72(4):C188–C195.
  • Yetisen, A. K., Akram, M. S. and Lowe, C. R. (2013). Paper-based microfluidic point-of-care diagnostic devices. Lab on a Chip. 13(12):2210–2251.
  • Yilmaz, M. T., Kesmen, Z., Baykal, B., Sagdic, O., Kulen, O., Kacar, O. and Baykal, A. T. (2013). A novel method to differentiate bovine and porcine gelatins in food products: NanoUPLC-ESI-Q-TOF-MS E based data independent acquisition technique to detect marker peptides in gelatin. Food Chem. 141(3):2450–2458.
  • Zhang, G., Liu, T., Wang, Q., Chen, L., Lei, J., Luo, J. and Su, Z. (2009). Mass spectrometric detection of marker peptides in tryptic digests of gelatin: A new method to differentiate between bovine and porcine gelatin. Food Hydrocolloids 23(7):2001–2007.
  • Zhang, G., Liu, T., Wang, Q., Chen, L., Lei, J., Luo, J., Ma, G. and Su, Z. (2009). Mass spectrometric detection of marker peptides in tryptic digests of gelatin: a new method to differentiate between bovine and porcine gelatin. Food Hydrocolloids 23(7):2001–2007.
  • Zhang, G.-F., Tao, L., Qian, W., Jian-Du, L., Guang-Hui, M. and Zhi-Guo, S. (2008). Identification of marker peptides in digested gelatins by high performance liquid chromatography/mass spectrometry. Chinese Anal. Chem. 36(11):1499–1504.
  • Zhang, Z., Li, G. and Shi, B. (2006). Physicochemical properties of collagen, gelatin and collagen hydrolysate derived from bovine limed split wastes. J. Soc. Leath Tech. 90(1):23–28.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.