1,283
Views
44
CrossRef citations to date
0
Altmetric
Reviews

Grain and sweet sorghum (Sorghum bicolor L. Moench) serves as a novel source of bioactive compounds for human health

, , , &

References

  • Akande, I., Oseni, A. and Biobaku, O. (2010). Effects of aqueous extract of Sorghum bicolor on hepatic, histological and haematological indices in rats. J. Cell Animal Biol. 4:137–142.
  • American Cancer Society. (2016). Cancer Facts Figures 2016. Atlanta: American Cancer Society. https://www.cancer.org/content/dam/cancer-org/research/cancer-facts-and-statistics/annual-cancer-facts-and-figures/2016/cancer-facts-and-figures-2016.pdf
  • Anon. (2011). Future Directions for the Global Functional Foods Market, Market Report, June 2011, Leatherhead Food Research. Accessed - August, 2013. Available from: http://www.leatherheadfood.com/UserFiles/pdfs/publicationspromopdf/Functional-Directions-for-theGlobal-Functional-Foods-Market-2011.pdf
  • Awika, J. M., Dykes, L., Gu, L., Rooney, L. W. and Prior, R. L. (2003a). Processing of sorghum (Sorghum bicolor) and sorghum products alters procyanidin oligomer and polymer distribution and content. J. Agric. Food Chem. 51:5516–5521.
  • Awika, J. M., Rooney, L. W., Wu, X., Prior, R. L. and Cisneros-Zevallos, L. (2003b). Screening methods to measure antioxidant activity of sorghum (Sorghum bicolor) and sorghum products. J. Agric. Food Chem. 51:6657–6662.
  • Awika, J. M., Rooney, L. W. and Waniska, R. D. (2004). Properties of 3-deoxyanthocyanins from sorghum. J. Agric. Food Chem. 52:4388–4394.
  • Awika, J. M., Yang, L., Browning, J. D. and Faraj, A. (2009). Comparative antioxidant, antiproliferative and phase II enzyme inducing potential of sorghum (Sorghum bicolor) varieties. LWT - Food Sci. and Technol. 42:1041–1046.
  • Azuma, T., Shigeshiro, M., Kodoma, M., Tanabe, S. and Suzuki, T. (2013). Supplemental naringenin prevents intestinal barrier defects and inflammation in colitic mice. J. Nutr. 143:827–834.
  • Balasundram, N., Sundram, K. and Samman, S. (2006). Phenolic compounds in plants and agri-industrial by-products: Antioxidant activity, occurrence, and potential uses. Food Chem. 99:191–203.
  • Balkwill, F. R. and Mantovani, A. (2012). Cancer-related inflammation: common themes and therapeutic opportunities. Semin. Cancer Biol. 22:33–40.
  • Baron, J. A. and Sandler, R. S. (2000). Nonsteroidal anti-inflammatory drugs and cancer prevention. Annu. Rev. Med. 51:511–523.
  • Barros, S. (2016). Brazil Biofuels Annual, GAIN report number: BR16009. Accessed - December 2016. Available from: https://www.fas.usda.gov/data/brazil-biofuels-annual-1
  • Baur, J., Pearson, K. J., Price, N. L., et al. (2006). Resveratrol improves health and survival of mice on a high-calorie diet. Nature 444:337–342.
  • Berg, A. H. and Scherer, P. E. (2005). Adipose tissue, inflammation, and cardiovascular disease. Circ.Res. 96:939–949.
  • Bienz, M. and Clevers, H. (2000). Linking colorectal cancer to Wnt signaling. Cell 103:311–320.
  • Billa, E., Koullas, D. P., Monties, B. and Koukios, E. G. (1997). Structure and composition of sweet sorghum stalk components. Ind. Crop. Prod. 6:297–302.
  • Bröhan, M., Jerkovic, V. and Collin, S. (2011). Potentiality of red sorghum for producing stilbenoid-enriched beers with high antioxidant activity. J. Agric. Food Chem. 59:4088–4094.
  • Byun, S., Lee, K., Jung, S. and Lee, E. (2010). Luteolin inhibits protein kinase C epsilon and c-Src activities and UVB-induced skin cancer. Cancer Res. 70:2415–2423.
  • Cassidy, A., Hanley, B. and Lamuela-Raventos, R. M. (2000). Isoflavones, lignans and stilbenes–origins, metabolism and potential importance to human health. J. Sci.Food Agric. 80:1044–1062.
  • Chang, H.-P., Wang, M.-L., Hsu, C.-Y., Liu, M.-E., Chan, M.-H. and Chen, Y.-H. (2011). Suppression of inflammation-associated factors by indole-3-carbinol in mice fed high-fat diets and in isolated, co-cultured macrophages and adipocytes. Int. J. Obes. (2005) 35:1530–1538.
  • Cherubini, F. (2010). The biorefinery concept: using biomass instead of oil for producing energy and chemicals. Energy Convers. Manage. 51:1412–1421.
  • Chiremba, C., Rooney, L. W. and Beta, T. (2012). Microwave-assisted extraction of bound phenolic acids in bran and flour fractions from sorghum and maize cultivars varying in hardness. J. Agric.Food Chem. 60:4735–4742.
  • Chunhua, L., Donglan, L., Xiuqiong, F., et al. (2013). Apigenin up-regulates transgelin and inhibits invasion and migration of colorectal cancer through decreased phosphorylation of AKT. J. Nutr.Biochem. 24:1766–1775.
  • Dai, J. and Mumper, R. J. (2010). Plant phenolics: extraction, analysis and their antioxidant and anticancer properties. Mol. (Basel, Switzerland) 15:7313–7352.
  • Duan, L., Wallace, S. N., Engelberth, A., Lovelady, J. K., Clausen, E. C., King, J. W. and Carrier, D. J. (2009). Extraction of co-products from biomass: example of thermal degradation of silymarin compounds in subcritical water. Appl.Biochem.Biotechnol. 158:362–373.
  • Dykes, L. and Rooney, L. W. (2006). Sorghum and millet phenols and antioxidants. J. Cereal Sci. 44:236–251.
  • Dykes, L., Rooney, L. W., Waniska, R. D. and Rooney, W. L. (2005). Phenolic compounds and antioxidant activity of sorghum grains of varying genotypes. J. Agric. Food Chem. 53:6813–6818.
  • Dykes, L., Seitz, L. M., Rooney, W. L. and Rooney, L. W. (2009). Flavonoid composition of red sorghum genotypes. Food Chem. 116:313–317.
  • Ekmekcioglu, C., Feyertag, J. and Marktl, W. (1998). Cinnamic acid inhibits proliferation and modulates brush border membrane enzyme activities in Caco-2 cells. Cancer Lett. 128:137–144.
  • Ferguson, L. R., Zhu, S. and Harris, P. J. (2005). Antioxidant and antigenotoxic effects of plant cell wall hydroxycinnamic acids in cultured HT-29 cells. Mol. Nutr. Food Res. 49:585–593.
  • Firestein, R., Bass, A. J., Kim, S. Y., et al. (2008). CDK8 is a colorectal cancer oncogene that regulates beta-catenin activity. Nature 455:547–551.
  • Garcia-Salas, P., Morales-Soto, A., Segura-Carretero, A. and Fernández-Gutiérrez, A. (2010). Phenolic-compound-extraction systems for fruit and vegetable samples. Mol. (Basel, Switzerland) 15:8813–8826.
  • Guglielmi, F., Luceri, C., Giovannelli, L., Dolara, P. and Lodovici, M. (2003). Effect of 4-coumaric and 3,4-dihydroxybenzoic acid on oxidative DNA damage in rat colonic mucosa. The British Journal of Nutrition 89:581–587.
  • Gujer, R., Magnolato, D. and Self, R. (1986). Glucosylated flavonoids and other phenolic compounds from sorghum. Phytochemistry 25:1431–1436.
  • Gulati, N., Laudet, B., Zohrabian, V. M., Murali, R. and Jhanwar-Uniyal, M. (2006). The antiproliferative effect of quercetin in cancer cells is mediated via inhibition of the PI3K-Akt/PKB pathway. Anticancer Res. 26:1177–1181.
  • Gupta, R. and DuBois, R. (2001). Colorectal cancer prevention and treatment by inhibition of cyclooxygenase-2. Nat. Rev. Cancer 1:11–21.
  • Hanahan, D. and Weinberg, R. A. (2011). Hallmarks of cancer: the next generation. Cell 144:646–674.
  • He, J. and Giusti, M. M. (2010). Anthocyanins: natural colorants with health-promoting properties. Annu. Rev. Food Sci.Technol. 1:163–187.
  • Hu, C. and Kitts, D. (2004). Luteolin and luteolin-7-O-glucoside from dandelion flower suppress iNOS and COX-2 in RAW264.7 cells. Mol.Cell.Biochem. 265:107–113.
  • International, T., Epidemiology, C., Ho, K., Saiful, L., Ismail, N., Ismail, M. and Yazan, L. S. (2009). Apoptosis and cell cycle arrest of human colorectal cancer cell line HT-29 induced by vanillin. Cancer Epidemiol. 33:155–160.
  • Jemal, A., Bray, F. and Ferlay, J. (2011). Global cancer statistics. CA: A Cancer J.Clin. 61:69–90.
  • Jordan, C. T., Guzman, M. L. and Noble, M. (2006). Cancer stem cells. N. Engl. J. Med. 355:1253–1261.
  • Kampa, M., Alexaki, V.-I., Notas, G., et al. (2004). Antiproliferative and apoptotic effects of selective phenolic acids on T47D human breast cancer cells: potential mechanisms of action. Breast Cancer Res.: BCR 6:R63–R74.
  • Kanno, S. I., Tomizawa, A., Hiura, T., et al. (2005). Inhibitory effects of naringenin on tumor growth in human cancer cell lines and sarcoma S-180-implanted mice. Biol.Pharm. Bull. 28:527–530.
  • Kasdagly, M., Radhakrishnan, S., Reddivari, L., Rao Veeramachaneni, D. N. and Vanamala, J. (2014). Colon carcinogenesis: influence of western diet-induced obesity and targeting stem cells using dietary bioactive compounds. Nutrition 30:1242–1256.
  • Kawabata, K., Yamamoto, T., Hara, A., et al. (2000). Modifying effects of ferulic acid on azoxymethane-induced colon carcinogenesis in F344 rats. Cancer Lett. 157:15–21.
  • Kawamori, T., Tanaka, T. and Kojima, T. (1994). Suppression of azoxymethane-induced rat colon aberrant crypt foci by dietary protocatechuic acid. Cancer Sci. 85:686–691.
  • Khan, A. Q., Khan, R., Qamar, W., et al. (2012). Caffeic acid attenuates 12-O-tetradecanoyl-phorbol-13-acetate (TPA)-induced NF-κB and COX-2 expression in mouse skin: Abrogation of oxidative stress, inflammatory responses and proinflammatory cytokine production. Food Chem.Toxicol. 50:175–183.
  • Kim, Y. J., Choi, S. E., Lee, M. W. and Lee, C. S. (2008). Taxifolin glycoside inhibits dendritic cell responses stimulated by lipopolysaccharide and lipoteichoic acid. J. Pharm.Pharmacol. 60:1465–1472.
  • Kobue-Lekalake, R. I., Taylor, J. and de Kock, H. L. (2007). Effects of phenolics in sorghum grain on its bitterness, astringency and other sensory properties. J. Sci.Food Agric. 87:1940–1948.
  • Kris-Etherton, P. M., Hecker, K. D., Bonanome, A., et al. (2002). Bioactive compounds in foods: their role in the prevention of cardiovascular disease and cancer. Am. J. Med. 113:71–88.
  • Kwon, Y. S. and Kim, C. M. (2003). Antioxidant constituents from the stem of Sorghum bicolor. Arch. Pharm. Res. 26:535–539.
  • Lee, S. B., Cha, K. H., Selenge, D., Solongo, A. and Nho, C. W. (2007). The chemopreventive effect of taxifolin is exerted through ARE-dependent gene regulation. Biol.Pharm. Bull. 30:1074–1079.
  • Leonardi, T., Vanamala, J., Taddeo, S. S., et al. (2010). Apigenin and naringenin suppress colon carcinogenesis through the aberrant crypt stage in azoxymethane-treated rats. Exp.Biol.Med. (Maywood, N.J.) 235:710–717.
  • Li, L. and Neaves, W. B. (2006). Normal stem cells and cancer stem cells: The niche matters. Cancer Res. 66:4553–4557.
  • Li, W., Du, B., Wang, T., Wang, S., and Zhang, J. (2009). Kaempferol induces apoptosis in human HCT116 colon cancer cells via the Ataxia-Telangiectasia Mutated-p53 pathway with the involvement of p53 Upregulated Modulator of Apoptosis. Chem.-Biol.Int. 177:121–127.
  • Liang, Y. C., Huang, Y. T., Tsai, S. H., Lin-Shiau, S. Y., Chen, C. F. and Lin, J. K. (1999). Suppression of inducible cyclooxygenase and inducible nitric oxide synthase by apigenin and related flavonoids in mouse macrophages. Carcinogenesis 20:1945–1952.
  • Liu, K., Cho, Y.-Y., Yao, K., et al. (2011). Eriodictyol inhibits RSK2-ATF1 signaling and suppresses EGF-induced neoplastic cell transformation. J. Biol.Chem. 286:2057–2066.
  • Longley, D. B., Harkin, D. P. and Johnston, P. G. (2003). 5-Fluorouracil: Mechanisms of action and clinical strategies. Nat. Rev. Cancer 3:330–338.
  • Lyu, S.-Y. and Park, W.-B. (2005). Production of cytokine and NO by RAW 264.7 macrophages and PBMC in vitro incubation with flavonoids. Arch.Pharm.Res. 28:573–581.
  • Madiwale, G. P., Reddivari, L., Holm, D. G. and Vanamala, J. (2011). Storage elevates phenolic content and antioxidant activity but suppresses antiproliferative and pro-apoptotic properties of colored-flesh potatoes against human colon cancer cell lines. J. Agric. Food Chem. 59:8155–8166.
  • Marín, L., Miguélez, E. M., Villar, C. J. and Lombó, F. (2015). Bioavailability of dietary polyphenols and gut microbiota metabolism: Antimicrobial properties. BioMed Res.Int. 2015:1–18.
  • Martin, K. R. (2016). Polyphenols as dietary supplements: A double- edged sword Polyphenols as dietary supplements: A double-edged sword. Nutr.Dietary Suppl. 2:1–12.
  • Massey, A. R., Reddivari, L., Radhakrishnan, S., Charepalli, V., Kurundu Hewage, E. K., Ramakrishna, V. and Vanamala, J. K. P. (2016). Pro-apoptotic activity against cancer stem cells differs between different parts of sweet sorghum. J. Funct. Foods 23:601–613.
  • Massey, A. R., Reddivari, L. and Vanamala, J. (2014). The dermal layer of sweet sorghum (sorghum bicolor) stalk, a byproduct of biofuel production and source of unique 3-deoxyanthocyanidins, has more antiproliferative and proapoptotic activity than the pith in p53 Variants of HCT116 and colon cancer stem cel. J. Agric.Food Chem. 62:3150–3159.
  • Massey, A., Reddivari, L. and Vanamala, J. (2014). The dermal layer of sweet sorghum (Sorghum bicolor) stalk, a byproduct of biofuel production and source of unique 3-deoxyanthocyanidins, has more antiproliferative and proapoptotic activity than the pith in p53 variants of HCT116 and colon cancer stem cel. J. Agric.Food Chem. 62:3150–3159.
  • McMillan, B., Riggs, D. R., Jackson, B. J., Cunningham, C. and McFadden, D. W. (2007). Dietary influence on pancreatic cancer growth by catechin and inositol hexaphosphate. J. Surg.Res. 141:115–119.
  • Min, S.-W., Ryu, S.-N. and Kim, D.-H. (2010). Anti-inflammatory effects of black rice, cyanidin-3-O-β-d-glycoside, and its metabolites, Cyanidin and protocatechuic acid. Int.Immunopharmacol. 10:959–966.
  • Mohan, J., Gandhi, A. A., Bhavya, B. C., Rashmi, R., Karunagaran, D., Indu, R. and Santhoshkumar, T. R. (2006). Caspase-2 triggers Bax-Bak-dependent and -independent cell death in colon cancer cells treated with resveratrol. J. Biol.Chem. 281:17599–17611.
  • Mojzer, E. B., Maša Knez Hrncic,  , Mojca Škerget, Ž. K. and Bren, U. (2016). Polyphenols: extraction methods, antioxidative action, bioavailability and anticarcinogenic effects. Molecules 21:901.
  • Murakami, A. and Ohigashi, H. (2007). Targeting NOX, INOS and COX-2 in inflammatory cells: chemoprevention using food phytochemicals. Int. J. Cancer J.Int. Du Cancer 121:2357–2363.
  • Mustafa, A. and Turner, C. (2011). Pressurized liquid extraction as a green approach in food and herbal plants extraction: A review. Anal.Chim. Acta 703:8–18.
  • Newmark, H. L., Yang, K., Kurihara, N., Fan, K., Augenlicht, L. H. and Lipkin, M. (2009). Western-style diet-induced colonic tumors and their modulation by calcium and vitamin D in C57Bl/6 mice: A preclinical model for human sporadic colon cancer. Carcinogenesis 30:88–92.
  • Nguyen, T. T. T., Tran, E., Ong, C. K., et al. (2003). Kaempferol-induced growth inhibition and apoptosis in A549 lung cancer cells is mediated by activation of MEK-MAPK. J. Cell.Physiol. 197:110–121.
  • Nip, W. and Burns, E. (1969). Pigment characterization in grain sorghum.l. red varieties. Cereal Chem. 46:490–495.
  • Njongmeta, N. L. A. (2009). Extractability profiling and antioxidant activity of flavonoids in sorghum grain and non-grain materials. PhD thesis submitted to Texas A&M University.
  • Osada, M., Imaoka, S. and Funae, Y. (2004). Apigenin suppresses the expression of VEGF, an important factor for angiogenesis, in endothelial cells via degradation of HIF-1alpha protein. FEBS Lett. 575:59–63.
  • Paiva, C. L., Evangelista, W. P., Queiroz, V. A. V. and Glória, M. B. A. (2015). Bioactive amines in sorghum: Method optimisation and influence of line, tannin and hydric stress. Food Chem. 173:224–230.
  • Pan, M. H., Lai, C. S., Dushenkov, S. and Ho, C. T. (2009). Modulation of inflammatory genes by natural dietary bioactive compounds. J. Agric. Food Chem. 57:4467–4477.
  • Parbhoo, V., Grimmer, H. R., Cameron-Clarke, A. and McGrath, R. M. (1995). Induction of cytochrome P-450 in rat liver by a polyphenol-rich extract from a bird-resistant sorghum grain. J. Sci.Food Agric. 69:247–252.
  • Park, C. H., Chang, J. Y., Hahm, E. R., Park, S., Kim, H.-K. and Yang, C. H. (2005). Quercetin, a potent inhibitor against beta-catenin/Tcf signaling in SW480 colon cancer cells. Biochem.Bioph.Res.Commun. 328:227–234.
  • Park, J. H., Darvin, P., Lim, E. J., Joung, Y. H., Hong, D. Y., Park, E. U. … Yang, Y. M. (2012). Hwanggeumchal sorghum induces cell cycle arrest, and suppresses tumor growth and metastasis through Jak2/STAT pathways in breast cancer xenografts. PloS One 7:e40531.
  • Patras, A., Brunton, N. P., O'Donnell, C. and Tiwari, B. K. (2010). Effect of thermal processing on anthocyanin stability in foods; mechanisms and kinetics of degradation. Trends Food Sci.Technol. 21:3–11.
  • Pereira, C. G. and Meireles, M. A. A. (2009). Supercritical fluid extraction of bioactive compounds: Fundamentals, applications and economic perspectives. Food Bioprocess Technol. 3:340–372.
  • Petti, C., Kushwaha, R., Tateno, M., Harman-Ware, A. E., Crocker, M., Awika, J., and Debolt, S. (2014). Mutagenesis breeding for increased 3-deoxyanthocyanidin accumulation in leaves of Sorghum bicolor (L.) Moench: a source of natural food pigment. J. Agric.Food Chem. 62:1227–1232.
  • Polycarpe Kayodé, A. P., Nout, M. J. R., Linnemann, A. R., Hounhouigan, J. D., Berghofer, E. and Siebenhandl-Ehn, S. (2011). Uncommonly high levels of 3-deoxyanthocyanidins and antioxidant capacity in the leaf sheaths of colored sorghum. J. Agric. Food Chem. 59:1178–1184.
  • Psahoulia, F. H., Drosopoulos, K. G., Doubravska, L., Andera, L. and Pintzas, A. (2007). Quercetin enhances TRAIL-mediated apoptosis in colon cancer cells by inducing the accumulation of death receptors in lipid rafts. Mol.Cancer Ther. 6:2591–2599.
  • Puri, M., Sharma, D. and Barrow, C. J. (2012). Enzyme-assisted extraction of bioactives from plants. Trends Biotechnol. 30:37–44.
  • Rao, P. S., Kumar, C. G., Prakasham, R. S., Rao, A. U. and Reddy, B. V. S. (2015). Sweet sorghum: Breeding and bioproducts. In Industrial Crops, pp. 1–28. Cruz, V.V. and Dierig, D.A. Eds., Springer, New York.
  • Rao, P. S., Rao, S. S., Seetharama, N., Umakath, A. V, Reddy, P. S., Reddy, B. V. S. and Gowda, C. L. L. (2009). Sweet sorghum for biofuel and strategies for its improvement. Bulletin 77, International Crops Research Institute for the Semi-Arid Tropics. Hyderabad, India.
  • Rao, P. S., Vinutha, K. S., Kumar, G. S. A., et al. (2016). Sorghum: A multipurpose bioenergy crop. In Sorghum: State of the Art and Future Perspectives, pp. 1–26. Ciampitti, I. and Prasad, P.V.V. Eds., Agronomy Monographs, vol 58. Madison, WI. American Society of Agronomy and Crop Science Society of America, Inc.
  • Reddivari, L., Bhatnagar, R., Massey, A. and Vanamala, J. (2016). Sweet sorghum (Sorghum bicolor) stalk extract, a byproduct of biofuel production, ameliorates systemic oxidative stress in a murine model of high-caloric diet-induced obesity. FASEB J. 30:404.3–404.3.
  • Reddy, L., Odhav, B. and Bhoola, K. D. (2003). Natural products for cancer prevention: A global perspective. Pharmacol.Ther. 99:1–13.
  • Reed, J. D., Tedla, A. and Kebede, Y. (1987). Phenolics, fibre and fibre digestibility in the crop residue from bird resistant and non-bird resistant sorghum varieties. J. Sci.Food Agric. 39:113–121.
  • Reuter, S., Gupta, S. C., Chaturvedi, M. M. and Aggarwal, B. B. (2010). Oxidative stress, inflammation, and cancer: How are they linked?Free Radical Biol.Med. 49:1603–1616.
  • Rey, J., Pousset, J., Levesque, J. and Wanty, P. (1993). Isolation and composition of a natural colored from the stem of Sorghum bicolor (L) Moench Subsp Americanum-Caudatum. Cereal Chem. 70:759–760.
  • Ring, A. S., Waniska, R. D. and Rooney, L. W. (1988). Phenolic compounds in different sorghum tissues during maturation. Biomass 17:39–49.
  • Ritter, K. B., McIntyre, C. L., Godwin, I. D., Jordan, D. R. and Chapman, S. C. (2007). An assessment of the genetic relationship between sweet and grain sorghums, within Sorghum bicolor ssp. bicolor (L.)Moench, using AFLP markers. Euphytica 157:161–176.
  • Ross, J. A. and Kasum, C. M. (2002). Dietary flavonoids: Bioavailability, metabolic effects, and safety. Ann. Rev. Nutr. 22:19–34.
  • Ruhul Amin, A. R. M., Kucuk, O., Khuri, F. R. and Shin, D. M. (2009). Perspectives for cancer prevention with natural compounds. J. Clin. Oncology 27:2712–2725.
  • Sharma, I., Kumari, N. and Sharma, V. (2013). Defense gene expression in Sorghum bicolor against Macrophomina phaseolina in leaves and roots of susceptible and resistant cultivars. J. Plant Interact. 9:315–323.
  • Shih, C. H., Siu, S. O., Ng, R., Wong, E., Chiu, L. C. M., Chu, I. K. and Lo, C. (2007). Quantitative analysis of anticancer 3-deoxyanthocyanidins in infected sorghum seedlings. J. Agric. Food Chem. 55:254–259.
  • Sikwese, F. (2005). Sorghum phenolic extracts: their storage stability and antioxidant activity in sunflower oil. PhD thesis submitted to University of Pretoria.
  • Slette, J. and Aradhey, A. (2016). India Biofuels Annual, GAIN report number:IN6088. Accessed - December 2016. Available from: https://gain.fas.usda.gov/Recent%20GAIN%20Publications/Biofuels%20Annual_New%20Delhi_India_6-24-2016.pdf
  • Soni, M., Patidar, K. and Sharma, D. (2012). Towards more rational techniques for the extraction of valuable phytoconstituents from plants. Global J.Pharm.Res. 1:30–39.
  • Stevens, J. F. and Maier, C. S. (2016). The chemistry of gut microbial metabolism of polyphenols. Phytochemistry Rev. 15:425–444.
  • Sudheer, A. R., Muthukumaran, S., Devipriya, N., Devaraj, H. and Menon, V. P. (2008). Influence of ferulic acid on nicotine-induced lipid peroxidation, DNA damage and inflammation in experimental rats as compared to N-acetylcysteine. Toxicology 243:317–329.
  • Terzić, J., Grivennikov, S., Karin, E. and Karin, M. (2010). Inflammation and colon cancer. Gastroenterology 138:2101–2114.
  • Tessitore, L., Davit, A., Sarotto, I. and Caderni, G. (2000). Resveratrol depresses the growth of colorectal aberrant crypt foci by affecting bax and p21(CIP) expression. Carcinogenesis 21:1619–1622.
  • Thomsen, M. H. (2005). Complex media from processing of agricultural crops for microbial fermentation. Appl.Microbiol.Biotechnol. 68:598–606.
  • Turkmen, N., Sari, F. and Velioglu, Y. S. (2006). Effects of extraction solvents on concentration and antioxidant activity of black and black mate tea polyphenols determined by ferrous tartrate and Folin–Ciocalteu methods. Food Chem. 99:835–841.
  • Uggetti, E., Sialve, B., Trably, E. and Steyer, J. (2014). Integrating microalgae production with anaerobic digestion: a biorefinery approach. Biofuels, Bioproducts Biorefining 8:516–529.
  • Vaiopoulos, A. G., Kostakis, I. D., Koutsilieris, M. and Papavassiliou, A. G. (2012). Colorectal cancer stem cells. Stem Cells (Dayton, Ohio) 30:363–371.
  • Vanamala, J., Tarver, C. C. and Murano, P. S. (2008). Obesity-enhanced colon cancer: Functional food compounds and their mechanisms of action. Curr. Cancer Drug Targets 8:611–633.
  • Vousden, K. H. and Lu, X. (2002). Live or let die: the cell's response to p53. Nat. Rev. Cancer 2:594–604.
  • Wang, J. and Mazza, G. (2002). Effects of anthocyanins and other phenolic compounds on the production of tumor necrosis factor alpha in LPS/IFN-gamma-activated RAW 264.7 macrophages. J. Agric.Food Chem. 50:4183–4189.
  • Waniska, R. D., Poe, J. H. and Bandyopadhyay, R. (1989). Effects of growth conditions on grain molding and phenols in sorghum caryopsis. J. Cereal Sci. 10:217–225.
  • Wicha, M. S., Liu, S. and Dontu, G. (2006). Cancer stem cells: An old idea–a paradigm shift. Cancer Res. 66:1883-90-96.
  • Woo, H. J., Oh, I. T., Lee, J. Y., et al. (2012). Apigeninidin induces apoptosis through activation of Bak and Bax and subsequent mediation of mitochondrial damage in human promyelocytic leukemia HL-60 cells. Process Biochem. 47:13–16.
  • Woodhead, S. and Cooper-Driver, G. (1979). Phenolic acids and resistance to insect attack in Sorghum bicolor. Biochem.Syst.Ecol. 7:309–310.
  • Worthley, D. and Whitehall, V. (2007). Colorectal carcinogenesis: road maps to cancer. World J. Gastroentero. 13:3783–3908.
  • Xavier, C. P. R., Lima, C. F., Preto, A., Seruca, R., Fernandes-Ferreira, M. and Pereira-Wilson, C. (2009). Luteolin, quercetin and ursolic acid are potent inhibitors of proliferation and inducers of apoptosis in both KRAS and BRAF mutated human colorectal cancer cells. Cancer Lett. 281:162–170.
  • Yang, C. S., Landau, J. M., Huang, M. T. and Newmark, H. L. (2001). Inhibition of carcinogenesis by dietary polyphenolic compounds. Ann. Rev. Nutr. 21:381–406.
  • Yang, L., Browning, J. D. and Awika, J. M. (2009). Sorghum 3-deoxyanthocyanins possess strong phase II enzyme inducer activity and cancer cell growth inhibition properties. J. Agric.Food Chem. 57:1797–1804.
  • Ye, J., Meng, X., Yan, C. and Wang, C. (2010). Effect of purple sweet potato anthocyanins on beta-amyloid-mediated PC-12 cells death by inhibition of oxidative stress. Neurochem.Res. 35:357–365.
  • Yip, E. C. H., Chan, A. S. L., Pang, H., Tam, Y. K. and Wong, Y. H. (2006). Protocatechuic acid induces cell death in HepG2 hepatocellular carcinoma cells through a c-Jun N-terminal kinase-dependent mechanism. Cell Biol. Toxicol. 22:293–302.
  • Yu, C. K. Y., Shih, C. H., Chu, I. K. and Lo, C. (2008). Accumulation of trans-piceid in sorghum seedlings infected with Colletotrichum sublineolum. Phytochemistry 69:700–706.
  • Yu, J., Zhang, T., Zhong, J., Zhang, X. and Tan, T. (2012). Biorefinery of sweet sorghum stem. Biotechnol.Adv. 30:811–816.
  • Zheng, L.-Y., Guo, X.-S., He, B., et al. (2011). Genome-wide patterns of genetic variation in sweet and grain sorghum (Sorghum bicolor). Genome Biol. 12:R114.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.