7,164
Views
221
CrossRef citations to date
0
Altmetric
Reviews

Correlation between in vitro and in vivo data on food digestion. What can we predict with static in vitro digestion models?

, , , , , , , , , , , , , , , , , , & show all

References

  • Abubakar, A., Saito, T., Kitazawa, H., Kawai, Y. and Itoh, T. (1998). Structural analysis of new antihypertensive peptides derived from cheese whey protein by proteinase K digestion. J. Dairy Sci. 81:3131–3138.
  • Adt, I., Dupas, C., Boutrou, R., Oulahal, N., Noel, C., Molle, D., Jouvet, T. and Degraeve, P. (2011). Identification of caseinophosphopeptides generated through in vitro gastro-intestinal digestion of Beaufort cheese. Int. Dairy J. 21:129–134.
  • Alminger, M., Aura, A. M., Bohn, T., Dufour, C., El, S. N., Gomes, A., Karakaya, S., Martínez-Cuesta, M. C., McDougall, G. J., Requena, T. and Santos, C. N. (2014). In vitro models for studying secondary plant metabolite digestion and bioaccessibility. Comp. Rev. Food Sci. Food Saf. 13:413–436.
  • Alminger, M., Svelander, C. A., Wellner, A., Martinez-Tomas, R., Bialek, L., Larque, E. and Perez-Llamas, F. (2012). Applicability of in vitro models in predicting the in vivo bioavailability of lycopene and β-Carotene from differently processed soups. Food Nutr. Sci. 3:477–489.
  • Andre, C. M., Evers, D., Ziebel, J., Guignard, C., Hausman, J. F., Bonierbale, M., Zum Felde, T. and Burgos, G. (2015). In vitro bioaccessibility and bioavailability of iron from potatoes with varying vitamin c, carotenoid, and phenolic concentrations. J. Agric. Food Chem. 63:9012–9021.
  • Aragón, I. J., Ortiz, D. and Pachón, H. (2012). Comparison between in vitro and in vivo methods to screen iron bioavailability. CyTA - J. Food. 10:103–111.
  • Araya, H., Contreras, P., Alvina, M., Vera, G. and Pak, N. (2002). A comparison between an in vitro method to determine carbohydrate digestion rate and the glycemic response in young men. Eur. J. Clin. Nutr. 56:735–739.
  • Arranz, S., Silvan, J. M. and Saura-Calixto, F. (2010). Nonextractable polyphenols, usually ignored, are the major part of dietary polyphenols: a study on the Spanish diet. Mol. Nutr. Food Res. 54:1646–1658.
  • Augustin, L., Kendall, C. W., Jenkins, D. J., Willett, W. C., Astrup, A., Barclay, A. W., Björck, I., Brand-Miller, J. C., Brighenti, F. and Buyken, A. E. (2015). Glycemic index, glycemic load and glycemic response: an international scientific consensus summit from the international carbohydrate quality consortium (ICQC). Nutr. Metabolism Cardiovasc. Diseases. 25:795–815.
  • Barbe, F., Le Feunteun, S., Remond, D., Menard, O., Jardin, J., Henry, G., Laroche, B. and Dupont, D. (2014). Tracking the in vivo release of bioactive peptides in the gut during digestion: Mass spectrometry peptidomic characterization of effluents collected in the gut of dairy matrix fed mini-pigs. Food Res. Int. 63:147–156.
  • Bax, M. L., Buffiere, C., Hafnaoui, N., Gaudichon, C., Savary-Auzeloux, I., Dardevet, D., Sante-Lhoutellier, V. and Remond, D. (2013a). Effects of meat cooking, and of ingested amount, on protein digestion speed and entry of residual proteins into the colon: A study in minipigs. Plos One 8: e61252.
  • Bax, M. L., Sayd, T., Aubry, L., Ferreira, C., Viala, D., Chambon, C., Remond, D. and Sante-Lhoutellier, V. (2013b). Muscle composition slightly affects in vitro digestion of aged and cooked meat: Identification of associated proteomic markers. Food Chem. 136:1249–1262.
  • Benede, S., Lopez-Exposito, I., Gimenez, G., Grishina, G., Bardina, L., Sampson, H. A., Lopez-Fandino, R. and Molina, E. (2014a). Mapping of IgE epitopes in in vitro gastroduodenal digests of beta-lactoglobulin produced with human and simulated fluids. Food Res. Int. 62:1127–1133.
  • Benede, S., Lopez-Exposito, I., Gimenez, G., Grishina, G., Bardina, L., Sampson, H. A., Molina, E. and Lopez-Fandino, R. (2014b). In vitro digestibility of bovine beta-casein with simulated and human oral and gastrointestinal fluids. Identification and IgE-reactivity of the resultant peptides. Food Chem. 143:514–521.
  • Benzonana, G. and Desnuelle, P. (1965). Kinetic study of the action of pancreatic lipase on triglycerides in emulsion. Enzymic action in a heterogeneous medium. Biochim. Biophys. Acta. 105:121–136.
  • Berti, C., Riso, P., Monti, L. D. and Porrini, M. (2004). In vitro starch digestibility and in vivo glucose response of gluten-free foods and their gluten counterparts. Eur. J. Nutr. 43:198–204.
  • Biehler, E. and Bohn, T. (2010). Methods for assessing aspects of carotenoid bioavailability. Curr. Nutr. Food Sci. 6:44–69.
  • Biehler, E., Hoffmann, L., Krause, E. and Bohn, T. (2011a). Divalent minerals decrease micellarization and uptake of carotenoids and digestion products into Caco-2 cells. J Nutr. 141:1769–1776.
  • Biehler, E., Kaulmann, A., Hoffmann, L., Krause, E. and Bohn, T. (2011b). Dietary and host-related factors influencing carotenoid bioaccessibility from spinach (Spinacia oleracea). Food Chem. 125:1328–1334.
  • Bjorck, I., Granfeldt, Y., Drews, A. and Tovar, J. (1994). An in vitro procedure based on chewing to predict metabolic response to starch in cereal and legume products. Am. J. Clin. Nutr. 59:777S.
  • Bohn, T. (2008). Bioavailabilty of non-provitamin A carotenoids. Curr. NutR. Food Sci. 4:240–258.
  • Bohn, T. (2014). Dietary factors affecting polyphenol bioavailability. Nutr. Rev. 72:429–452.
  • Bohn, T., Blackwood, M., Francis, D., Tian, Q., Schwartz, S. J. and Clinton, S. K. (2013). Bioavailability of phytochemical constituents from a novel soy fortified lycopene rich tomato juice developed for targeted cancer prevention trials. Nutr. Cancer. 65:919–929.
  • Bohn, T., Davidsson, L., Walczyk, T. and Hurrell, R. F. (2004a). Fractional magnesium absorption is significantly lower in human subjects from a meal served with an oxalate-rich vegetable, spinach, as compared with a meal served with kale, a vegetable with a low oxalate content. Br. J. Nutr. 91:601–606.
  • Bohn, T., Davidsson, L., Walczyk, T. and Hurrell, R. F. (2004b). Phytic acid added to white-wheat bread inhibits fractional apparent magnesium absorption in humans. Am. J. Clin. Nutr. 79:418–423.
  • Bohn, T., McDougall, G. J., Alegria, A., Alminger, M., Arrigoni, E., Aura, A. M., Brito, C., Cilla, A., El, S. N., Karakaya, S., Martinez-Cuesta, M. C. and Santos, C. N. (2015). Mind the gap-deficits in our knowledge of aspects impacting the bioavailability of phytochemicals and their metabolites–a position paper focusing on carotenoids and polyphenols. Mol. Nutr. Food Res. 59:1307–1323.
  • Bohn, T., Tian, Q., Chitchumroonchokchai, C., Failla, M. L., Schwartz, S. J., Cotter, R. and Waksman, J. A. (2007). Supplementation of test meals with fat-free phytosterol products can reduce cholesterol micellarization during simulated digestion and cholesterol accumulation by Caco-2 cells. J. Agric. Food Chem. 55:267–272.
  • Borel, P. (2003). Factors affecting intestinal absorption of highly lipophilic food microconstituents (fat-soluble vitamins, carotenoids and phytosterols). Clin. Chem. Lab Med. 41:979–994.
  • Borel, P. (2012). Genetic variations involved in interindividual variability in carotenoid status. Mol. Nutr. Food Res. 56:228–240.
  • Borel, P., Desmarchelier, C., Nowicki, M. and Bott, R. (2015a). A combination of single-nucleotide polymorphisms is associated with interindividual variability in dietary beta-carotene bioavailability in healthy men. J. Nutr. 145:1740–1747.
  • Borel, P., Desmarchelier, C., Nowicki, M. and Bott, R. (2015b). Lycopene bioavailability is associated with a combination of genetic variants. Free Radic. Biol. Med. 83:238–244.
  • Borel, P., Desmarchelier, C., Nowicki, M., Bott, R., Morange, S. and Lesavre, N. (2014). Interindividual variability of lutein bioavailability in healthy men: Characterization, genetic variants involved, and relation with fasting plasma lutein concentration. Am. J. Clin. Nutr. 100:168–175.
  • Bornhorst, G. M. and Singh, R. P. (2012). Bolus formation and disintegration during digestion of food carbohydrates. Comprehensive Rev. Food Sci. Food Safety. 11:101–118.
  • Bouayed, J., Deusser, H., Hoffmann, L. and Bohn, T. (2012). Bioaccessible and dialysable polyphenols in selected apple varieties following in vitro digestion vs. their native patterns. Food Chem. 131:1466–1472.
  • Bouayed, J., Hoffmann, L. and Bohn, T. (2011). Total phenolics, flavonoids, anthocyanins and antioxidant activity following simulated gastro-intestinal digestion and dialysis of apple varieties: Bioaccessibility and potential uptake. Food Chem. 128:14–21.
  • Boutrou, R., Coirre, E., Jardin, J. and Leonil, J. (2010). Phosphorylation and coordination bond of mineral inhibit the hydrolysis of the beta-Casein (1-25) peptide by intestinal brush-border membrane enzymes. J. Agric. Food Chem. 58:7955–7961.
  • Boutrou, R., Gaudichon, C., Dupont, D., Jardin, J., Airinei, G., Marsset-Baglieri, A., Benamouzig, R., Tome, D. and Leonil, J. (2013). Sequential release of milk protein-derived bioactive peptides in the jejunum in healthy humans. Am. J. Clin. Nutr. 97:1314–1323.
  • Bouzerzour, K., Morgan, F., Cuinet, I., Bonhomme, C., Jardin, J., Le Huerou-Luron, I. and Dupont, D. (2012). In vivo digestion of infant formula in piglets: protein digestion kinetics and release of bioactive peptides. British J. Nutri. 108:1–10.
  • Brand-Miller, J. and Holt, S. (2004). Testing the glycaemic index of foods: In vivo, not in vitro. Eur. J. Clin. Nutr. 58:700–701.
  • Brantl, V., Teschemacher, H., Blasig, J., Henschen, A. and Lottspeich, F. (1981). Opioid activities of beta-casomorphins. Life Sci. 28:1903–1909.
  • Brantl, V., Teschemacher, H., Henschen, A. and Lottspeich, F. (1979). Novel opioid peptides derived from casein (Beta-Casomorphins) .1. Isolation from bovine casein peptone. Hoppe-Seylers Zeitschrift fur Physiologische Chem. 360:1211–1216.
  • Brown, E. M., Nitecki, S., Pereira-Caro, G., McDougall, G. J., Stewart, D., Rowland, I., Crozier, A. and Gill, C. I. R. (2014). Comparison of in vivo and in vitro digestion on polyphenol composition in lingonberries: Potential impact on colonic health. Biofactors. 40:611–623.
  • Butterworth, P. J., Warren, F. J. and Ellis, P. R. (2011). Human α-amylase and starch digestion: An interesting marriage. Starch - Stärke. 63:395–405.
  • Caballero, B., Allen, L. H. and Prentice, A. (2012). Encyclopedia of Human Nutrition, 3rd Edition. Academic Press, Oxford, UK.
  • Carbonell-Capella, J. M., Buniowska, M., Barba, F. J., Esteve, M. J. and Frígola, A. (2014). Analytical methods for determining bioavailability and bioaccessibility of bioactive compounds from fruits and vegetables: A review. Comprehensive Rev. Food Sci. Food Safety. 13:155–171.
  • Carrière, F., Barrowman, J. A., Verger, R. and Laugier, R. (1993). Secretion and contribution to lipolysis of gastric and pancreatic lipases during a test meal in humans. Gastroenterology. 105:876–888.
  • Carriere, F., Renou, C., Lopez, V., De Caro, J., Ferrato, F., Lengsfeld, H., De Caro, A., Laugier, R. and Verger, R. (2000). The specific activities of human digestive lipases measured from the in vivo and in vitro lipolysis of test meals. Gastroenterology. 119:949–960.
  • Carrière, F., Renou, C., Ransac, S., Lopez, V., De Caro, J., Ferrato, F., De Caro, A., Fleury, A., Sanwald-Ducray, P., Lengsfeld, H., Beglinger, C., Hadvary, P., Verger, R. and Laugier, R. (2001). Inhibition of gastrointestinal lipolysis by Orlistat during digestion of test meals in healthy volunteers. Am. J. Physiol. Gastrointest. Liver. Physiol. 281:G16–G28.
  • Carrière, F., Grandval, P., Renou, C., Palomba, A., Prieri, F., Giallo, J., Henniges, F., Sander-Struckmeier, S. and Laugier, R. (2005). Quantitative study of digestive enzyme secretion and gastrointestinal lipolysis in chronic pancreatitis. Clin. Gastroenterol. Hepatol. 3:28–38.
  • Casiraghi, M., Brighenti, F. and Testolin, G. (1992). Lack of effect of high temperature drying on digestibility of starch in spaghetti. J. Cereal Sci. 15:165–174.
  • Chabance, B., Marteau, P., Rambaud, J. C., Migliore-Samour, D., Boynard, M., Perrotin, P., Guillet, R., Jolles, P. and Fiat, A. M. (1998). Casein peptide release and passage to the blood in humans during digestion of milk or yogurt. Biochimie. 80:155–165.
  • Cho, J. H. and Kim, I. H. (2011). Evaluation of the apparent ileal digestibility (AID) of protein and amino acids in nursery diets by in vitro and in vivo methods. Asian-Australasian J. Animal Sci. 24:1007–1010.
  • Contreras, M., Carron, R., Montero, M., Ramos, M. and Recio, I. (2009). Novel casein-derived peptides with antihypertensive activity. Int. Dairy J. 19:566–573.
  • Conway, R. E., Geissler, C. A., Hider, R. C., Thompson, R. P. and Powell, J. J. (2006). Serum iron curves can be used to estimate dietary iron bioavailability in humans. J. Nutr. 136:1910–1914.
  • Cook, J. D. and Monsen, E. R. (1977). Vitamin C, the common cold, and iron absorption. Am. J. Clin. Nutr. 30:235–241.
  • Corte-Real, J., Iddir, M., Soukoulis, C., Richling, E., Hoffmann, L. and Bohn, T. (2016). Effect of divalent minerals on the bioaccessibility of pure carotenoids and on physical properties of gastro-intestinal fluids. Food Chem. 197:546–553.
  • Corte-Real, J., Richling, E., Hoffmann, L. and Bohn, T. (2014). Selective factors governing in vitro beta-carotene bioaccessibility: Negative influence of low filtration cutoffs and alterations by emulsifiers and food matrices. Nutr. Res. 34:1101–1110.
  • Couedelo, L., Amara, S., Lecomte, M., Meugnier, E., Monteil, J., Fonseca, L., Pineau, G., Cansell, M., Carriere, F., Michalski, M. C. and Vaysse, C. (2015). Impact of various emulsifiers on ALA bioavailability and chylomicron synthesis through changes in gastrointestinal lipolysis. Food Funct. 6:1726–1735.
  • Dallas, D. C., Guerrero, A., Khaldi, N., Borghese, R., Bhandari, A., Underwood, M. A., Lebrilla, C. B., German, J. B. and Barile, D. (2014). A peptidomic analysis of human milk digestion in the infant stomach reveals protein-specific degradation patterns. J. Nutr. 144:815–820.
  • Darragh, A. J. and Hodgkinson, S. M. (2000). Quantifying the digestibility of dietary protein. J. Nutr. 130:1850S–1856S.
  • Davidsson, L., Dimitriou, T., Boy, E., Walczyk, T. and Hurrell, R. F. (2002). Iron bioavailability from iron-fortified Guatemalan meals based on corn tortillas and black bean paste. Am. J. Clin. Nutr. 75:535–539.
  • Day, L., Golding, M., Xu, M., Keogh, J., Clifton, P. and Wooster, T. J. (2014). Tailoring the digestion of structured emulsions using mixed monoglyceride-caseinate interfaces. Food Hydrocolloids. 36:151–161.
  • de Lima, A. C. S., Soares, D. J., da Silva, L. M. R., de Figueiredo, R. W., de Sousa, P. H. M. and Menezes, E. D. (2014). In vitro bioaccessibility of copper, iron, zinc and antioxidant compounds of whole cashew apple juice and cashew apple fibre (Anacardium occidentale L.) following simulated gastro-intestinal digestion. Food Chem. 161:142–147.
  • De Noni, I. (2008). Release of beta-casomorphins 5 and 7 during simulated gastro-intestinal digestion of bovine beta-casein variants and milk-based infant formulas. Food Chem. 110:897–903.
  • Delorme, V., Dhouib, R., Canaan, S., Fotiadu, F., Carriere, F. and Cavalier, J.-F. (2011). Effects of surfactants on lipase structure, activity, and inhibition. Pharm. Res. 28:1831–1842.
  • Dickinson, E. (1997). Enzymic crosslinking as a tool for food colloid rheology control and interfacial stabilization. Trends Food Sci. Technol. 8:334–339.
  • Dona, A. C., Pages, G., Gilbert, R. G. and Kuchel, P. W. (2010). Digestion of starch: “In vivo” and “in vitro” kinetic models used to characterise oligosaccharide or glucose release. Carbohydrate Polym. 80d:599–617.
  • Dupont, D., Mandalari, G., Molle, D., Jardin, J., Leonil, J., Faulks, R. M., Wickham, M. S. J., Mills, E. N. C. and Mackie, A. R. (2010a). Comparative resistance of food proteins to adult and infant in vitro digestion models. Mol. Nutr. Food Res. 54:767–780.
  • Dupont, D., Mandalari, G., Molle, D., Jardin, J., Rolet-Repecaud, O., Duboz, G., Leonil, J., Mills, E. N. C. and Mackie, A. R. (2010b). Food processing increases casein resistance to simulated infant digestion. Mol. Nutr. Food Res. 54:1677–1689.
  • Egger, L., Ménard, O., Delgado-Andrade, C., Alvito, P., Assunção, R., Balance, S., Barberá, R., Brodkorb, A., Cattenoz, T., Clemente, A., Comi, I., Dupont, D., Garcia-Llatas, G., Lagarda, M. J., Le Feunteun, S., JanssenDuijghuijsen, L., Karakaya, S., Lesmes, U., Mackie, A. R., Martins, C., Meynier, A., Miralles, B., Murray, B. S., Pihlanto, A., Picariello, G., Santos, C. N., Simsek, S., Recio, I., Rigby, N., Rioux, L.-E., Stoffers, H., Tavares, A., Tavares, L., Turgeon, S., Ulleberg, E. K., Vegarud, G. E., Vergères, G. and Portmann, R. (2016). The harmonized INFOGEST in vitro digestion method: From knowledge to action. Food Res. Int. 88: 217–225.
  • Ells, L. J., Seal, C. J., Kettlitz, B., Bal, W. and Mathers, J. C. (2005). Postprandial glycaemic, lipaemic and haemostatic responses to ingestion of rapidly and slowly digested starches in healthy young women. Br. J. Nutr. 94:948–955.
  • Englyst, H. N., Kingman, S. and Cummings, J. (1992). Classification and measurement of nutritionally important starch fractions. Eur. J. Clin. Nutr. 46:S33–S50.
  • Englyst, H. N., Veenstra, J. and Hudson, G. J. (1996). Measurement of rapidly available glucose (RAG) in plant foods: Apotential in vitro predictor of the glycaemic response. Br. J. Nutr. 75:327–337.
  • Englyst, K. N., Englyst, H. N., Hudson, G. J., Cole, T. J. and Cummings, J. H. (1999). Rapidly available glucose in foods: An in vitro measurement that reflects the glycemic response. Am. J. Clin. Nutr. 69:448–454.
  • Erk, T., Renouf, M., Williamson, G., Melcher, R., Steiling, H. and Richling, E. (2014). Absorption and isomerization of caffeoylquinic acids from different foods using ileostomist volunteers. Eur. J. Nutr. 53:159–166.
  • Etcheverry, P., Grusak, M. A. and Fleige, L. E. (2012). Application of in vitro bioaccessibility and bioavailability methods for calcium, carotenoids, folate, iron, magnesium, polyphenols, zinc, and vitamins B(6), B(12), D and E. Front Physiol. 3:317.
  • Failla, M. L., Chitchumroonchokchai, C. and Ishida, B. K. (2008). In vitro micellarization and intestinal cell uptake of cis isomers of lycopene exceed those of all-trans lycopene. J. Nutr. 138:482–486.
  • Fernandez-Tome, S., Martinez-Maqueda, D., Giron, R., Goicoechea, C., Miralles, B. and Recio, I. (2016). Novel peptides derived from alpha(s1)-casein with opioid activity and mucin stimulatory effect on HT29-MTX cells. J. Funct. Foods. 25:466–476.
  • Ferrer-Mairal, A., Penalva-Lapuente, C., Iglesia, I., Urtasun, L., De Miguel-Etayo, P., Remón, S., Cortés, E. and Moreno, L. (2012). In vitro and in vivo assessment of the glycemic index of bakery products: Influence of the reformulation of ingredients. Eur. J. Nutr. 51:947–954.
  • Fontana, A., Spolaore, B., Mero, A. and Veronese, F. M. (2008). Site-specific modification and PEGylation of pharmaceutical proteins mediated by transglutaminase. Adv. Drug Deliv. Rev. 60:13–28.
  • Fuller, M. F. and Tome, D. (2005). In vivo determination of amino acid bioavailability in humans and model animals. J. AOAC Int. 88:923–934.
  • Fuqua, B. K., Vulpe, C. D. and Anderson, G. J. (2012). Intestinal iron absorption. J. Trace Elem. Med. Biol. 26:115–119.
  • Gargouri, Y., Piéroni, G., Rivière, C., Saunière, J.-F., Lowe, P. A., Sarda, L. and Verger, R. (1986). Kinetic assay of human gastric lipase on short- and long-chain triacylglycerol emulsions. Gastroenterology. 91:919–925.
  • Gibson, N., Schönfeldt, H. C. and Pretorius, B. (2011). Development of a rapid assessment method for the prediction of the glycemic index. J. Food Compos. Anal. 24:750–754.
  • Gil-Izquierdo, A., Zafrilla, P. and Tomás-Barberán, F. A. (2002). An in vitro method to simulate phenolic compound release from the food matrix in the gastrointestinal tract. Eur. Food Res. Technol. 214:155–159.
  • Gilani, G. S., Cockell, K. A. and Sepehr, E. (2005). Effects of antinutritional factors on protein digestibility and amino acid availability in foods. J. AOAC Int. 88:967–987.
  • Golding, M., Wooster, T. J., Day, L., Xu, M., Lundin, L., Keogh, J. and Clifton, P. (2011). Impact of gastric structuring on the lipolysis of emulsified lipids. Soft Matter. 7:3513–3523.
  • Goñi, I., Garcia-Alonso, A. and Saura-Calixto, F. (1997). A starch hydrolysis procedure to estimate glycemic index. Nutr. Res. 17:427–437.
  • Goni, I., Serrano, J. and Saura-Calixto, F. (2006). Bioaccessibility of beta-carotene, lutein, and lycopene from fruits and vegetables. J. Agric. Food Chem. 54:5382–5387.
  • Gropper, S. and Smith, J. (2013). Advanced Nutrition and Human Metabolism, 6th Edition. Cengage Learning, Belmont, CA, USA.
  • Guo, Y., Mah, E. and Bruno, R. S. (2014). Quercetin bioavailability is associated with inadequate plasma vitamin C status and greater plasma endotoxin in adults. Nutrition. 30:1279–1286.
  • Hagl, S., Deusser, H., Soyalan, B., Janzowski, C., Will, F., Dietrich, H., Albert, F. W., Rohner, S. and Richling, E. (2011). Colonic availability of polyphenols and D-(-)-quinic acid after apple smoothie consumption. Mol. Nutri. Food Res. 55:368–377.
  • Hernandez-Ledesma, B., Amigo, L., Ramos, M. and Recio, I. (2004). Release of angiotensin converting enzyme-inhibitory peptides by simulated gastrointestinal digestion of infant formulas. Int. Dairy J. 14:889–898.
  • Hernandez-Ledesma, B., Quiros, A., Amigo, L. and Recio, I. (2007). Identification of bioactive peptides after digestion of human milk and infant formula with pepsin and pancreatin. Int. Dairy J. 17:42–49.
  • Hurrell, R. (2007). Linking the bioavailability of iron compounds to the efficacy of iron-fortified foods. Int. J. Vitam. Nutr. Res. 77:166–173.
  • ISO (2010). ISO 26642–2010. Food Products—Determination of the Glycaemic Index (GI) and Recommendation for Food Classification. ISO, Geneva, Switzerland.
  • Jenkins, D., Ghafari, H., Wolever, T., Taylor, R., Jenkins, A., Barker, H., Fielden, H. and Bowling, A. (1982). Relationship between rate of digestion of foods and post-prandial glycaemia. Diabetologia. 22:450–455.
  • Jenkins, D., Wolever, T., Taylor, R. H., Barker, H., Fielden, H., Baldwin, J. M., Bowling, A. C., Newman, H. C., Jenkins, A. L. and Goff, D. V. (1981). Glycemic index of foods: Aphysiological basis for carbohydrate exchange. Am. J. Clin. Nutr. 34:362–366.
  • Jinsmaa, Y. and Yoshikawa, M. (1999). Enzymatic release of neocasomorphin and beta-casomorphin from bovine beta-casein. Peptides. 20:957–962.
  • Juvonen, K. R., Macierzanka, A., Lille, M. E., Laaksonen, D. E., Mykkanen, H. M., Niskanen, L. K., Pihlajamaki, J., Makela, K. A., Mills, C. E. N., Mackie, A. R., Malcolm, P., Herzig, K. H., Poutanen, K. S. and Karhunen, L. J. (2015). Cross-linking of sodium caseinate-structured emulsion with transglutaminase alters postprandial metabolic and appetite responses in healthy young individuals. Br. J. Nutr. 114:418–429.
  • Kahle, K., Kempf, M., Schreier, P., Scheppach, W., Schrenk, D., Kautenburger, T., Hecker, D., Huemmer, W., Ackermann, M. and Richling, E. (2011). Intestinal transit and systemic metabolism of apple polyphenols. European J. Nutri. 50:507–522.
  • Kalt, W., Liu, Y., McDonald, J. E., Vinqvist-Tymchuk, M. R. and Fillmore, S. A. (2014). Anthocyanin metabolites are abundant and persistent in human urine. J. Agric. Food Chem. 62:3926–3934.
  • Karaki, H., Doi, K., Sugano, S., Uchiwa, H., Sugai, R., Murakami, U. and Takemoto, S. (1990). Antihypertensive Effect of Tryptic Hydrolysate of Milk Casein in Spontaneously Hypertensive Rats. Comparative Biochemistry and Physiology C-Pharmacology Toxicology & Endocrinology. 96:367–371.
  • Kaulmann, A., Andre, C. M., Schneider, Y. J., Hoffmann, L. and Bohn, T. (2015). Carotenoid and polyphenol bioaccessibility and cellular uptake from plum and cabbage varieties. Food Chem. 197(Pt A):325–332.
  • Keogh, J. B., Wooster, T. J., Golding, M., Day, L., Otto, B. and Clifton, P. M. (2011). Slowly and rapidly digested fat emulsions are equally satiating but their triglycerides are differentially absorbed and metabolized in humans. J. Nutr. 141:809–815.
  • Kitabatake, N. and Kinekawa, Y. I. (1998). Digestibility of bovine milk whey protein and beta-lactoglobulin in vitro and in vivo. J. Agric. Food Chem. 46:4917–4923.
  • Kulkarni, S. D., Acharya, R., Rajurkar, N. S. and Reddy, A. V. R. (2007). Evaluation of bioaccessibility of some essential elements from wheatgrass (Triticum aestivum L.) by in vitro digestion method. Food Chem. 103:681–688.
  • Liang, L., Wu, X., Zhao, T., Zhao, J., Li, F., Zou, Y., Mao, G. and Yang, L. (2012). In vitro bioaccessibility and antioxidant activity of anthocyanins from mulberry (Morus atropurpurea Roxb.) following simulated gastro-intestinal digestion. Food Res. Int. 46:76–82.
  • Macierzanka, A., Bordron, F., Rigby, N. M., Mills, E. N. C., Lille, M., Poutanen, K. and Mackie, A. R. (2011). Transglutaminase cross-linking kinetics of sodium caseinate is changed after emulsification. Food Hydrocolloids. 25:843–850.
  • Macierzanka, A., Bottger, F., Rigby, N. M., Lille, M., Poutanen, K., Mills, E. N. C. and Mackie, A. R. (2012). Enzymatically structured emulsions in simulated gastrointestinal environment: Impact on interfacial proteolysis and diffusion in intestinal mucus. Langmuir. 28:17349–17362.
  • Maeno, M., Yamamoto, N. and Takano, T. (1996). Identification of an antihypertensive peptide from casein hydrolysate produced by a proteinase from Lactobacillus helveticus CP790. J. Dairy Sci. 79:1316–1321.
  • Manach, C., Williamson, G., Morand, C., Scalbert, A. and Remesy, C. (2005). Bioavailability and bioefficacy of polyphenols in humans. I. Review of 97 bioavailability studies. Am. J. Clin. Nutr. 81:230S–242S.
  • Mandalari, G., Bisignano, C., Filocamo, A., Chessa, S., Saro, M., Torre, G., Faulks, R. M. and Dugo, P. (2013). Bioaccessibility of pistachio polyphenols, xanthophylls, and tocopherols during simulated human digestion. Nutr. 29:338–344.
  • Mandalari, G., Mackie, A. M., Rigby, N. M., Wickham, M. S. and Mills, E. (2009). Physiological phosphatidylcholine protects bovine beta-lactoglobulin from simulated gastrointestinal proteolysis. Mol. Nutr. Food Res. 53:S131–S139.
  • Martinez-Maqueda, D., Miralles, B., Recio, I. and Hernandez-Ledesma, B. (2012). Antihypertensive peptides from food proteins: A review. Food Funct. 3:350–361.
  • Meisel, H. (1986). Chemical characterization and opioid activity of an exorphin isolated from in vivo digests of casein. FEBS Lett. 196:223–227.
  • Meisel, H., Bernard, H., Fairweather-Tait, S., FitzGerald, R. J., Hartmann, R., Lane, C. N., McDonagh, D., Teucher, B. and Wal, J. M. (2003). Detection of caseinophosphopeptides in the distal ileostomy fluid of human subjects. Br. J. Nutr. 89:351–358.
  • Meisel, H. and FitzGerald, R. J. (2003). Biofunctional peptides from milk proteins: Mineral binding and cytomodulatory effects. Curr. Pharmaceutical Des. 9:1289–1295.
  • Miller, D. D., Schricker, B. R., Rasmussen, R. R. and Van Campen, D. (1981). An in vitro method for estimation of iron availability from meals. Am. J. Clin. Nutr. 34:2248–2256.
  • Minekus, M., Alminger, M., Alvito, P., Ballance, S., Bohn, T., Bourlieu, C., Carriere, F., Boutrou, R., Corredig, M., Dupont, D., Dufour, C., Egger, L., Golding, M., Karakaya, S., Kirkhus, B., Le Feunteun, S., Lesmes, U., Macierzanka, A., Mackie, A., Marze, S., McClements, D. J., Menard, O., Recio, I., Santos, C. N., Singh, R. P., Vegarud, G. E., Wickham, M. S. J., Weitschies, W. and Brodkorb, A. (2014). A standardised static in vitro digestion method suitable for food - An international consensus. Food Funct. 5:1113–1124.
  • Minekus, M., Smeets-Peeters, M., Bernalier, A., Marol-Bonnin, S., Havenaar, R., Marteau, P., Alric, M., Fonty, G. and Huis in't Veld, J. H. J. (1999). A computer-controlled system to simulate conditions of the large intestine with peristaltic mixing, water absorption and absorption of fermentation products. Appl. Microbiol. Biotechnol. 53:108–114.
  • Miquel, E., Alegria, A., Barbera, R. and Farre, R. (2006). Casein phosphopeptides released by simulated gastrointestinal digestion of infant formulas and their potential role in mineral binding. Int. Dairy J. 16:992–1000.
  • Miquel, E., Gomez, J. N., Alegria, A., Barbera, R., Farre, R. and Recio, I. (2005). Identification of casein phosphopeptides released after simulated digestion of milk-based infant formulas. J. Agric. Food Chem. 53:3426–3433.
  • Monro, J. A. and Mishra, S. (2010). Glycemic impact as a property of foods is accurately measured by an available carbohydrate method that mimics the glycemic response. J. Nutr. 140:1328–1334.
  • Monro, J. A., Mishra, S. and Venn, B. (2010). Baselines representing blood glucose clearance improve in vitro prediction of the glycaemic impact of customarily consumed food quantities. Br. J. Nutr. 103:295–305.
  • Moran-Valero, M. I., Martin, D., Torrelo, G., Reglero, G. and Torres, C. F. (2012). Phytosterols esterified with conjugated linoleic acid. In vitro intestinal digestion and interaction on cholesterol bioaccessibility. J. Agric. Food Chem. 60:11323–11330.
  • Moughan, P. J. (2003). Amino acid availability: Aspects of chemical analysis and bioassay methodology. Nutr. Res. Rev. 16:127–141.
  • Nielsen, I. L. and Williamson, G. (2007). Review of the factors affecting bioavailability of soy isoflavones in humans. Nutr. Cancer. 57:1–10.
  • O'Neill, M. E. and Thurnham, D. I. (1998). Intestinal absorption of beta-carotene, lycopene and lutein in men and women following a standard meal: Response curves in the triacylglycerol-rich lipoprotein fraction. Br. J. Nutr. 79:149–159.
  • Perez-Jimenez, J., Diaz-Rubio, M. E. and Saura-Calixto, F. (2013). Non-extractable polyphenols, a major dietary antioxidant: Occurrence, metabolic fate and health effects. Nutr. Res. Rev. 26:118–129.
  • Picariello, G., Ferranti, P., Fierro, O., Mamone, G., Caira, S., Di Luccia, A., Monica, S. and Addeo, F. (2010). Peptides surviving the simulated gastrointestinal digestion of milk proteins: Biological and toxicological implications. J. Chromatography B - Anal. Technol. Biomed. Life Sci. 878:295–308.
  • Picariello, G., Miralles, B., Mamone, G., Sanchez-Rivera, L., Recio, I., Addeo, F. and Ferranti, P. (2015). Role of intestinal brush border peptidases in the simulated digestion of milk proteins. Mol. Nutr. Food Res. 59:948–956.
  • Quiros, A., Ramos, M., Muguerza, B., Delgado, M. A., Miguel, M., Aleixandre, A. and Recio, I. (2007). Identification of novel antihypertensive peptides in milk fermented with enterococcus faecalis. Int. Dairy J. 17:33–41.
  • Qureshi, T. M., Vegarud, G. E., Abrahamsen, R. K. and Skeie, S. (2013). Angiotensin I-converting enzyme-inhibitory activity of the Norwegian autochthonous cheeses Gamalost and Norvegia after in vitro human gastrointestinal digestion. J. Dairy Sci. 96:838–853.
  • Reboul, E. and Borel, P. (2011). Proteins involved in uptake, intracellular transport and basolateral secretion of fat-soluble vitamins and carotenoids by mammalian enterocytes. Prog. Lipid Res. 50:388–402.
  • Reboul, E., Richelle, M., Perrot, E., smoulins-Malezet, C., Pirisi, V. and Borel, P. (2006). Bioaccessibility of carotenoids and vitamin E from their main dietary sources. J. Agric. Food Chem. 54:8749–8755.
  • Rozan, P., Lamghari, R., Linder, M., Villaume, C., Fanni, J., Parmentier, M. and Mejean, L. (1997). In vivo and in vitro digestibility of soybean, lupine, and rapeseed meal proteins after various technological processes. J. Agric. Food Chem. 45:1762–1769.
  • Saito, T., Nakamura, T., Kitazawa, H., Kawai, Y. and Itoh, T. (2000). Isolation and structural analysis of antihypertensive peptides that exist naturally in Gouda cheese. J. Dairy Sci. 83:1434–1440.
  • Sanchez-Rivera, L., Diezhandino, I., Gomez-Ruiz, J. A., Fresno, J. M., Miralles, B. and Recio, I. (2014). Peptidomic study of Spanish blue cheese (Valdeon) and changes after simulated gastrointestinal digestion. Electrophoresis. 35:1627–1636.
  • Sanchez-Rivera, L., Menard, O., Recio, I. and Dupont, D. (2015). Peptide mapping during dynamic gastric digestion of heated and unheated skimmed milk powder. Food Res. Int. 77:132–139.
  • Sanchez-Rivera, L., Santos, P. F., Miralles, B., Carron, R., Montero, M. J. and Recio, I. (2016). Peptide fragments from beta-casein f(134-138), HLPLP, generated by the action of rat blood plasma peptidases show potent antihypertensive activity. Food Res. Int. 88:348–353.
  • Sandberg, A. S. (2005). Methods and options in vitro dialyzability; benefits and limitations. Int. J. Vitam. Nutr. Res. 75:395–404.
  • Saunders, R. M., Connor, M. A., Booth, A. N., Bickoff, E. M. and Kohler, G. O. (1973). Measurement of digestibility of alfalfa protein concentrates by in-vivo and in-vitro methods. J. Nutr. 103:530–535.
  • Sayd, T., Chambon, C. and Santé-Lhoutellier, V. (2016). Quantification of peptides released during in vitro digestion of cooked meat. Food Chem. 197:1311–1323.
  • Scholz-Ahrens, K. E., Ade, P., Marten, B., Weber, P., Timm, W., Acil, Y., Gluer, C. C. and Schrezenmeir, J. (2007). Prebiotics, probiotics, and synbiotics affect mineral absorption, bone mineral content, and bone structure. J Nutr. 137:838s–846s.
  • Simmons, A. L., Chitchumroonchokchai, C., Vodovotz, Y. and Failla, M. L. (2012). Isoflavone Retention during Processing, Bioaccessibility, and Transport by Caco-2 Cells: Effects of Source and Amount of Fat in a Soy Soft Pretzel. J. Agric. Food Chem. 60:12196–12203.
  • Seal, C. J., Daly, M. E., Thomas, L. C., Bal, W., Birkett, A. M., Jeffcoat, R. and Mathers, J. C. (2003). Postprandial carbohydrate metabolism in healthy subjects and those with type 2 diabetes fed starches with slow and rapid hydrolysis rates determined in vitro. Br. J. Nutr. 90:853–864.
  • Setchell, K. D., Faughnan, M. S., Avades, T., Zimmer-Nechemias, L., Brown, N. M., Wolfe, B. E., Brashear, W. T., Desai, P., Oldfield, M. F., Botting, N. P. and Cassidy, A. (2003). Comparing the pharmacokinetics of daidzein and genistein with the use of 13C-labeled tracers in premenopausal women. Am. J. Clin. Nutr. 77:411–419.
  • Shani, Levi C., Alvito P., Andrés A., Assunção R., Barberá R., Blanquet-Diot S., Bourlieu C., Brodkorb A., Cilla A., Deglaire A., Denis S., Dupont D., Heredia A., Karakaya S., Valeria Lucia Giosafatto C., Mariniello L., Martins C., Ménard O., El S. N., Vegarud G. E., Ulleberg l. E. and Lesmes U. (2017). Extending in vitro digestion models to specific human populations: Perspectives, practical tools and bio-relevant information. Trends in Food Sci. Technol. 60:52–63.
  • Steingoetter, A., Radovic, T., Buetikofer, S., Curcic, J., Menne, D., Fried, M., Schwizer, W. and Wooster, T. J. (2015). Imaging gastric structuring of lipid emulsions and its effect on gastrointestinal function: Arandomized trial in healthy subjects. Am. J. Clin. Nutr. 101:714–724.
  • Svedberg, J., Dehaas, J., Leimenstoll, G., Paul, F. and Teschemacher, H. (1985). Demonstration of beta-casomorphin immunoreactive materials in in vitro digests of bovine-milk and in small-intestine contents after bovine-milk ingestion in adult humans. Peptides. 6:825–830.
  • Tenore, G. C., Campiglia, P., Ritieni, A. and Novellino, E. (2013). In vitro bioaccessibility, bioavailability and plasma protein interaction of polyphenols from Annurca apple (M. pumila Miller cv Annurca). Food Chem. 141:3519–3524.
  • Teschemacher, H., Koch, G. and Brantl, V. (1997). Milk protein-derived opioid receptor ligands. Biopolymers. 43:99–117.
  • Tyssandier, V., Reboul, E., Dumas, J. F., Bouteloup-Demange, C., Armand, M., Marcand, J., Sallas, M. and Borel, P. (2003). Processing of vegetable-borne carotenoids in the human stomach and duodenum. Am. J. Physiol. Gastrointest Liver Physiol. 284:G913–G923.
  • Unlu, N. Z., Bohn, T., Clinton, S. K. and Schwartz, S. J. (2005). Carotenoid absorption from salad and salsa by humans is enhanced by the addition of avocado or avocado oil. J. Nutr. 135:431–436.
  • Van Loo-Bouwman, C. A., Naber, T. H., Minekus, M., van Breemen, R. B., Hulshof, P. J. and Schaafsma, G. (2014). Food matrix effects on bioaccessibility of beta-carotene can be measured in an in vitro gastrointestinal model. J. Agric. Food Chem. 62:950–955.
  • Van Loo-Bouwman, C. A., Naber, T. H., van Breemen, R. B., Zhu, D., Dicke, H., Siebelink, E., Hulshof, P. J., Russel, F. G., Schaafsma, G. and West, C. E. (2010). Vitamin A equivalency and apparent absorption of beta-carotene in ileostomy subjects using a dual-isotope dilution technique. Br. J. Nutr. 103:1836–1843.
  • Veda, S., Kamath, A., Platel, K., Begum, K. and Srinivasan, K. (2006). Determination of bioaccessibility of beta-carotene in vegetables by in vitro methods. Mol. Nutr. Food Res. 50:1047–1052.
  • Venn, B. J., Wallace, A. J., Monro, J. A., Perry, T., Brown, R., Frampton, C. and Green, T. J. (2006). The glycemic load estimated from the glycemic index does not differ greatly from that measured using a standard curve in healthy volunteers. J. Nutr. 136:1377–1381.
  • Vetrani, C., Rivellese, A. A., Annuzzi, G., Adiels, M., Boren, J., Mattila, I., Oresic, M. and Aura, A. M. (2016). Metabolic transformations of dietary polyphenols: Comparison between in vitro colonic and hepatic models and in vivo urinary metabolites. J. Nutr. Biochem. 33:111–118.
  • Vors, C., Capolino, P., Guerin, C., Meugnier, E., Pesenti, S., Chauvin, M. A., Monteil, J., Peretti, N., Cansell, M., Carriere, F. and Michalski, M. C. (2012). Coupling in vitro gastrointestinal lipolysis and Caco-2 cell cultures for testing the absorption of different food emulsions. Food Funct. 3:537–546.
  • Walsh, K. R., Zhang, Y. C., Vodovotz, Y., Schwartz, S. J. and Failla, M. L. (2003). Stability and Bioaccessibility of Isoflavones from Soy Bread during In Vitro Digestion. J. Agric. Food Chem. 51:4603–4609.
  • Walter, T., Pizarro, F. and Olivares, M. (2003). Iron bioavailability in corn-masa tortillas is improved by the addition of disodium EDTA. J. Nutr. 133:3158–3161.
  • Wickham, M. and Faulks, R. (2007). Apparatus, System and Method. Plant Bioscience Limited, Norwich, UK.
  • Woolnough, J. W., Monro, J. A., Brennan, C. S. and Bird, A. R. (2008). Simulating human carbohydrate digestion in vitro: A review of methods and the need for standardisation. Int. J. Food Sci. Technol. 43:2245–2256.
  • Wooster, T. J., Day, L., Xu, M., Golding, M., Oiseth, S., Keogh, J. and Clifton, P. (2014). Impact of different biopolymer networks on the digestion of gastric structured emulsions. Food Hydrocolloids. 36:102–114.
  • Yun, S., Habicht, J. P., Miller, D. D. and Glahn, R. P. (2004). An in vitro digestion/Caco-2 cell culture system accurately predicts the effects of ascorbic acid and polyphenolic compounds on iron bioavailability in humans. J. Nutr. 134:2717–2721.
  • Zubik, L. and Meydani, M. (2003). Bioavailability of soybean isoflavones from aglycone and glucoside forms in American women. Am. J. Clin. Nutr. 77:1459–1465.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.