1,084
Views
53
CrossRef citations to date
0
Altmetric
Reviews

Nanostructures for delivery of natural antimicrobials in food

&

References

  • Aasen, I. M., Markussen, S., Moretro, T., Katla, T., Axelsson, L. and Naterstad, K. (2003). Interactions of the bacteriocins sakacin P and nisin with food constituents. Int. J. Food Microbiol. 87:35–43.
  • Amri, E. and Mamboya, F. (2012). Papain, a plant enzyme of biological importance: A review. Am. J. Biochem. Biotechnol. 8:99–104.
  • Arauz, L. J., Jozala, A. F., Mazzola, P. G. and Vessoni-Penna, T. C. (2009). Nisin biotechnological production and application: A review. Trends Food Sci. Technol. 20:146–154.
  • Balcão, V. M., Costa, C. I., Matos, C. M., Moutinho, C. G., Amorim, M., Pintado, M. E., Gomes, A. P., Vila, M. M. and Teixeira, J. A. (2013). Nanoencapsulation of bovine lactoferrin for food and biopharmaceutical applications. Food Hydrocolloids. 32:425–431.
  • Banerjee, K., Banerjee, S., Das, S. and Mandal, M. (2015). Probing the potential of apigenin liposomes in enhancing bacterial membrane perturbation and integrity loss. J. Colloid Interf. Sci. 453:48–59.
  • Bassolé, I. H. N. and Juliani, H. R. (2012). Essential oils in combination and their antimicrobial properties. Molecules. 17:3989–4006.
  • Bastos, M. C. F., Coutinho, B. G. and Coelho, M. L. V. (2010). Lysostaphin: A staphylococcal bacteriolysin with potential clinical applications. Pharmaceuticals. 3:1139–1161.
  • Bemena, L. D., Mohamed, L. A., Fernandes, A. M. and Lee1, B. H. (2014). Applications of bacteriocins in food, livestock health and medicine. Int. J. Curr. Microbiol. Appl. Sci. 3:924–949.
  • Bi, L., Yang, L., Narsimhan, G., Bhunia, A. K. and Yao, Y. (2011). Designing carbohydrate nanoparticles for prolonged efficacy of antimicrobial peptide. J. Control. Release. 150:150–156.
  • Bindhu, M. R. and Umadevi, M. (2014). Antibacterial activities of green synthesized gold nanoparticles. Mater. Lett. 120:122–125.
  • Boelter, J.F. and Brandelli, A. (2016). Innovative bionanocomposite films of edible proteins containing liposome-encapsulated nisin and halloysite nanoclay. Colloid. Surf. B. 145:740–747.
  • Brandelli, A. (2012). Nanostructures as promising tools for delivery of antimicrobial peptides. Mini-Rev. Med. Chem. 12:731–741.
  • Brandelli, A. (2015). Nanobiotechnology strategies for delivery of antimicrobials in food and agriculture. In: Nanotechnologies in Food and Agriculture, pp. 119–139. Rai, M., Ribeiro, C., Duran, N., Eds., Springer, Cham.
  • Brandelli, A. and Taylor, T. M. (2015). Nanostructured and nanoencapsulated natural antimicrobials for use in food products. In: Handbook of Natural Antimicrobials for Food Safety and Quality, pp. 229–257. Taylor, T.M., Ed., Elsevier, London.
  • Breukink, E. and de Kruijff, B. (1999). The lantibiotic nisin, a special case or not? Biochim. Biophys. Acta. 1462:223–234.
  • Bridges, M., Jones, A. M., Bones, A. M., Hodgson, C., Cole, R., Bartlet, E., Wallsgrove, R., Watts, N. and Rossiter, J. T. (2002). Spatial organization of the glucosinolate-myrosinase system in brassica specialist aphids is similar to that of the host plant. Proc. Biol. Sci. 269:187–191.
  • Cai, C., Bakowsky, U., Rytting, E., Schaper, A. K. and Kissel, T. (2008). Charged nanoparticles as protein delivery systems: A feasibility study using lysozyme as model protein. Eur. J. Pharmaceut. Biopharm. 69:31–42.
  • Cartel, F., Cartei, G., Ceschia, V., Pacor, S. and Sava, G. (1992). Recovery of lymphocyte CD4+:CD8+ ratio in patients treated with lysozyme. Drug Invest. 4:51–57.
  • Chopra, M., Kaur, P., Bernela, M. and Thakur, R. (2014). Surfactant assisted nisin loaded chitosan-carageenan nanocapsule synthesis for controlling food pathogens. Food Control. 37:158–164.
  • Dasgupta, N., Ranjan, S., Mundekkad, D., Ramalingam, C., Shanker, R. and Kumar, A. (2015). Nanotechnology in agro-food: From field to plate. Food Res. Int. 69:381–400.
  • Davidson, P. M., Critzer, F. J. and Taylor, T. M. (2013). Naturally occurring antimicrobials for minimally processed foods. Annu. Rev. Food Sci. Technol. 4:163–190.
  • Dheraprasart, C., Rengpipat, S., Supaphol, P. and Tattiyakul, J. (2009). Morphology, release characteristics, and antimicrobial effect of nisin-loaded electrospun gelatin fiber mat. J. Food Protec. 72:2293–2300.
  • Esfandyari-Manesha, M., Ghaedib, Z., Asemic, M., Khanavic, M., Manayic, A., Jamalifard, H., Atyabia, F. and Dinarvand, R. (2013). Study of antimicrobial activity of anethole and carvone loaded PLGA nanoparticles. J. Pharm. Res. 7:290–295.
  • Espitia, P. J. P., Soares, N. F. F. and Teófilo, R. F. (2013). Physical-mechanical and antimicrobial properties of nanocomposite films with pediocin and ZnO nanoparticles. Carbohydr. Polym. 94:199–208.
  • Ghayempour, S., Montazer, M. and Mahmoudi Rad, M. (2015). Tragacanth gum as a natural polymeric wall for producing antimicrobial nanocapsules loaded with plant extract. Int. J. Biol. Macromol. 81:514–520.
  • Gomes, C., Moreira, R. G. and Castell-Perez, E. (2011). Poly(DL-lactide-co-glycolide) (PLGA) nanoparticles with entrapped trans-cinnamaldehyde and eugenol for antimicrobial delivery applications. J. Food Sci. 76:S16–S24.
  • Gorbenko, G. P., Ioffe, V. M. and Kinnunen, P. K. J. (2007). Binding of lysozyme to phospholipids bilayers: Evidence for protein aggregation upon membrane association. Biophys. J. 93:140–153.
  • Guan, R., Ma, J., Wu, Y., Lu, F., Xiao, C., Jiang, H. and Kang, T. (2012). Development and characterization of lactoferrin nanoliposome: Cellular uptake and stability. Nanoscale Res. Lett. 7:679.
  • Heunis, T., Bshena, O., Klumperman, B. and Dicks, L. (2011). Release of bacteriocins from nanofibers prepared with combinations of poly(D,L-lactide) (PDLLA) and poly(ethylene oxide) (PEO). Int. J. Mol. Sci. 12:2158–2173.
  • Hill, L. E., Taylor, T. M. and Gomes, C. (2013). Antimicrobial efficacy of poly (DL-lactide-co-glycolide) (PLGA) nanoparticles with entrapped cinnamon bark extract against Listeria monocytogenes and Salmonella typhimurium. J. Food Sci. 78:N626–N632.
  • Ibarguren, C., Naranjo, P. M., Stötzel, C., Audisio, M. C., Sham, E. L., Torres, E. M. F. and Müller, F. A. (2014). Adsorption of nisin on raw montmorillonite. Appl. Clay Sci. 90:88–95.
  • Imran, M., Revol-Junelles, A. M., Paris, C., Guedon, E., Linder, M. and Desobry, S. (2015). Liposomal nanodelivery systems using soy and marine lecithin to encapsulate food biopreservative nisin. LWT Food Sci. Technol. 62:341–349.
  • Imran, M., Revol-Junelles, A.-M., Rene, N., Jamshidian, M., Akhtar, M. J., Arab-Tehrany, E., Jacquot, M. and Desobry, S. (2012). Microstructure and physico-chemical evaluation of nano-emulsion-based antimicrobial peptides embedded in bioactive packaging films. Food Hydrocolloids. 29:407–419.
  • Liu, Y., Liu, D., Zhu, L., Gan, Q. and Le, X. (2015). Temperature-dependent structure stability and in vitro release of chitosan-coated curcumin liposome. Food Res. Int. 74:97–105.
  • Liu, Y., Sun, Y., Xu, Y. X., Feng, H., Fu, S. D., Tang, J. W., Liu, W., Sun, D. C., Jiang, H. and Xu, S. S. (2013). Preparation and evaluation of lysozyme-loaded nanoparticles coated with poly-γ-glutamic acid and chitosan. Int. J. Biol. Macromol. 59:201–207.
  • Lu, Q., Lu, P. M., Piao, J. H., Xu, X. L., Chen, J., Zhu, L. and Jiang, J. G. (2014). Preparation and physicochemical characteristics of an allicin nanoliposome and its release behavior. LWT Food Sci. Technol. 57:686–695.
  • Madureira, A. R., Pereira, A., Castro, P. M. and Pintado, M. E. (2015). Production of antimicrobial chitosan nanoparticles against food pathogens. J. Food Eng. 167:210–216.
  • Malheiros, P. S., Cuccovia, I. M. and Franco, B. D. G. M. (2016). Inhibition of Listeria monocytogenes in vitro and in goat milk by liposomal nanovesicles containing bacteriocins produced by Lactobacillus sakei subsp. sakei 2a. Food Control. 63:158–164.
  • Malheiros, P. S., Micheletto, Y. M. S., Silveira, N. P. and Brandelli, A. (2010). Development and characterization of phosphatidylcholine nanovesicles containing the antimicrobial peptide nisin. Food Res. Int. 43:1198–1203.
  • Malheiros, P. S., Sant'Anna, V., Barbosa, M. S., Brandelli, A. and Franco, B. D. G. M. (2012). Effect of liposome-encapsulated nisin and bacteriocin-like substance P34 on Listeria monocytogenes in Minas frescal cheese. Int. J. Food Microbiol. 156:272–277.
  • Malheiros, P. S., Sant'Anna, V., Micheletto, Y. M. S., Silveira, N. P. and Brandelli, A. (2011). Nanovesicle encapsulation of antimicrobial peptide P34: Physicochemical characterization and mode of action on Listeria monocytogenes. J. Nanopart. Res. 13:3545–3552.
  • Manohar, C. M., Prabhawathi, V., Sivakumar, P. M. and Doble, M. (2015). Design of a papain immobilized antimicrobial food package with curcumin as a crosslinker. PLoS One. 10:e121665, doi: 10.1371/journal.pone.0121665.
  • Mascheroni, E., Figoli, A., Musatti, A., Limbo, S., Drioli, E., Suevo, R., Talarico, S. and Rollini, M. (2014). An alternative encapsulation approach for production of active chitosan-propolis beads. Int. J. Food Sci. Technol. 49:1401–1407.
  • Meira, S. M. M., Jardim, A. I. and Brandelli, A. (2015). Adsorption of nisin and pediocin on nanoclays. Food Chem. 188:161–169.
  • Meira, S. M. M., Zehetmeyer, G., Jardim, A. I., Scheibel, J. M., Oliveira, R. V. B. and Brandelli, A. (2014). Polypropylene/montmorillonite nanocomposites containing nisin as antimicrobial food packaging. Food Bioprocess Technol. 7:3349–3357.
  • Meira, S. M. M., Zehetmeyer, G., Scheibel, J. M., Werner, J. O. and Brandelli, A. (2016). Starch-halloysite nanocomposites containing nisin: Characterization and inhibition of Listeria monocytogenes in soft cheese. LWT Food Sci. Technol. 68:226–234.
  • Mello, M. B., Malheiros, P. S., Brandelli, A., Silveira, N. P., Jantzen, M. M. and Motta, A. S. (2013). Characterization and antilisterial effect of phosphatidylcholine nanovesicles containing the antimicrobial peptide pediocin. Probiotics Antimicrob. Prot. 5:43–50.
  • Moghadamtousi, S. Z., Kadir, H. A., Hassandarvish, P., Tajik, H., Abubakar, S. and Zandi, K. (2014). A review on antibacterial, antiviral, and antifungal activity of curcumin. BioMed. Res. Int. 2014:186864.
  • Motta, A. S., Cannavan, F. S., Tsai, S. M. and Brandelli, A. (2007). Characterization of a broad range antibacterial substance from a new Bacillus species isolated from Amazon basin. Arch. Microbiol. 188:367–375.
  • Munin, A. and Edwards-Lévy, F. (2011). Encapsulation of natural polyphenolic compounds; a Review. Pharmaceutics. 3:793–829.
  • Narsaiah, K., Jha, S. N., Wilson, R. A., Mandge, H. M., Manikantan, M. R., Malik, R. K. and Vij, S. (2013). Pediocin-loaded nanoliposomes and hybrid alginate-nanoliposome delivery systems for slow release of pediocin. BioNanoScience. 3:37–42.
  • Noudoost, B., Noori, N., Amo Abedini, Gh., Gandomi, H., Akhondzadeh Basti, A., Jebeli Javan, A. and Ghadami, F. (2015). Encapsulation of green tea extract in nanoliposomes and evaluation of its antibacterial, antioxidant and prebiotic properties. J. Med. Plants. 14:66–78.
  • Otoni, C. G., Pontes, S. F., Medeiros, E. A. and Soares, N. F. (2014). Edible films from methylcellulose and nanoemulsions of clove bud (Syzygium aromaticum) and oregano (Origanum vulgare) essential oils as shelf life extenders for sliced bread. J. Agric. Food Chem. 62:5214–5219.
  • Pan, K., Zhong, Q. and Baek, S. J. (2013). Enhanced dispersibility and bioactivity of curcumin by encapsulation in casein nanocapsules. J. Agric. Food Chem. 61:6036–6043.
  • Pei, J., Yue, T. and Yuan, Y. (2014). Control of Alicyclobacillus acidoterrestris in fruit juices by a newly discovered bacteriocin. World J. Microbiol. Biotechnol. 30:855–863.
  • Peng, S., Zou, L., Liu, W., Gan, L., Liu, W., Liang, R., Liu, C., Niu, J., Cao, Y., Liu, Z. and Chen, X. (2015). Storage stability and antibacterial activity of eugenol nanoliposomes prepared by an ethanol injection-dynamic high-pressure microfluidization method. J. Food Protec. 78:22–30.
  • Pinho, E., Grootveld, M., Soares, G. and Henriques, M. (2014). Cyclodextrins as encapsulation agents for plant bioactive compounds. Carbohydr. Polym. 101:121–135.
  • Pinilla, C. M. B. and Brandelli, A. (2016). Antimicrobial activity of nanoliposomes co-encapsulating nisin and garlic extract against Gram-positive and Gram-negative bacteria in milk. Innov. Food Sci. Emerg. Technol. 36:287–293.
  • Pinilla, C. M. B., Noreña, C. P. Z. and Brandelli, A. (2017). Development and characterization of phosphatidylcholine nanovesicles containing garlic extract with antilisterial activity in milk. Food Chem. 220:470–476.
  • Piras, A. M., Maisetta, G., Sandreschi, S., Gazzarri, M., Bartoli, C., Grassi, L., Esin, S., Chiellini, F. and Batoni, G. (2015). Chitosan nanoparticles loaded with the antimicrobial peptide temporin B exert a long-term antibacterial activity in vitro against clinical isolates of Staphylococcus epidermidis. Front. Microbiol. 6:372.
  • Piras, A. M., Sandreschi, S., Maisetta, G., Esin, S., Batoni, G. and Chiellini, F. (2015b). Chitosan nanoparticles for the linear release of model cationic peptide. Pharm. Res. 32:2259–2265.
  • Prombutara, P., Kulwatthanasal, Y., Supaka, N., Sramala, I. and Chareonpornwattana, S. (2012). Production of nisin-loaded solid lipid nanoparticles for sustained antimicrobial activity. Food Control. 24:184–190.
  • Rai, M., Ingle, A. P., Gupta, I. and Brandelli, A. (2015). Bioactivity of noble metal nanoparticles decorated with biopolymers and their application in drug delivery. Int. J. Pharm. 496:159–172.
  • Ranjan, S., Dasgupta, N., Chakraborty, A. R., Samuel, S. M., Ramalingam, C., Shanker, R. and Kumar, A. (2014). Nanoscience and nanotechnologies in food industries: Opportunities and research trends. J. Nanopart. Res. 16:2464.
  • Rhim, J.-W., Park, H.-M. and Ha, C.-S. (2013). Bio-nanocomposites for food packaging applications. Progr. Polym. Sci. 38:1629–1652.
  • Rieger, K. A. and Schiffman, J. D. (2014). Electrospinning an essential oil: Cinnamaldehyde enhances the antimicrobial efficacy of chitosan/poly(ethylene oxide) nanofibers. Carbohydr. Polym. 113:561–568.
  • Rijo, P., Matias, D., Fernandes, A. S., Simões, M. F., Nicolai, M. and Reis, C. P. (2014). Antimicrobial plant extracts encapsulated into polymeric beads for potential application on the skin. Polymers. 6:479–490.
  • Ruengvisesh, S., Loquercio, A., Castell-Perez, E. and Taylor, T. M. (2015). Inhibition of bacterial pathogens in medium and on spinach leaf surfaces using plant-derived antimicrobials loaded in surfactant micelles. J. Food Sci. 80:2522–2529.
  • Saini, S., Sillard, C., Belgacem, M. N. and Bras, J. (2016). Nisin anchored cellulose nanofibers for long term antimicrobial active food packaging. RCS Adv. 6:12422.
  • Salmieri, S., Islam, F., Khan, R. A., Hossain, F. M., Ibrahim, H. M. M., Miao, C., Hama, W. Y. and Lacroix, M. (2014). Antimicrobial nanocomposite films made of poly(lactic acid)-cellulose nanocrystals (PLA-CNC) in food applications: Part A—effect of nisin release on the inactivation of Listeria monocytogenes in ham. Cellulose. 21:1837–1850.
  • Salvia-Trujillo, L., Rojas-Graü, A., Soliva-Fortuny, R. and Martín-Belloso, O. (2015). Physicochemical characterization and antimicrobial activity of foodgrade emulsions and nanoemulsions incorporating essential oils. Food Hydrocolloids. 43:547–556.
  • Sant'Anna, V., Malheiros, P.S. and Brandelli, A. (2011). Liposome encapsulation protects bacteriocin-like substance P34 against inhibition by Maillard reaction products. Food Res. Int. 44:326–330.
  • Sari, T. P., Mann, B., Kumar, R., Singh, R. R. B., Sharma, R., Bhardwaj, M. and Athira, S. (2015). Preparation and characterization of nanoemulsion encapsulating curcumin. Food Hydrocolloids. 43:540–546.
  • Satishkumar, R. and Vertegel, A. A. (2011). Antibody-directed targeting of lysostaphin adsorbed onto polylactide nanoparticles increases its antimicrobial activity against S. aureus in vitro. Nanotechnology. 22:505103.
  • Sava, G., Benetti, A., Ceschia, V. and Pacor, S. (1989). Lysozyme and cancer: Role of exogenous lysozyme as anticancer agent (review). Anticancer Res. 9:583–591.
  • Sharma, T. K., Sapra, M., Chopra, A., Sharma, R., Patil, S., Malik, R., Pathania, R. and Navani, N. (2012). Interaction of bacteriocin-capped silver nanoparticles with food pathogens and their antibacterial effect. Int. J. Green Nanotechnol. 4:93–110.
  • Silva, I. M., Boelter, J. F., Silveira, N. P. and Brandelli, A. (2014). Phosphatidylcholine nanovesicles coated with chitosan or chondroitin sulfate as novel devices for bacteriocin delivery. J. Nanopart. Res. 16:2479.
  • Sinha, M., Kayshik, S., Kaur, P., Sharma, S. and Singh, T. P. (2013). Antimicrobial lactoferrin peptides: The hidden players in the protective function of a multifunctional protein. Int. J. Pept. 2013:1–12.
  • Taylor, T. M., Bruce, B. D., Weiss, J. and Davidson, P. M. (2008). Listeria monocytogenes and Escherichia coli O157:H7 inhibition in vitro by liposome-encapsulated nisin and ethylene diaminetetraacetic acid. J. Food Safety. 28:183–197.
  • Taylor, T. M., Davidson, P. M., Bruce, B. D. and Weiss, J. (2005). Liposomal nanocapsules in food science and agriculture. Crit. Rev. Food Sci. Nutr. 45:587–605.
  • Taylor, T. M., Gaysinsky, S., Davidson, P. M., Bruce, B. D. and Weiss, J. (2007). Characterization of antimicrobial-bearing liposomes by ζ-potential, vesicle size, and encapsulation efficiency. Food Biophys. 2:1–9.
  • Teixeira, M. L., Santos, J., Silveira, N. P. and Brandelli, A. (2008). Phospholipid nanovesicles containing a bacteriocin-like substance for control of Listeria monocytogenes. Innov. Food Sci. Emerg. Technol. 9:49–53.
  • Thirumurugan, A., Ramachandran, S. and Gowri, A. S. (2013). Combined effect of bacteriocin with gold nanoparticles against food spoiling bacteria - an approach for food packaging material preparation. Int. Food Res. J. 20:1909–1912.
  • Tiwari, U. and Cummins, E. (2013). Factors influencing levels of phytochemicals in selected fruit and vegetables during pre- and post-harvest food processing operations. Food Res. Int. 50:497–506.
  • Torres, N. I., Noll, K. S., Xu, S., Li, J., Huang, Q., Sink, P. J., Wachsman, M. B. and Chikindas, M. L. (2013). Safety, formulation, and in vitro antiviral activity of the antimicrobial peptide subtilosin against herpes simplex virus type 1. Probiotics Antimicrob. Prot. 5:26–35.
  • Vaucher, R. A., Giongo, J. L., Bolzan, L. P., Corrêa, M. S., Fausto, V. P., Alves, C. F. S., Lopes, L. Q. S., Boligon, A. A., Athayde, M. L., Moreira, A. P., Brandelli, A., Raffin, R. P. and Santos, R. C. V. (2015). Antimicrobial activity of nanostructured Amazonian oils against Paenibacillus species and their toxicity on larvae and adult worker bees. J. Asia-Pacific Enthomol. 18:205–210.
  • Vega-Lugo, A. C. and Lim, L. T. (2009). Controlled release of allyl isothiocyanate using soy protein and poly(lactic acid) electrospun fibers. Food Res. Int. 42:933–940.
  • Were, L. M., Bruce, B. D., Davidson, P. M. and Weiss, J. (2004). Encapsulation of nisin and lysozyme in liposomes enhances efficacy against Listeria monocytogenes. J. Food Protec. 67:922–927.
  • Wu, Q. X., Zhang, Q. L., Lin, D. Q. and Yao, S. J. (2013). Characterization of novel lactoferrin loaded capsules prepared with polyelectrolyte complexes. Int. J. Pharm. 455:124–131.
  • Xu, W., Jin, W., Zhang, C., Li, Z., Lin, L., Huang, Q., Ye, S. and Li, B. (2014). Curcumin loaded and protective system based on complex of κ-carrageenan and lysozyme. Food Res. Int. 59:61–66.
  • Zhang, Y., Niu, Y., Luo, Y., Ge, M., Yang, T., Yu, L. L. and Wang, Q. (2014). Fabrication, characterization and antimicrobial activities of thymol-loaded zein nanoparticles stabilized by sodium caseinate-chitosan hydrochloride double layers. Food Chem. 142:269–75.
  • Zohri, M., Alavidjeh, M. S., Haririan, I., Ardestani, M. S., Ebrahimi, S. E., Sani, H. T. and Sadjadi, S. K. (2010). A comparative study between the antibacterial effect of nisin and nisin-loaded chitosan/alginate nanoparticles on the growth of Staphylococcus aureus in raw and pasteurized milk samples. Probiotics Antimicrob. Prot. 2:258–266.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.