1,609
Views
21
CrossRef citations to date
0
Altmetric
Reviews

Advantages and limitations of in vitro and in vivo methods of iron and zinc bioavailability evaluation in the assessment of biofortification program effectiveness

, , , &

References

  • Ariza-Nieto, M. et al. (2007). Screening of iron bioavailability patterns in eight bean (Phaseolus vulgaris L.) genotypes using the Caco-2 cell in vitro model. J. Agric. Food Chem. 55:7950–7956.
  • Au, A. P. and Reddy, M. B. (2000). Caco-2 cells can be used to assess human iron bioavailability from a semipurified meal. J. Nutr. 130(5):1329–1334.
  • Bell, S. G. and Vallee, B. L. (2009). The metallothionein/thionein system: an oxidoreductive metabolic zinc link. Chembiochem 10(1):55–62.
  • Bermudez-Brito, M., Plaza-Díaz, J., Fontana, L., Munoz-Quezada, S. and Gil, A. (2013). In vitro cell and tissue models for studying host–microbe interactions: A review. British Journal of Nutrition 109(S2):S27–S34.
  • Blair, M. W. et al. (2010). Registration of high mineral common bean germplasm lines NUA35 and NUA56 from the red mottled seed class. J. Plant Regis 4:1–5.
  • Bouis, H. E. et al. (2011). Biofortification: a new tool to reduce micronutrient malnutrition. Food Nutr. Bull. 32(1 suppl1):S31–S40.
  • Bouis, H. E., Hotz, C., McClafferty, B., Meenakshi, J. V. and Pfeiffer, W. H. (2011). Biofortification: a new tool to reduce micronutrient malnutrition. Food and Nutrition Bulletin 32:S31–S40.
  • Bouis, H. E. and Welch, R. M. (2010). Biofortification—a sustainable agricultural strategy for reducing micronutrient malnutrition in the global south. Crop Sci. 50(Supplement_1):S–20.
  • Brnić, M. et al. (2016). Zinc Absorption by Adults Is Similar from Intrinsically Labeled Zinc-Biofortified Rice and from Rice Fortified with Labeled Zinc Sulfate. J. Nutr. 146(1):76–80.
  • Cannon, E. K. et al. (2011). POPcorn: an online resource providing access to distributed and diverse maize project data. Int. J. Plant Genomics 92:30–35.
  • Carlson, D. et al. (2012). Bioavailability of trace elements in beans and zinc-biofortified wheat in pigs. Biol. Trace Elem. Res. 150(1–3):147–153.
  • Cercamondi, C. I. et al. (2013). Total iron absorption by young women from iron-biofortified pearl millet composite meals is double that from regular millet meals but less than that from post-harvest iron-fortified millet meals. J. Nutr. 143(9):1376–1382.
  • Chomba, E. et al. (2015). Zinc absorption from biofortified maize meets the requirements of young rural Zambian children. J. Nutr. 145(3):514–519.
  • Dias, D. M. et al. (2015). Rice and bean targets for biofortification combined with high carotenoid content crops regulate transcriptional mechanisms increasing iron bioavailability. Nutrients 7(11):9683–9696.
  • Etcheverry, P., Grusak, M. A. and Fleige, L. E (2012). Application of in vitro bioaccessibility and bioavailability methods for calcium, carotenoids, folate, iron, magnesium, polyphenols, zinc, and vitamins B(6), B(12), D, and E. Front Physiol. 3:1–22.
  • Fairweather-Tait, S. et al. (2005). The usefulness of in vitro models to predict the bioavailability of iron and zinc: a consensus statement from the HarvestPlus expert consultation. Int. J. Vitam. Nutr. Res. 75(6):371–374.
  • Fairweather-Tait, S., Lynch, S., Hotz, C., Hurrell, R., Abrahamse, L., Beebe, S., Bering, S., Bukhave, K., Glahn, R., Hambidge, M., Hunt, J., Lonnerdal, B., Miller, D., Mohktar, N., Nestel, P., Reddy, M., Sandberg, A., Sharp, P., Teucher, B. and Trinidad, P. T. (2005). The usefulness of in vitro models to predict the bioavailability of iron and zinc: a consensus statement from the HarvestPlus expert consultation. International Journal for Vitamin and Nutrition Research 75(6):371–374.
  • Frazer, D. M. and Anderson, G. J. (2005). Intestinal iron absorption and its regulation. Am. J. Physiol. Gastrointest Liver Physiol. 289:G631–G635.
  • Gregorio, G. B. et al. (2000). Breeding for trace mineral density in rice. Food Nutr. Bull. 21(4):382–386.
  • Griffin, I. J. (2002). Using stable isotopes and isotope ratio mass spectrometry to study mineral metabolism in humans Invited Lecture. J. Anal. At. Spectrom. 17(9):1186–1193.
  • Haas, J. D. et al. (2005). Iron-biofortified rice improves the iron stores of nonanemic Filipino women. J. Nutr. 135(12):2823–2830.
  • Haas, J. D. et al. (2016). Consuming iron biofortified beans increases iron status in rwandan women after 128 days in a randomized controlled feeding trial. J. Nutr. 146(8):1586–1592.
  • Hama, F. et al. (2012). Potential of non‐GMO biofortified pearl millet (Pennisetum glaucum) for increasing iron and zinc content and their estimated bioavailability during abrasive decortication. Int. J. Food Sci. Technol. 47(8):1660–1668.
  • HarvestPlus. Iron pearl millet; 2009 [cited 2012 Oct]. Available from: http://www.unscn.org/layout/modules/resources/files/HarvestPlus_Pearl_Millet_Strategy.pdf
  • Hotz, C. and Brown K. H. (2004). International zinc nutrition consultative group (IZiNCG) technical document #1. Assessment of the risk of zinc deficiency in populations and options for its control. Food Nutr. Bull. 25:S99–S199.
  • House, W. A. (1999). Trace element bioavailability as exemplified by iron and zinc. Field Crops. Res. 60:115–141.
  • Islam, M. M. et al. (2013). Total zinc absorption from a diet containing either conventional rice or higher-zinc rice does not differ among Bangladeshi preschool children. J. Nutr. 143(4):519–525.
  • Jou, M. Y. et al. (2012). Biofortification of rice with zinc: assessment of the relative bioavailability of zinc in a Caco-2 cell model and suckling rat pups. J. Agric. Food Chem. 60(14):3650–3657.
  • Knez, M., Stangoulis, J. C., Zec, M., Debeljak-Martacic, J., Pavlovic, Z., Gurinovic, M. and Glibetic, M. (2016). An initial evaluation of newly proposed biomarker of zinc status in humans-linoleic acid: dihomo-γ-linolenic acid (LA: DGLA) ratio. Clin. Nutr. ESPEN 15:85–92.
  • Kodkany, B. S. et al. (2013). Biofortification of pearl millet with iron and zinc in a randomized controlled trial increases absorption of these minerals above physiologic requirements in young children. J. Nutr. 143(9):1489–1493.
  • La Frano, M. R. et al. (2014). Bioavailability of iron, zinc, and provitamin A carotenoids in biofortified staple crops. Nutr. Rev. 72(5):289–307.
  • Meenakshi, J. V., Johnson, N. L., Manyong, V. M., DeGroote, H., Javelosa, J., Yanggen, D. R., et al. (2010). How cost-effective is biofortification in combating micronutrient malnutrition? An ex ante assessment. World Development 38(1):64–75.
  • Muthayya, S. et al. (2013). The global hidden hungerx indices and maps: an advocacy tool for action. PLoS One 8:7860. 2.
  • Muthayya, S., Rah, J. H., Sugimoto, J. D., Roos, F. F., Kraemer, K. and Black, R. E. (2013). The global hidden hunger indices and maps: an advocacy tool for action. PLoS One 8(6):e67860.
  • Nestel, P., Bouis, H. E., Meenakshi, J. V. and Pfeiffer, W. (2006). Biofortification of staple food crops. The Journal of Nutrition 136(4):1064–1067.
  • Olejnik, A. M., Marecik, R., Białas, W., Cyplik, P. and Grajek, W. (2010). In vitro studies on atrazine effects on human intestinal cells. Water, Air, & Soil Pollution 213(1-4):401–411.
  • Patterson, J. K. et al. (2008). The pig as an experimental model for elucidating the mechanisms governing dietary influence on mineral absorption. Exp. Biol. Med. 233(6):651–664.
  • Payne, A. N., Zihler, A., Chassard, C. and Lacroix, C. (2012). Advances and perspectives in in vitro human gut fermentation modeling. Trends in Biotechnology 30(1):17–25.
  • Perks, S. M. and Miller, D. D. (1996). Adding ascorbic acid to iron-fortified cow's milk does not enhance iron bioavailability to piglets. Nutr. Res. 16(6):969–975.
  • Petry, N. et al. (2016). In Rwandese women with low iron status, iron absorption from low-phytic acid beans and biofortified beans is comparable, but low-phytic acid beans cause adverse gastrointestinal symptoms. J. Nutr. 146(5):970–975.
  • Petry, N., Egli, I., Gahutu, J. B., Tugirimana, P. L., Boy, E. and Hurrell, R. (2012). Stable iron isotope studies in Rwandese women indicate that the common bean has limited potential as a vehicle for iron biofortification. The Journal of Nutrition 142(3):492–497.
  • Petry, N., Egli, I., Gahutu, J. B., Tugirimana, P. L., Boy, E. and Hurrell, R. (2014). Phytic acid concentration influences iron bioavailability from biofortified beans in Rwandese women with low iron status. The Journal of Nutrition 144(11):1681–1687.
  • Petry, N., Rohner, F., Gahutu, J. T., Campion, B., Boy, E., Tugirimana, P. L., Zimmerman, M. B., Zwahlen, C., Wirth, J. P. and Moretti, D. (2016). In Rwandese Women with Low Iron Status, Iron Absorption from Low-Phytic Acid Beans and Biofortified Beans Is Comparable, but Low-Phytic Acid Beans Cause Adverse Gastrointestinal Symptoms. The Journal of Nutrition 146(5):970–975.
  • Pigeon, C. et al. (2001). A new mouse liver-specific gene, encoding a protein homologous to human antimicrobial peptide hepcidin, is overexpressed during iron overload. J. Biol. Chem. 276(11):7811–7819.
  • Reed, S., Qin, X., Ran-Ressler, R., Brenna, J. T., Glahn, R. P. and Tako, E. (2014). Dietary zinc deficiency affects blood linoleic acid: Dihomo-γ-linolenic acid (LA: DGLA) ratio; A sensitive physiological marker of zinc status in vivo (Gallus gallus). Nutrients 6(3):1164–1180.
  • Roetto, A. et al. (2003). Mutant antimicrobial peptide hepcidin is associated with severe juvenile hemochromatosis. Nat. Genet. 33(1).
  • Rosado, J. L. et al. (2009). The quantity of zinc absorbed from wheat in adult women is enhanced by biofortification. J. Nutr. 139(10):1920–1925.
  • Saltzman, A., Birol, E., Bouis, H. E., Boy, E., De Moura, F. F., Islam, Y. and Pfeiffer, W. H. (2013). Biofortification: progress toward a more nourishing future. Global Food Security 2(1):9–17.
  • Sant'ana, L. F. R, Cruz, A. C. R. F. and Costa N. M. B. (2006). Biodisponibilidade de ferro de uma multimistura em uma dieta de arroz e feijão. J. Braz. Soc. Food Nutr. 31:1–14.
  • Scheers, N. M. et al. (2014). Proposing a Caco-2/HepG2 cell model for in vitro iron absorption studies. J. Nutr. Biochem. 25(7):710–715.
  • Stein, A. J. (2010). Global impacts of human mineral malnutrition. Plant Soil 335:133–154.
  • Tako, E. et al. (2011). Biofortified red mottled beans (Phaseolus vulgaris L.) in a maize and bean diet provide more bioavailable iron than standard red mottled beans: Studies in poultry (Gallus gallus) and an in vitro digestion/Caco-2 model. Nutr. J. 10(1):2–10.
  • Tako, E. et al. (2009). Biofortified black beans in a maize and bean diet provide more bioavailable iron to piglets than standard black beans. J. Nutr. 139(2):305–309.
  • Tako, E. et al. (2013). High bioavailablilty iron maize (Zea mays L.) developed through molecular breeding provides more absorbable iron in vitro (Caco-2 model) and in vivo (Gallus gallus). Nutr. J. 12(1):1.
  • Tako, E. et al. (2014). Polyphenolic compounds appear to limit the nutritional benefit of biofortified higher iron black bean (Phaseolus vulgaris L.). Nutr. J. 13(1):1.
  • Tako, E. et al. (2015a). Higher iron pearl millet (Pennisetum glaucum L.) provides more absorbable iron that is limited by increased polyphenolic content. Nutr. J. 14(1):1.
  • Tako, E. et al. (2015b). Studies of cream seeded carioca beans (Phaseolus vulgaris L.) from a Rwandan efficacy trial: in vitro and in vivo screening tools reflect human studies and predict beneficial results from iron biofortified beans. PloS one 10(9):e0138479.
  • Tako, E., Bar, H. and Glahn, R. P. (2016). The combined application of the caco-2 cell bioassay coupled with in vivo (Gallus gallus) feeding trial represents an effective approach to predicting fe bioavailability in humans. Nutrients 8(11):732.
  • Tako, E. and Glahn, R. P. (2010). White beans provide more bioavailable iron than red beans: studies in poultry (Gallus gallus) and an in vitro digestion/Caco-2 model. Int. J. Vitam. Nutr. Res. 80(6):416.
  • Tako, E. and Glahn, R. P. (2011a). Iron status of the late term broiler (Gallus gallus) embryo and hatchling. Int. J. Poul. Sci. 10(1):42–48.
  • Tako, E. and Glahn, R. P. (2011b). White beans provide more bioavailable iron than red beans: studies in poultry (Gallus gallus) and an in vitro digestion/Caco-2 model. Int. J. Vitam. Nutr. Res. 81:1–14.
  • Thakkar, S. K. et al. (2009). Impact of style of processing on retention and bioaccessibility of β-carotene in cassava (Manihot esculanta, Crantz). J. Agric. Food Chem. 57(4):1344–1348.
  • Trijatmiko, K. R. et al. (2016). Biofortified indica rice attains iron and zinc nutrition dietary targets in the field. Sci. Rep. 6.
  • Trijatmiko, K. R. et al. (2016). Biofortified indica rice attains iron and zinc nutrition dietary targets in the field. Scientific Reports 6:19792.
  • Vaz‐Tostes, M. D. G. et al. (2016). Evaluation of iron and zinc bioavailability of beans targeted for biofortification using in vitro and in vivo models and their effect on the nutritional status of preschool children. J. Sci. Food Agric. 96(4):1326–1332.
  • Wei, Y. et al. (2012). Effect of zinc sulfate fortification in germinated brown rice on seed zinc concentration, bioavailability, and seed germination. J. Agric. Food Chem. 60(7):1871–1879.
  • Wei, Y., Shohag, M. J. I. and Yang, X. (2012). Biofortification and bioavailability of rice grain zinc as affected by different forms of foliar zinc fertilization. PloS one 7(9):e45428.
  • Welch, R. M. et al. (2000). Genetic selection for enhanced bioavailable levels of iron in bean (Phaseolus vulgaris L.) seeds. J. Agric. Food Chem. 48:3576–80.
  • White, P. J. et al. (2005). Biofortifying crops with essential mineral elements. Trends Plant Sci. 10:586–593.
  • WHO. (2008). Worldwide prevalence of anaemia 1993–2005. WHO Global Database on Anaemia. World Health Organization, Geneva.
  • Wu, C. et al. (2010). Uptake, translocation, and remobilization of zinc absorbed at different growth stages by rice genotypes of different Zn densities. J. Agric. Food Chem. 58:6767–6773.
  • Yun, S. et al. (2004). An in vitro digestion/Caco-2 cell culture system accurately predicts the effects of ascorbic acid and polyphenolic compounds on iron bioavailability in humans. J. Nutr. 134(10):2717–272.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.