2,565
Views
93
CrossRef citations to date
0
Altmetric
Reviews

Current trends and perspectives of bioactive peptides

, &

References

  • Agrawal, H., Joshi, R. and Gupta, M. (2016). Isolation, purification and characterization of antioxidative peptide of pearl millet (Pennisetum glaucum) protein hydrolysate. Food Chem. 204:365–372.
  • Agyei, D., Ongkudon, C. M., Wei, C. Y., Chan, A. S. and Danquah, M. K. (2016). Bioprocess challenges to the isolation and purification of bioactive peptides. Food Bioprod. Process. 98:244–256.
  • Ahn, J., Park, S., Atwal, A., Gibbs, B. and Lee, B. (2009). Angiotensin I‐converting enzyme (ACE) inhibitory peptides from whey fermented by Lactobacillus species. J. Food Biochem. 33:587–602.
  • Alarcon‐Chaidez, F. J., Müller‐Doblies, U. U. and Wikel, S. (2003). Characterization of a recombinant immunomodulatory protein from the salivary glands of Dermacentor andersoni. Parasite Immunol. 25:69–77.
  • Aluko, R. E. (2015). Antihypertensive peptides from food proteins. Annu. Rev. Food Sci. Technol. 6:235–262.
  • Amar, M. J., D'Souza, W., Turner, S., Demosky, S., Sviridov, D., Stonik, J. et al. (2010). 5A apolipoprotein mimetic peptide promotes cholesterol efflux and reduces atherosclerosis in mice. J. Pharmacol. Exp. Ther. 334(2):634–641.
  • Andersson, L., Blomberg, L., Flegel, M., Lepsa, L., Nilsson, B. and Verlander, M. (2000). Large‐scale synthesis of peptides. Biopolymers 55(3):227–250.
  • Bahar, A. A. and Ren, D. (2013). Antimicrobial peptides. Pharmaceuticals (Basel) 6(12):1543–1575.
  • Bao, W., Holt, L. J., Prince, R. D., Jones, G. X., Aravindhan, K., Szapacs, M. et al. (2013). Novel fusion of GLP-1 with a domain antibody to serum albumin prolongs protection against myocardial ischemia/reperfusion injury in the rat. Cardiovasc. Diabetol. 12(1):148. doi: 10.1186/1475-2840-12-148
  • Benincasa, M., Scocchi, M., Pacor, S., Tossi, A., Nobili, D., Basaglia, G. et al. (2006). Fungicidal activity of five cathelicidin peptides against clinically isolated yeasts. J. Antimicrob. Chemother. 58(5):950–959.
  • Bidasolo, I. B., Ramos, M. and Gomez-Ruiz, J. A. (2012). In vitro simulated gastrointestinal digestion of donkeys’ milk. Peptide characterization by high performance liquid chromatography-tandem mass spectrometry. Int. Dairy J. 24:146–152.
  • Birkemo, G., O'Sullivan, O., Ross, R. and Hill, C. (2009). Antimicrobial activity of two peptides casecidin 15 and 17, found naturally in bovine colostrum. J. Appl. Microbiol. 106:233–240.
  • Björck, L., Grubb, A. and Kjellen, L. (1990). Cystatin C, a human proteinase inhibitor, blocks replication of herpes simplex virus. J. Virol. 64(2):941–943.
  • Blankenvoorde, M. F., Van't Hof, W., Walgreen-Weterings, E., Van Steenbergen, T., Brand, H., Veerman, E. et al. (1998). Cystatin and cystatin-derived peptides have antibacterial activity against the pathogen Porphyromonas Gingivalis. Biol. Chem. 379(11):1371–1376.
  • Bodnar, R. J. (2014). Endogenous opiates and behavior: 2013. Peptides 62:67–136.
  • Bose, D., Nahar, S., Rai, M. K., Ray, A., Chakraborty, K. and Maiti, S. (2015). Selective inhibition of miR-21 by phage display screened peptide. Nucleic. Acids Res. 43(8):4342–4352.
  • Bougatef, A., Nedjar-Arroume, N., Ravallec-Plé, R., Leroy, Y., Guillochon, D., Barkia, A. et al. (2008). Angiotensin I-converting enzyme (ACE) inhibitory activities of sardinelle (Sardinella aurita) by-products protein hydrolysates obtained by treatment with microbial and visceral fish serine proteases. Food Chem. 111(2):350–356.
  • Brouwer, A. J., Jonker, A., Werkhoven, P., Kuo, E., Li, N., Gallastegui, N. et al. (2012). Peptido sulfonyl fluorides as new powerful proteasome inhibitors. J. Med. Chem. 55(24):10995–11003.
  • Buckland, G., Agudo, A., Luján, L., Jakszyn, P., Bueno-de-Mesquita, H. B., Palli, D. et al. (2010). Adherence to a Mediterranean diet and risk of gastric adenocarcinoma within the European prospective investigation into cancer and nutrition (EPIC) cohort study. Am. J. Clin. Nutr. 91(2):381–390.
  • Capriotti, A.L., Cavaliere, C., Piovesana, S., Samperi, R. and Laganà, A. (2016). Recent trends in the analysis of bioactive peptides in milk and dairy products. Anal. Bioanal. Chem. 408(11):2677–2685.
  • Cardinale, D., Guaitoli, G., Tondi, D., Luciani, R., Henrich, S., Salo-Ahen, O. M. et al. (2011). Protein–protein interface-binding peptides inhibit the cancer therapy target human thymidylate synthase. Proc. Natl Acad. Sci. USA. 108(34):E542–E549.
  • Carpino, L. A., Ghassemi, S., Ionescu, D., Ismail, M., Sadat-Aalaee, D., Truran, G. A. et al. (2003). Rapid, continuous solution-phase peptide synthesis: application to peptides of pharmaceutical interest. Org. Proc. Res. Dev. 7(1):28–37.
  • Chakrabarti, S., Jahandideh, F. and Wu, J. (2014). Food-derived bioactive peptides on inflammation and oxidative stress. Biomed. Res. Int. 2014:608979. doi:10.1155/2014/608979
  • Chandrudu, S., Simerska, P. and Toth, I. (2013). Chemical methods for peptide and protein production. Molecules 18(4):4373–4388.
  • Chauhan, S. and Tomar, R. S. (2016). Efficient expression and purification of biologically active human cystatin proteins. Protein Exp. Purif. 118:10–17.
  • Chen, C., Chan, H. M. and Kubow, S. (2007). Kefir extracts suppress in vitro proliferation of estrogen-dependent human breast cancer cells but not normal mammary epithelial cells. J. Med. Food. 10(3):416–422.
  • Chen, J., Wang, Y., Zhong, Q., Wu, Y. and Xia, W. (2012). Purification and characterization of a novel angiotensin-I converting enzyme (ACE) inhibitory peptide derived from enzymatic hydrolysate of grass carp protein. Peptides 33(1):52–58.
  • Daliri, E. B.-M. and Lee, B. H. (2015). Current trends and future perspectives on functional foods and nutraceuticals. In Beneficial Microorganisms in Food and Nutraceuticals, pp. 221–244. Min-Tze, L., Eds., Springer, Switzerland.
  • Daliri, E. B-M., Lee, B. H. and Oh, D. H. (2016). Current perspectives on antihypertensive probiotics. Probiotics Antimicrob Proteins 9:91–101. doi:10.1007/s12602-016-9241-y
  • Darewicz, M., Borawska, J., Vegarud, G. E., Minkiewicz, P. and Iwaniak, A. (2014). Angiotensin I-converting enzyme (ACE) inhibitory activity and ACE inhibitory peptides of salmon (Salmo salar) protein hydrolysates obtained by human and porcine gastrointestinal enzymes. Int. J. Mol. Sci. 15(8):14077–14101.
  • Dhayakaran, R., Neethirajan, S. and Weng, X. (2016). Investigation of the antimicrobial activity of soy peptides by developing a high throughput drug screening assay. Biochem. Biophys. Rep. 6:149–157.
  • Dirksen, A., Meijer, E., Adriaens, W. and Hackeng, T. M. (2006). Strategy for the synthesis of multivalent peptide-based nonsymmetric dendrimers by native chemical ligation. Chem. Commun. (Camb). 15:1667–1669.
  • Drougard, A., Audren Fournel, A. M., Meunier, E., Abot, A., Bautzova, T., Duparc, T. et al. (2016). Central chronic apelin infusion decreases energy expenditure and thermogenesis in mice. Sci. Rep. 6:31849. doi: 10.1038/srep31849
  • Escudero, E., Mora, L., Fraser, P. D., Aristoy, M.C. and Toldrá, F. (2013). Identification of novel antioxidant peptides generated in Spanish dry-cured ham. Food chem. 138(2):1282–1288.
  • Fan, J., He, J., Zhuang, Y. and Sun, L. (2012). Purification and identification of antioxidant peptides from enzymatic hydrolysates of Tilapia (Oreochromis niloticus) frame protein. Molecules 17(11):12836–12850.
  • Fatma, Z. and Wahyu, H. (2013). The effect of peptide (Asp–Glu) synthetic base on sterilized fermented soymilk on lipid profile of Sprague Dawley rats. Int. Food Res. J. 20(6):3047–3052.
  • Fekete, A. A., Givens, D. I. and Lovegrove, J. A. (2015). Casein-derived lactotripeptides reduce systolic and diastolic blood pressure in a meta-analysis of randomised clinical trials. Nutrients 7(1):659–681.
  • Fitzgerald, C., Aluko, R. E., Hossain, M., Rai, D. K. and Hayes, M. (2014). Potential of a renin inhibitory peptide from the red seaweed Palmaria palmata as a functional food ingredient following confirmation and characterization of a hypotensive effect in spontaneously hypertensive rats. J. Agric. Food Chem. 62(33):8352–8356.
  • Fosgerau, K. and Hoffmann, T. (2015). Peptide therapeutics: current status and future directions. Drug Discov. Today. 20(1):122–128.
  • Frendéus, K. H., Wallin, H., Janciauskiene, S. and Abrahamson, M. (2009). Macrophage responses to interferon-γ are dependent on cystatin C levels. Int. J. Biochem. Cell Biol. 41(11):2262–2269.
  • Fujita, H. and Yoshikawa, M. (1999). LKPNM: a prodrug-type ACE-inhibitory peptide derived from fish protein. Immunopharmacology 44(1–2):123–127.
  • Fukudome, S. and Yoshikawa, M. (1992). Opioid peptides derived from wheat gluten: their isolation and characterization. FEBS Lett. 296(1):107–111.
  • Fukudome, S. and Yoshikawa, M. (1993). Gluten exorphin C. A novel opioid peptide derived from wheat gluten. FEBS Lett 316(1):17–19.
  • Fukudome, S., Shimatsu, A., Suganuma, H. and Yoshikawa, M. (1995). Effect of gluten exorphins A5 and B5 on the postprandial plasma insulin level in conscious rats. Life Sci. 57(7):729–734.
  • García-Tejedor, A., Padilla, B., Salom, J. B., Belloch, C. and Manzanares, P. (2013). Dairy yeasts produce milk protein-derived antihypertensive hydrolysates. Food Res. Int. 53(1):203–208.
  • Garcia-Tejedor, A., Sanchez-Rivera, L., Castello-Ruiz, M., Recio, I., Salom, J. B. and Manzanares, P. (2014). Novel antihypertensive lactoferrin-derived peptides produced by Kluyveromyces marxianus: gastrointestinal stability profile and in vivo angiotensin I-converting enzyme (ACE) inhibition. J. Agric. Food Chem. 62(7):1609–1616.
  • Gu, M., Ren, J., Sun, W., You, L., Yang, B. and Zhao, M. (2014). Isolation and identification of antioxidative peptides from frog (Hylarana guentheri) protein hydrolysate by consecutive chromatography and electrospray ionization mass spectrometry. Appl. Biochem. Biotechnol. 173(5):1169–1182.
  • Gyurcsik, B., Czene, A., Jankovics, H., Jakab-Simon, N. I., Ślaska-Kiss, K., Kiss, A. et al. (2013). Cloning, purification and metal binding of the HNH motif from colicin E7. Protein Exp. Purif. 89(2):210–218.
  • Ha, G. E., Chang, O. K., Jo, S.-M., Han, G.-S., Park, B.-Y., Ham, J.-S. et al. (2015). Identification of antihypertensive peptides derived from low molecular weight casein hydrolysates generated during fermentation by Bifidobacterium longum KACC 91563. Korean J. Food Sci. Anim. Resour. 35(6):738.
  • Hanes, M. S., Salanga, C. L., Chowdry, A. B., Comerford, I., McColl, S. R., Kufareva, I. and Handel, T. M. (2015). Dual targeting of the chemokine receptors CXCR4 and ACKR3 with novel engineered chemokines. J. Biol. Chem. 290(37):22385–22397.
  • Haney, E. F. and Hancock, R. E. (2013). Peptide design for antimicrobial and immunomodulatory applications. Biopolymers 100(6):572–583.
  • Hoogenboom, H. R. (2005). Selecting and screening recombinant antibody libraries. Nat. Biotechnol. 23(9):1105–1116.
  • Hou, H., Fan, Y., Li, B., Xue, C., Yu, G., Zhang, Z. et al. (2012). Purification and identification of immunomodulating peptides from enzymatic hydrolysates of Alaska pollock frame. Food Chem. 134(2):821–828.
  • Houimel, M. and Mazzucchelli, L. (2012). hCXCR1 and hCXCR2 antagonists derived from combinatorial peptide libraries. Cytokine 57(3):322–331.
  • Houston, M. E. Jr., Campbell, A. P., Lix, B., Kay, C. M., Sykes, B. D. and Hodges, R. S. (1996). Lactam bridge stabilization of alpha-helices: the role of hydrophobicity in controlling dimeric versus monomeric alpha-helices. Biochemistry 35(31):10041–10050.
  • Ichikawa, S., Morifuji, M., Ohara, H., Matsumoto, H., Takeuchi, Y. and Sato, K. (2010). Hydroxyproline-containing dipeptides and tripeptides quantified at high concentration in human blood after oral administration of gelatin hydrolysate. Int. J. Food Sci. Nutr. 61(1):52–60.
  • Iwai, K., Hasegawa, T., Taguchi, Y., Morimatsu, F., Sato, K., Nakamura, Y. et al. (2005). Identification of food-derived collagen peptides in human blood after oral ingestion of gelatin hydrolysates. J. Agric. Food Chem. 53(16):6531–6536.
  • Jahan-Mihan, A., Luhovyy, B. L., El Khoury, D. and Anderson, G. H. (2011). Dietary proteins as determinants of metabolic and physiologic functions of the gastrointestinal tract. Nutrients 3(5):574–603.
  • Jang, A., Jo, C., Kang, K.-S. and Lee, M. (2008). Antimicrobial and human cancer cell cytotoxic effect of synthetic angiotensin-converting enzyme (ACE) inhibitory peptides. Food Chem. 107(1):327–336.
  • Kageyama, H., Shiba, K., Hirako, S., Wada, N., Yamanaka, S., Nogi, Y. et al. (2016). Anti-obesity effect of intranasal administration of galanin-like peptide (GALP) in obese mice. Sci Rep. 6:28200. doi: 10.1038/srep28200
  • Kannan, A., Hettiarachchy, N., Johnson, M. G. and Nannapaneni, R. (2008). Human colon and liver cancer cell proliferation inhibition by peptide hydrolysates derived from heat-stabilized defatted rice bran. J. Agric. Food Chem. 56(24):11643–11647.
  • Kaspar, A. A. and Reichert, J. M. (2013). Future directions for peptide therapeutics development. Drug Discov. Today 18(17–18):807–817.
  • Kim, S. Y., Je, J. Y. and Kim, S. K. (2007). Purification and characterization of antioxidant peptide from hoki (Johnius belengerii) frame protein by gastrointestinal digestion. J. Nutr. Biochem. 18(1):31–38.
  • Kim, Y. M., Kim, I. H., Choi, J. W., Lee, M. K. and Nam, T. J. (2015). The anti-obesity effects of a tuna peptide on 3T3-L1 adipocytes are mediated by the inhibition of the expression of lipogenic and adipogenic genes and by the activation of the Wnt/β-catenin signaling pathway. Int. J. Mol. Med. 36(2):327–334.
  • Knudsen, L. (2010). Liraglutide: the therapeutic promise from animal models. Int. J. Clin. Pract. Suppl. 64 (167):4–11.
  • Koyama, M., Hattori, S., Amano, Y., Watanabe, M. and Nakamura, K. (2014). Blood pressure-lowering peptides from neo-fermented buckwheat sprouts: a new approach to estimating ACE-inhibitory activity. PloS One 9(9):e105802.
  • Kumar, R., Chaudhary, K., Singh Chauhan, J., Nagpal, G., Kumar, R., Sharma, M. et al. (2015). An in silico platform for predicting, screening and designing of antihypertensive peptides. Sci Rep. 5:12512. doi:10.1038/srep12512
  • Lacroix, I. M. and Li-Chan, E. C. (2012). Dipeptidyl peptidase-IV inhibitory activity of dairy protein hydrolysates. Int. Dairy J. 25(2):97–102.
  • Lahov, E. and Regelson, W. (1996). Antibacterial and immunostimulating casein-derived substances from milk: casecidin, isracidin peptides. Food Chem. Toxicol. 34(1):131–145.
  • Lammi, C., Zanoni, C., Scigliuolo, G. M., D'Amato, A. and Arnoldi, A. (2014). Lupin peptides lower low-density lipoprotein (LDL) cholesterol through an up-regulation of the LDL receptor/sterol regulatory element binding protein 2 (SREBP2) pathway at HepG2 cell line. J. Agric. Food Chem. 62:7151–7159.
  • Lemes, A. C., Sala, L., Ores, J. D. C., Braga, A. R. C., Egea, M. B. and Fernandes, K. F. (2016). A review of the latest advances in encrypted bioactive peptides from protein-rich waste. Int. J. Mol. Sci. 17(6):950–194.
  • Lin, J.-W., Hao, L.-X., Xu, G.-X., Sun, F., Gao, F., Zhang, R. et al. (2009). Molecular cloning and recombinant expression of a gene encoding a fungal immunomodulatory protein from Ganoderma lucidum in Pichia pastoris. World J. Microbiol. Biotechnol. 25:383–390.
  • Liu, J., Jin, Y., Lin, S., Jones, G. S. and Chen, F. (2015). Purification and identification of novel antioxidant peptides from egg white protein and their antioxidant activities. Food Chem. 175:258–266.
  • Liu, L., Liu, L., Lu, B., Chen, M. and Zhang, Y. (2013). Evaluation of bamboo shoot peptide preparation with angiotensin converting enzyme inhibitory and antioxidant abilities from byproducts of canned bamboo shoots. J. Agric. Food Chem. 61:5526–5533.
  • Liu, Y. and Higgins, C. (2013). Peptides that bind specifically to an antibody from a chronic lymphocytic leukemia clone expressing unmutated immunoglobulin variable region genes. Mol. Med. 19(1):245–252.
  • Lobo, V., Patil, A., Phatak, A. and Chandra, N. (2010). Free radicals, antioxidants and functional foods: Impact on human health. Pharmacogn. Rev. 4(8):118–126.
  • Lorin, C., Saidi, H., Belaid, A., Zairi, A., Baleux, F., Hocini, H. et al. (2005). The antimicrobial peptide dermaseptin S4 inhibits HIV-1 infectivity in vitro. Virology 334:264–275.
  • Lovrinovic, M. and Niemeyer, C. M. (2007). Microtiter plate‐based screening for the optimization of DNA–protein conjugate synthesis by means of expressed protein ligation. Chem Bio Chem. 8(1):61–67.
  • Majumder, K., Chakrabarti, S., Morton, J. S., Panahi, S., Kaufman, S., Davidge, S. T. et al. (2013). Egg-derived tri-peptide IRW exerts antihypertensive effects in spontaneously hypertensive rats. PLoS One. 8:e82829.
  • Makino, S., Ikegami, S., Kume, A., Horiuchi, H., Sasaki, H. and Orii, N. (2010). Reducing the risk of infection in the elderly by dietary intake of yoghurt fermented with Lactobacillus delbrueckii ssp. bulgaricus OLL1073R-1. Br. J. Nutr. 104(7):998–1006.
  • Malomo, S. A., Onuh, J. O., Girgih, A. T. and Aluko, R. E. (2015). Structural and antihypertensive properties of enzymatic hemp seed protein hydrolysates. Nutrients 7:7616–7632.
  • Manzanares, P., Salom, J. B., Garcia-Tejedor, A., Fernandez-Musoles, R., Ruiz-Gimenez, P. and Gimeno-Alcaniz, J. V. (2015). Unraveling the mechanisms of action of lactoferrin-derived antihypertensive peptides: ACE inhibition and beyond. Food Funct. 6:2440–2452.
  • Martin, M. E. and Rice, K. G. (2007). A novel class of intrinsic proteasome inhibitory gene transfer peptides. Bioconjug. Chem. 19(1):370–376.
  • Mendis, S., Davis, S. and Norrving, B. (2015). Organizational update: the world health organization global status report on noncommunicable diseases 2014; one more landmark step in the combat against stroke and vascular disease. Stroke 46:e121–e122.
  • Mesaik, M. A., Dastagir, N., Uddin, N., Rehman, K. and Azim, M. K. (2015). Characterization of immunomodulatory activities of honey glycoproteins and glycopeptides. J. Agric. Food Chem. 63:177–184.
  • Miasoedov, N., Shubina, T., Obergan, T., Grigor'eva, M., Andreeva, L. and Liapina, L. (2012). Cholesterol-lowering effect of the regulatory peptide Pro-Gly-Pro-Leu. Vopr. Pitan. 82(5):41–45.
  • Mohanty, D., Mohapatra, S., Misra, S. and Sahu, P. (2015). Milk derived bioactive peptides and their impact on human health—A review. Saudi J. Biol. Sci. 23(5):577–583.
  • Nakamura, K., Naramoto, K. and Koyama, M. (2013). Blood-pressure-lowering effect of fermented buckwheat sprouts in spontaneously hypertensive rats. J. Funct. Foods. 5(1):406–415.
  • Nakamura, Y., Yamamoto, N., Sakai, K. and Takano, T. (1995). Antihypertensive effect of sour milk and peptides isolated from it that are inhibitors to angiotensin I-converting enzyme. J. Dairy Sci. 78(6):1253–1257.
  • Naqash, S. Y. and Nazeer, R. A. (2013). Antioxidant and functional properties of protein hydrolysates from pink perch (Nemipterus japonicus) muscle. J. Food Sci. Technol. 50(5):972–978.
  • Nemudraya, A. A., Makartsova, A. A., Fomin, A. S., Nushtaeva, A. A., Koval, O. A., Richter, V. A. and Kuligina, E. V. (2016). Tumor-specific peptide, selected from a phage peptide library, enhances antitumor activity of Lactaptin. PloS One 11(8):e0160980.
  • Nimalaratne, C., Bandara, N. and Wu, J. (2015). Purification and characterization of antioxidant peptides from enzymatically hydrolyzed chicken egg white. Food Chem. 188:467–472.
  • Ninkovic, J. and Roy, S. (2013). Role of the mu-opioid receptor in opioid modulation of immune function. Amino Acids 45(1):9–24.
  • Nishiuchi, Y., Inui, T., Nishio, H., Bódi, J., Kimura, T., Tsuji, F. I. et al. (1998). Chemical synthesis of the precursor molecule of the Aequorea green fluorescent protein, subsequent folding, and development of fluorescence. Proc. Natl Acad. Sci. USA. 95(23):13549–13554.
  • O'Connor, C., White, K. L., Doncescu, N., Didenko, T., Roth, B. L., Czaplicki, G. et al. (2015). NMR structure and dynamics of the agonist dynorphin peptide bound to the human kappa opioid receptor. Proc. Natl Acad. Sci. USA. 112(38):11852–11857.
  • Oh, S., Shimizu, H., Satoh, T., Okada, S., Adachi, S., Inoue, K. et al. (2006). Identification of nesfatin-1 as a satiety molecule in the hypothalamus. Nature 443(7112):709–712.
  • Oka, T., Negishi, K., Kajiwara, M., Watanabe, Y., Ishizuka, Y. and Matsumiya, T. (1982). The choice of opiate receptor subtype by neo-endorphins. Eur. J. Pharmacol. 79(3–4):301–305.
  • Pala, V., Sieri, S., Berrino, F., Vineis, P., Sacerdote, C., Palli, D. et al. (2011). Yogurt consumption and risk of colorectal cancer in the Italian European prospective investigation into cancer and nutrition cohort. Int. J. Cancer. 129(11):2712–2719.
  • Parker, F., Migliore‐Samour, D., Floch, F., Zerial, A., Werner, G. H., Jollès, J. et al. (1984). Immunostimulating hexapeptide from human casein: amino acid sequence, synthesis and biological properties. Eur. J. Biochem. 145(3):677–682.
  • Pripp, A. H., Isaksson, T., Stepaniak, L. and Sørhaug, T. (2004). Quantitative structure-activity relationship modelling of ACE-inhibitory peptides derived from milk proteins. Eur. Food Res. Technol. 219:579–583.
  • Pushparajah, V., Fatima, A., Chong, C., Gambule, T., Chan, C., Ng, S. et al. (2016). Characterisation of a new fungal immunomodulatory protein from tiger milk mushroom. Lignosus rhinocerotis. Sci. Rep. 6:30010.
  • Rayaprolu, S. J., Hettiarachchy, N. S., Horax, R., Kumar‐Phillips, G., Liyanage, R., Lay, J. and Chen, P. (2017). Purification and characterization of a peptide from soybean with cancer cell proliferation inhibition. J. Food Biochem. 41:e12374. doi.org/10.1111/jfbc.12374
  • Renye, J. Jr. and Somkuti, G. (2008). Cloning of milk-derived bioactive peptides in Streptococcus thermophilus. Biotechnol. Lett. 30(4):723–730.
  • Ryakhovsky, V. V., Khachiyan, G. A., Kosovova, N. F., Isamiddinova, E. F. and Ivanov, A. S. (2008). The first preparative solution phase synthesis of melanotan II. Beilstein. J. Org. Chem. 4:39.
  • Sagardia, I., Iloro, I., Elortza, F. and Bald, C. (2013). Quantitative structure–activity relationship based screening of bioactive peptides identified in ripened cheese. Int. Dairy J. 33(2):184–190.
  • Sakakibara, S. (1999). Chemical synthesis of proteins in solution. Biopolymers 51:279–296.
  • Sarkar, M., Liu, Y., Qi, J., Peng, H., Morimoto, J., Rader, C., Chiorazzi, N. and Kodadek, T. (2016). Targeting stereotyped B cell receptors from chronic lymphocytic leukemia patients with synthetic antigen surrogates. J. Biol Chem. 291(14):7558–7570.
  • Shimizu, H., Oh-I, S., Hashimoto, K., Nakata, M., Yamamoto, S., Yoshida, N. et al. (2009). Peripheral administration of nesfatin-1 reduces food intake in mice: the leptin-independent mechanism. Endocrinology 150(2):662–671.
  • Sidhu, S. S. (2000). Phage display in pharmaceutical biotechnology. Curr. Opin Biotechnol. 11(6):610–616.
  • Silvestre, M. P. C., Silva, M. R., Silva, V. D. M., Souza, M. W. S. d., Junior, L., de Oliveira, C. et al. (2012). Analysis of whey protein hydrolysates: peptide profile and ACE inhibitory activity. Braz. J. Pharm. Sci. 48(4):747–757.
  • Sim, S., Kim, Y., Kim, T., Lim, S. and Lee, M. (2012). Directional assembly of alpha-helical peptides induced by cyclization. J. Am. Chem. Soc. 134:20270–20272.
  • Sinha, S., Cheshenko, N., Lehrer, R. I. and Herold, B. C. (2003). NP-1, a rabbit alpha-defensin, prevents the entry and intercellular spread of herpes simplex virus type 2. Antimicrob Agents Chemother. 47:494–500.
  • Song, R., Zhang, K.-q. and Wei, R.-b. (2016). In vitro antioxidative activities of squid (Ommastrephes bartrami) viscera autolysates and identification of active peptides. Process. Biochem. 51:1674–1682.
  • Stawikowski, M. and Fields, G. B. (2012). Introduction to peptide synthesis. Curr. Protoc Protein Sci. 69:18.1.1–18.1.13.
  • Strandberg, E., Zerweck, J., Wadhwani, P. and Ulrich, A. S. (2013). Synergistic insertion of antimicrobial magainin-family peptides in membranes depends on the lipid spontaneous curvature. Biophys. J. 104:L9–L11.
  • Sun, L., Zhang, Y. and Zhuang, Y. (2013). Antiphotoaging effect and purification of an antioxidant peptide from tilapia (Oreochromis niloticus) gelatin peptides. J. Funct. Foods. 5:154–162.
  • Sütas, Y., Hurme, M. and Isolauri, E. (1996). Down‐regulation of anti‐CD3 antibody‐induced IL‐4 production by bovine caseins hydrolysed with Lactobacillus GG‐derived enzymes. Scand. J. Immunol. 43(6):687–689.
  • Taghvaei, M. and Jafari, S. M. (2015). Application and stability of natural antioxidants in edible oils in order to substitute synthetic additives. J. Food Sci. Technol. 52:1272–1282.
  • Takahashi, H., Tsuchiya, T., Takahashi, M., Nakazawa, M., Watanabe, T., Takeuchi, A. et al. (2016). Viability of murine norovirus in salads and dressings and its inactivation using heat-denatured lysozyme. Int. J. Food Microbiol. 233:29–33.
  • Timmerman, P., Puijk, W. C. and Meloen, R. H. (2007). Functional reconstruction and synthetic mimicry of a conformational epitope using CLIPS technology. J. Mol. Recognit. 20:283–299.
  • Tornatore, L., Sandomenico, A., Raimondo, D., Low, C., Rocci, A., Tralau-Stewart, C. et al. (2014). Cancer-selective targeting of the NF-κB survival pathway with GADD45β/MKK7 inhibitors. Cancer Cell 26:495–508.
  • Udenigwe, C. C. and Aluko, R. E. (2011). Chemometric analysis of the amino acid requirements of antioxidant food protein hydrolysates. Int. J. Mol. Sci. 12(5):3148–3161.
  • Uhlig, T., Kyprianou, T., Martinelli, F. G., Oppici, C. A., Heiligers, D., Hills, D. et al. (2014). The emergence of peptides in the pharmaceutical business: From exploration to exploitation. EuPA Open Proteom. 4:58–69.
  • Ullman, C. G., Frigotto, L. and Cooley, R. N. (2011). In vitro methods for peptide display and their applications. Brief Funct. Genomics. 10(3):125–134.
  • USFDA. (2016). Biological License Application Approvals. http://www.fda.gov/BiologicsBloodVaccines/DevelopmentApprovalProcess/BiologicalApprovalsbyYear/ucm482397.htm. Accessed on 2016-12-22.
  • Vallabha, V. S. and Tiku, P. K. (2014). Antihypertensive peptides derived from soy protein by fermentation. Int. J. Pept. Res. Ther. 20:161–168.
  • van der Kraan, M. I., Nazmi, K., Teeken, A., Groenink, J., van 't Hof, W., Veerman, E. C. et al. (2005). Lactoferrampin, an antimicrobial peptide of bovine lactoferrin, exerts its candidacidal activity by a cluster of positively charged residues at the C-terminus in combination with a helix-facilitating N-terminal part. Biol. Chem. 386:137–142.
  • Vigneaud, V. d., Ressler, C., Swan, C. J. M., Roberts, C. W., Katsoyannis, P. G. and Gordon, S. (1953). The synthesis of an octapeptide amide with the hormonal activity of oxytocin. J. Am. Chem. Soc. 75:4879–4880.
  • Volkoff, H. and Wyatt, J. L. (2009). Apelin in goldfish (Carassius auratus): cloning, distribution and role in appetite regulation. Peptides 30:1434–1440.
  • Wang, Q., Li, W., He, Y., Ren, D., Kow, F., Song, L. et al. (2014). Novel antioxidative peptides from the protein hydrolysate of oysters (Crassostrea talienwhanensis). Food Chem. 145:991–996.
  • Wu, C. H., Kuo, Y. H., Hong, R. L. and Wu, H. C. (2015). Alpha-Enolase-binding peptide enhances drug delivery efficiency and therapeutic efficacy against colorectal cancer. Sci. Transl. Med. 7(290):290ra91.
  • Wu, C.-H., Liu, I.-J., Lu, R.-M. and Wu, H.-C. (2016). Advancement and applications of peptide phage display technology in biomedical science. J. Biomed. Sci. 23(8):1–14.
  • Wu, J. and Aluko, R. E. (2007). Quantitative structure‐activity relationship study of bitter di‐and tri‐peptides including relationship with angiotensin I‐converting enzyme inhibitory activity. J. Pept. Sci. 13:63–69.
  • Wu, J., Aluko, R. E. and Nakai, S. (2006a). Structural requirements of angiotensin I-converting enzyme inhibitory peptides: quantitative structure-activity relationship study of di-and tripeptides. Agric. Food Chem. 54:732–738.
  • Wu, J., Aluko, R. E. and Nakai, S. (2006b). Structural requirements of angiotensin i‐converting enzyme inhibitory peptides: Quantitative structure‐-activity relationship modeling of peptides containing 4‐10 amino acid residues. QSAR Comb. Sci. 25:873–880.
  • Xiao, H., Shao, F., Wu, M., Ren, W., Xiong, X., Tan, B. et al. (2015). The application of antimicrobial peptides as growth and health promoters for swine. J. Anim. Sci. Biotechnol. 6(1):19.
  • Yang, G., Jiang, Y., Yang, W. et al. (2015). Effective treatment of hypertension by recombinant Lactobacillus plantarum expressing angiotensin converting enzyme inhibitory peptide. Microb. Cell Factories. 14:202.
  • Yuan, W., Wang, J. and Zhou, F. (2012). In vivo hypotensive and physiological effects of a silk fibroin hydrolysate on spontaneously hypertensive rats. Biosci. Biotechnol. Biochem. 76:1987–1989.
  • Zhang, Q., Zhao, X., Xu, X., Tang, B., Zha, Z., Zhang, M. et al. (2014). Expression and purification of soluble human cystatin C in Escherichia coli with maltose-binding protein as a soluble partner. Protein Exp. Purif. 104:14–19.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.