3,301
Views
93
CrossRef citations to date
0
Altmetric
Reviews

Vibrio species involved in seafood-borne outbreaks (Vibrio cholerae, V. parahaemolyticus and V. vulnificus): Review of microbiological versus recent molecular detection methods in seafood products

ORCID Icon, , ORCID Icon, , , , ORCID Icon & show all

References

  • Ahmed, A. M., S. Shinoda, and T. Shimamoto. 2005. A variant type of Vibrio cholerae SXT element in a multidrug-resistant strain of Vibrio fluvialis. FEMS Microbiol. Lett. 242:241–7.
  • Albuquerque, A., H. Cardoso, D. Pinheiro, and G. Macedo. 2013. Vibrio cholerae non-O1 and non-O139 bacteremia in a non-traveler Portuguese cirrhotic patient: first case report. Gastroenterología y Hepatología 36:309–10.
  • Austin, B. 2010. Vibrios as causal agents of zoonoses. Vet. Microbiol. 140:310–7.
  • Baker-Austin, C. 2015. Chapter 6 – Antimicrobial Resistance in Vibrio Species. Antimicrobial Resistance and Food Safety, ed. X. Yan and C. R. Jackson, 105–18. San Diego: Academic Press.
  • Baker-Austin, C., J. Trinanes, N. Gonzalez-Escalona, and J. Martinez-Urtaza. 2017. Non-Cholera Vibrios: the microbial barometer of climate change. Trends Microbiol 25:76–84.
  • Baker-Austin, C., A. Gore, J. D. Oliver, R. Rangdale, J. V. McArthur, and D. N. Lees. 2010. Rapid in situ detection of virulent Vibrio vulnificus strains in raw oyster matrices using real-time PCR. Environ. Microbiol. Rep. 2:76–80.
  • Baker-Austin, C., E. Lemm, R. Hartnell, et al. 2012. pilF polymorphism-based real-time PCR to distinguish Vibrio vulnificus strains of human health relevance. Food Microbiol. 30:17–23.
  • Baron, S., J. Lesne, S. Moore, E. Rossignol, S. Rebaudet, P. Gazin, R. Barrais, R. Magloire, J. Boncy, and R. Piarroux. 2013. No evidence of significant levels of toxigenic V. cholerae O1 in the Haitian aquatic environment during the 2012 rainy season. PLOS Current Outbreaks 5.
  • Batz, M. B., S. Hoffmann, and J. G. JMorrisr. 2012. Ranking the disease burden of 14 pathogens in food sources in the United States using attribution data from outbreak investigations and expert elicitation. J. Food Prot. 75:1278–91.
  • Bej, A. K., D. P. Patterson, C. W. Brasher, M. C. Vickery, D. D. Jones, and C. A. Kaysner. 1999. Detection of total and hemolysin-producing Vibrio parahaemolyticus in shellfish using multiplex PCR amplification of tl, tdh and trh. J. Microbiol. Methods 36:215–25.
  • Bhattacharyya, N., and A. Hou. 2013. A pentaplex PCR assay for detection and characterization of Vibrio vulnificus and Vibrio parahaemolyticus isolates. Lett. Appl. Microbiol. 57:233–40.
  • Caburlotto, G., E. Suffredini, M. Toson, L. Fasolato, P. Antonetti, M. Zambon, and A. Manfrin. 2016. Occurrence and molecular characterisation of Vibrio parahaemolyticus in crustaceans commercialised in Venice area, Italy. Int J Food Microbiol 220:39–49.
  • Canigral, I., Y. Moreno, J. L. Alonso, A. Gonzalez, and M. A. Ferrus. 2010. Detection of Vibrio vulnificus in seafood, seawater and wastewater samples from a Mediterranean coastal area. Microbiol. Res. 165:657–64.
  • Cazorla, C., A. Guigon, M. Noel, M.-L. Quilici, and F. Lacassin. 2011. Fatal Vibrio vulnificus infection associated with eating raw oysters, New Caledonia. Emerging Infect. Dis. 17:136–7.
  • Cecchini, F., L. Fajs, S. Cosnier, and R. S. Marks. 2016. Vibrio cholerae detection: Traditional assays, novel diagnostic techniques and biosensors. TrAC Trends in Analytical Chemistry 79:199–209.
  • Chapela, M.-J., P. Fajardo, A. Garrido, A. G. Cabado, M. Ferreira, J. Lago, and J. M. Vieites. 2010. Comparison between a TaqMan polymerase chain reaction assay and a culture method for ctx-positive Vibrio cholerae detection. J. Agric. Food Chem. 58:4051–55.
  • Chen, M., D. Guo, H. C. Wong, et al. 2012. Development of O-serogroup specific PCR assay for detection and identification of Vibrio parahaemolyticus. Int. J. Food Microbiol. 159:122–9.
  • Chen, S., and B. Ge. 2010. Development of a toxR-based loop-mediated isothermal amplification assay for detecting Vibrio parahaemolyticus. BMC microbiology 10:41.
  • Codex alimentarius. 2010. CAC/GL 73–2010: Guidelines on the application of general principles of food hygiene to the control of pathogenic Vibrio species in seafood. International Food Standards World Health Organization Food and Agriculture Organization ot the United Nations. http://www.fao.org/faowhocodexalimentarius/standards/list-ofstandards/en/.
  • Commission Regulation. 2005. (EC) No 2073/2005 of 15 november 2005 on microbiological criteria for foddstuffs.
  • Cruz, C. D., J. K. Win, and G. C. Fletcher. 2013. An improved method for quantification of Vibrio vulnificus in oysters. J. Microbiol. Methods 95:397–9.
  • Daniels, N. A. 2011. Vibrio vulnificus oysters: pearls and perils. Clin. Infect. Dis. 52:788–92.
  • Daniels, N. A., L. MacKinnon, R. Bishop, et al. 2000. Vibrio parahaemolyticus infections in the United States, 1973–1998. J. Infect. Dis. 181:1661–6.
  • Di, H., L. Ye, S. B. Neogi, H. Meng, H. Yan, S. Yamasaki, and L. Shi. 2015. Development and evaluation of a loop-mediated isothermal amplification assay combined with enrichment culture for rapid detection of very low numbers of Vibrio parahaemolyticus in seafood samples. Biol. Pharm. Bull. 38:82–7.
  • Di Pinto, A., V. Terio, L. Novello, and G. Tantillo. 2011. Comparison between thiosulphate-citrate-bile salt sucrose (TCBS) agar and CHROMagar Vibrio for isolating Vibrio parahaemolyticus. Food Control 22:124–7.
  • Du, X., X. Jiang, Y. Ye, B. Guo, W. Wang, J. Ding, and G. Xie. 2017. Next Generation Sequencing for the investigation of an Outbreak of Salmonella Schwarzengrund in Nanjing, China. Int J Biol Macromol. http://dx.doi.org/10.1016/j.ijbiomac.2017.09.005.
  • EFSA 2016. Annual report of the emerging risks exchange networks 2015. 1–36.
  • Espineira, M., M. Atanassova, J. M. Vieites, and F. J. Santaclara. 2010. Validation of a method for the detection of five species, serogroups, biotypes and virulence factors of Vibrio by multiplex PCR in fish and seafood. Food Microbiol. 27:122–31.
  • FAO. 2014. The state of world fisheries and aquaculture. http://www.fao.org/assets/infographics/FAOinfographic-SOFIA-2014-en.pdf.
  • FDA-BAM. 2004. Bacteriological analytical manual chapter 9: Vibrio. Food & Drug Administration, Bacteriological Analytical Manual, U.S. Department of health and Human Services, Public Health Service, Washington DC. https://www.fda.gov/food/foodscienceresearch/laboratorymethods/ucm070830.htm.
  • Froelich, B. A., M. J. Weiss, and R. T. Noble. 2014. The evaluation of four recent culture-based methods for the isolation and enumeration of Vibrio vulnificus bacteria from oyster meat. J. Microbiol. Methods 97:1–5.
  • Fuenzalida, L., L. Armijo, B. Zabala, C. Hernandez, M. L. Rioseco, C. Riquelme, and R. T. Espejo. 2007. Vibrio parahaemolyticus strains isolated during investigation of the summer 2006 seafood related diarrhea outbreaks in two regions of Chile. Int. J. Food Microbiol. 117:270–5.
  • Fykse, E. M., T. Nilsen, A. D. Nielsen, I. Tryland, S. Delacroix, and J. M. Blatny. 2012. Real-time PCR and NASBA for rapid and sensitive detection of Vibrio cholerae in ballast water. Mar. Pollut. Bull. 64:200–6.
  • Garrido-Maestu, A., M. J. Chapela, J. M. Vieites, and A. G. Cabado. 2015. lolB gene, a valid alternative for qPCR detection of Vibrio cholerae in food and environmental samples. Food Microbiol. 46:535–40.
  • Garrido-Maestu, A., M.-J. Chapela, E. Peñaranda, J. M. Vieites, and A. G. Cabado. 2014. In-house validation of novel multiplex real-time PCR gene combination for the simultaneous detection of the main human pathogenic vibrios (Vibrio cholerae, Vibrio parahaemolyticus, and Vibrio vulnificus). Food Control 37:371–9.
  • Garrido, A., M.-J. Chapela, M. Ferreira, et al. 2012. Development of a multiplex real-time PCR method for pathogenic Vibrio parahaemolyticus detection (tdh+ and trh+). Food Control 24:128–35.
  • Gonzalez-Escalona, N., G. M. Blackstone, and A. DePaola. 2006. Characterization of a Vibrio alginolyticus strain, isolated from Alaskan oysters, carrying a hemolysin gene similar to the thermostable direct hemolysin-related hemolysin gene (trh) of Vibrio parahaemolyticus. Appl Environ Microbiol 72:7925–9.
  • Gonzalez-Escalona, N., R. G. Gavilan, M. Toro, M. L. Zamudio, and J. Martinez-Urtaza. 2016. Outbreak of Vibrio parahaemolyticus Sequence Type 120, Peru, 2009. Emerg Infect Dis 22:1235–7.
  • Griffitt, K. J., and D. J. Grimes. 2013. A novel agar formulation for isolation and direct enumeration of Vibrio vulnificus from oyster tissue. J. Microbiol. Methods 94:98–102.
  • Han, F., and B. Ge. 2010. Quantitative detection of Vibrio vulnificus in raw oysters by real-time loop-mediated isothermal amplification. Int. J. Food Microbiol. 142:60–6.
  • Hara-Kudo, Y., T. Nishina, H. Nakagawa, H. Konuma, J. Hasegawa, and S. Kumagai. 2001. Improved method for detection of Vibrio parahaemolyticus in seafood. Appl. Environ. Microbiol. 67:5819–23.
  • Hara-Kudo, Y., S. Saito, K. Ohtsuka, et al. 2012. Characteristics of a sharp decrease in Vibrio parahaemolyticus infections and seafood contamination in Japan. Int. J. Food Microbiol. 157:95–101.
  • Hill, V. R., N. Cohen, A. M. Kahler, et al. 2011. Toxigenic Vibrio cholerae O1 in water and seafood, Haiti. Emerging Infect. Dis. 17:2147.
  • Hill, W. E., S. Keasler, M. Trucksess, P. Feng, C. Kaysner, and K. Lampel. 1991. Polymerase chain reaction identification of Vibrio vulnificus in artificially contaminated oysters. Appl. Environ. Microbiol. 57:707–11.
  • Hlady, W., R. Mullen, and R. Hopkin. 1993. Vibrio vulnificus from raw oysters. Leading cause of reported deaths from foodborne illness in Florida. Journal of the Florida Medical Association 80:536–8.
  • Hoffmann, S., B. Maculloch, and M. Batz. 2015. Economic burden of major foodborne illnesses acquired in the United States. USDA 17:543.
  • Horseman, M. A., and S. Surani. 2011. A comprehensive review of Vibrio vulnificus: an important cause of severe sepsis and skin and soft-tissue infection. Int. J. Infect. Dis. 15:e157–166.
  • Hossain, M. T., Y. O. Kim, and I. S. Kong. 2013. Multiplex PCR for the detection and differentiation of Vibrio parahaemolyticus strains using the groEL, tdh and trh genes. Mol. Cell. Probes 27:171–5.
  • Huehn, S., C. Eichhorn, S. Urmersbach, et al. 2014. Pathogenic vibrios in environmental, seafood and clinical sources in Germany. Int J Med Microbiol 304:843–50.
  • Inoue, Y., T. Ono, T. Matsui, J. Miyasaka, Y. Kinoshita, and H. Ihn. 2008. Epidemiological survey of Vibrio vulnificus infection in Japan between 1999 and 2003. J. Dermatol. 35:129–39.
  • International Organization for Standardization 2007. ISO/TS 21872–1: 2007. Microbiology of food and animal feeding stuffs — horizontal method for the detection of potentially enteropathogenic Vibrio spp. —part 1: detection of Vibrio parahaemolyticus and Vibrio cholerae. https://www.iso.org/standard/38278.html.
  • International Organization for Standardization 2007. ISO/TS 21872–2: 2007. Microbiology of food and animal feeding stuffs – Horizontal method for the detection of potentially enteropathogenic Vibrio spp. – Part 2: Detection of species other than Vibrio parahaemolyticus and Vibrio cholerae. International Organization for Standardization (ISO). https://www.iso.org/standard/38279.html.
  • International Organization for Standardization 2017. ISO/TS 21872–1: 2017. Microbiology of the food chain – Horizontal method for the determination of Vibrio spp. – Part 1: Detection of potentially enteropathogenic Vibrio parahaemolyticus, Vibrio cholerae and Vibrio vulnificus. https://www.iso.org/standard/74112.html.
  • Islam, M. S., R. Tasmin, S. I. Khan, et al. 2004. Pandemic strains of O3: K6 Vibrio parahaemolyticus in the aquatic environment of Bangladesh. Can. J. Microbiol. 50:827–834.
  • Jadeja, R., M. E. Janes, and J. G. Simonson. 2015. Development of rapid and sensitive antiflagellar monoclonal antibody based lateral flow device for the detection of Vibrio vulnificus from oyster homogenate. Food Control 56:110–3.
  • Jeyasekaran, G., K. T. Raj, R. J. Shakila, A. J. Thangarani, and D. Sukumar. 2011. Multiplex polymerase chain reaction-based assay for the specific detection of toxin-producing Vibrio cholerae in fish and fishery products. Appl. Microbiol. Biotechnol. 90:1111–8.
  • Jiménez, M. L., A. Apostolou, A. J. P. Suarez, et al. 2011. Multinational cholera outbreak after wedding in the Dominican Republic. Emerging Infect. Dis. 17:2172.
  • Johnson, E. A., and E. J. Schantz. 2017. Chapter 17 – Seafood Toxins. Foodborne Diseases, 345–66. 3rd ed. Academic Press. ISBN 9780123850072. https://doi.org/10.1016/B978-0-12-385007-2.00017-6; http://www.sciencedirect.com/science/article/pii/B9780123850072000176.
  • Jones, J. L., Y. Hara-Kudo, J. A. Krantz, et al. 2012. Comparison of molecular detection methods for Vibrio parahaemolyticus and Vibrio vulnificus. Food Microbiol. 30:105–11.
  • Jones, M. K., and J. D. Oliver. 2009. Vibrio vulnificus: disease and pathogenesis. Infect. Immun. 77:1723–33.
  • Jung, S. I., D. H. Shin, K. H. Park, J. H. Shin, and M. S. Seo. 2005. Vibrio vulnificus endophthalmitis occurring after ingestion of raw seafood. J. Infect. 51:e281–283.
  • Kam, K.-M., T.-H. Leung, Y.-Y. P. Ho, N. K.-Y. Ho, and T. P. Saw. 1995. Outbreak of Vibrio cholerae 01 in Hong Kong related to contaminated fish tank water. Public Health 109:389–95.
  • Kang, M. H., I. W. Kim, D. W. Lee, M. S. Yoo, S. H. Han, and B. S. Yoon. 2011. Development of a rapid detection method to detect tdh gene in Vibrio parahaemolyticus using 2-step ultrarapid real-time polymerase chain reaction. Diagn. Microbiol. Infect. Dis. 69:21–9.
  • Kaysner, C., and A. DePaola, Jr. 2004. Vibrio cholerae, V. parahaemolyticus, V. vulnificus, and Other Vibrio spp. Bacteriological Analytical Manual Chapter 9 Vibrio. Washington, DC: US Food and Drug Administration.
  • Khemthongcharoen, N., W. Wonglumsom, A. Suppat, K. Jaruwongrungsee, A. Tuantranont, and C. Promptmas. 2015. Piezoresistive microcantilever-based DNA sensor for sensitive detection of pathogenic Vibrio cholerae O1 in food sample. Biosens Bioelectron 63:347–53.
  • Kim, D.-G., S.-H. Ahn, L.-H. Kim, K.-J. Park, Y.-K. Hong, and I.-S. Kong. 2008. Application of the rpoS gene for species-specific detection of Vibrio vulnificus by real-time PCR. J. Microbiol. Biotechnol. 18:1841–7.
  • Kim, E. J., D. Lee, S. H. Moon, et al. 2014. Molecular insights into the evolutionary pathway of Vibrio cholerae O1 atypical El Tor variants. PLoS Pathog. 10:e1004384.
  • Kim, H.-J., H.-J. Lee, K.-H. Lee, and J.-C. Cho. 2012. Simultaneous detection of Pathogenic Vibrio species using multiplex real-time PCR. Food Control 23:491–8.
  • Kim, J. Y., and J. L. Lee. 2014. Multipurpose assessment for the quantification of Vibrio spp. and total bacteria in fish and seawater using multiplex real‐time polymerase chain reaction. J. Sci. Food Agric. 94:2807–17.
  • Kimura, B. 2017. Will the emergence of core genome MLST end the role of in silico MLST? Food Microbiology. doi:10.1016/j.fm.2017.09.003.
  • Koch, W., W. Payne, and T. Cebula. 1995. Detection of enterotoxigenic Vibrio cholerae in foods by the polymerase chain reaction. 28.01–28.09, In FDA Bacteriological Analytical Manual, 8th ed. AOAC International, Gaithersburg.
  • Li, B., X. Yang, H. Tan, B. Ke, D. He, C. Ke, and Y. Zhang. 2017. Vibrio parahaemolyticus O4: K8 forms a potential predominant clone in southern China as detected by whole-genome sequence analysis. Int. J. Food Microbiol. 244:90–5.
  • Li, Y., P. Fan, S. Zhou, and L. Zhang. 2017. Loop-mediated isothermal amplification (LAMP): A novel rapid detection platform for pathogens. Microb Pathog 107:54–61.
  • Linkous, D. A., and J. D. Oliver. 1999. Pathogenesis of Vibrio vulnificus. FEMS Microbiol. Lett. 174:207–14.
  • Liu, Y., C. Zhao, K. Fu, X. Song, K. Xu, J. Wang, and J. Li. 2017. Selective turn-on fluorescence detection of Vibrio parahaemolyticus in food based on charge-transfer between CdSe/ZnS quantum dots and gold nanoparticles. Food Control 80:380–7.
  • Lu, B., H. Zhou, D. Li, et al. 2014. The first case of bacteraemia due to non-O1/non-O139 Vibrio cholerae in a type 2 diabetes mellitus patient in mainland China. Int. J. Infect. Dis. 25:116–8.
  • Mahapatra, T., S. Mahapatra, G. R. Babu, W. Tang, B. Banerjee, U. Mahapatra, and A. Das. 2014. Cholera outbreaks in South and Southeast Asia: descriptive analysis, 2003–2012. Jpn. J. infect. Dis. 67:145–56.
  • Malcolm, T. T. H., Y. K. Cheah, C. W. Radzi, et al. 2015. Detection and quantification of pathogenic Vibrio parahaemolyticus in shellfish by using multiplex PCR and loop-mediated isothermal amplification assay. Food Control 47:664–71.
  • Martinez-Urtaza, J., A. Powell, J. Jansa, et al. 2016. Epidemiological investigation of a foodborne outbreak in Spain associated with U.S. West Coast genotypes of Vibrio parahaemolyticus. SpringerPlus 5:87.
  • Matsumoto, K., K. Ohshige, Y. Tomita, S. Mitsumizo, M. Nakashima, H. Oishi, and N. Fujita. 2010. Clinical features of Vibrio vulnificus infections in the coastal areas of the Ariake Sea, Japan. J. Infect. Chemother. 16:272–9.
  • Matsuoka, Y., Y. Nakayama, T. Yamada, et al. 2013. Accurate diagnosis and treatment of Vibrio vulnificus infection: a retrospective study of 12 cases. Braz. J. Infect. Dis. 17:7–12.
  • McLaughlin, J. B., A. DePaola, C. A. Bopp, et al. 2005. Outbreak of Vibrio parahaemolyticus gastroenteritis associated with Alaskan oysters. N. Engl. J. Med. 353:1463–70.
  • Messelhäusser, U., J. Colditz, D. Thärigen, W. Kleih, C. Höller, and U. Busch. 2010. Detection and differentiation of Vibrio spp. in seafood and fish samples with cultural and molecular methods. Int. J. Food Microbiol. 142:360–64.
  • Metzger, L. C., and M. Blokesch. 2016. Regulation of competence-mediated horizontal gene transfer in the natural habitat of Vibrio cholerae. Curr Opin Microbiol 30:1–7.
  • Motes, M., A. DePaola, D. Cook, et al. 1998. Influence of water temperature and salinity on Vibrio vulnificus in northern gulf and Atlantic coast oysters (Crassostrea virginica). Appl. Environ. Microbiol. 64:1459–65.
  • Nagao, Y., H. Matsuoka, M. Seike, et al. 2009. Knowledge of Vibrio vulnificus infection among Japanese patients with liver diseases: a prospective multicenter study. Med. Sci. Monit. 15:PH115–20.
  • Nemoto, J., M. Ikedo, T. Kojima, T. Momoda, H. Konuma, and Y. Hara-Kudo. 2011. Development and evaluation of a loop-mediated isothermal amplification assay for rapid and sensitive detection of Vibrio parahaemolyticus. J. Food Prot. 74:1462–7.
  • Nemoto, J., C. Sugawara, K. Akahane, et al. 2009. Rapid and specific detection of the thermostable direct hemolysin gene in Vibrio parahaemolyticus by loop-mediated isothermal amplification. J. Food Prot. 72:748–54.
  • Neogi, S. B., N. Chowdhury, M. Asakura, et al. 2010. A highly sensitive and specific multiplex PCR assay for simultaneous detection of Vibrio cholerae, Vibrio parahaemolyticus and Vibrio vulnificus. Lett. Appl. Microbiol. 51:293–300.
  • Newton, A. E., N. Garrett, S. G. Stroika, J. L. Halpin, M. Turnsek, and R. K. Mody. 2014. Notes from the field: increase in Vibrio parahaemolyticus infections associated with consumption of atlantic coast shellfish-2013. MMWR Morb. Mortal. Wkly. Rep. 63:335–6.
  • Niessen, L., J. Luo, C. Denschlag, and R. F. Vogel. 2013. The application of loop-mediated isothermal amplification (LAMP) in food testing for bacterial pathogens and fungal contaminants. Food Microbiol 36:191–206.
  • Nigro, O. D., and G. F. Steward. 2015. Differential specificity of selective culture media for enumeration of pathogenic vibrios: Advantages and limitations of multi-plating methods. J. Microbiol. Methods 111:24–30.
  • No, A. R., K. Okada, K. Kogure, and K. S. Park. 2011. Rapid detection of Vibrio parahaemolyticus by PCR targeted to the histone‐like nucleoid structure (H‐NS) gene and its genetic characterization. Lett. Appl. Microbiol. 53:127–33.
  • Nordstrom, J. L., M. C. Vickery, G. M. Blackstone, S. L. Murray, and A. DePaola. 2007. Development of a multiplex real-time PCR assay with an internal amplification control for the detection of total and pathogenic Vibrio parahaemolyticus bacteria in oysters. Appl. Environ. Microbiol. 73:5840–7.
  • Oliver, J. D. 2005. Wound infections caused by Vibrio vulnificus and other marine bacteria. Epidemiol. Infect. 133:383–91.
  • Park, B., and S. J. Choi. 2017. Sensitive immunoassay-based detection of Vibrio parahaemolyticus using capture and labeling particles in a stationary liquid phase lab-on-a-chip. Biosens Bioelectron 90:269–75.
  • Paydar, M., C. S. J. Teh, and K. L. Thong. 2013. Prevalence and characterisation of potentially virulent Vibrio parahaemolyticus in seafood in Malaysia using conventional methods, PCR and REP-PCR. Food Control 32:13–8.
  • Pengsuk, C., P. Chaivisuthangkura, S. Longyant, and P. Sithigorngul. 2013. Development and evaluation of a highly sensitive immunochromatographic strip test using gold nanoparticle for direct detection of Vibrio cholerae O139 in seafood samples. Biosens Bioelectron 42:229–35.
  • Perez Chaparro, P. J., J. A. McCulloch, L. T. Cerdeira, et al. 2011. Whole genome sequencing of environmental Vibrio cholerae O1 from 10 nanograms of DNA using short reads. J Microbiol Methods 87:208–12.
  • Potasman, I., A. Paz, and M. Odeh. 2002. Infectious outbreaks associated with bivalve shellfish consumption: a worldwide perspective. Clin. Infect. Dis. 35:921–928.
  • Raghunath, P., S. Acharya, A. Bhanumathi, I. Karunasagar, and I. Karunasagar. 2008. Detection and molecular characterization of Vibrio parahaemolyticus isolated from seafood harvested along the southwest coast of India. Food Microbiol 25:824–30.
  • Reidl, J., and K. E. Klose. 2002. Vibrio cholerae and cholera: out of the water and into the host. FEMS Microbiol. Rev. 26:125–39.
  • Restrepo, D., S. S. Huprikar, K. VanHorn, and E. J. Bottone. 2006. O1 and non-O1 Vibrio cholerae bacteremia produced by hemolytic strains. Diagn. Microbiol. Infect. Dis. 54:145–48.
  • Rizvi, A. V., and A. K. Bej. 2010. Multiplexed real-time PCR amplification of tlh, tdh and trh genes in Vibrio parahaemolyticus and its rapid detection in shellfish and Gulf of Mexico water. Antonie Van Leeuwenhoek 98:279–90.
  • Robert-Pillot, A., S. Copin, M. Gay, P. Malle, and M. L. Quilici. 2010. Total and pathogenic Vibrio parahaemolyticus in shrimp: fast and reliable quantification by real-time PCR. Int. J. Food Microbiol. 143:190–7.
  • Robert-Pillot, A., S. Copin, C. Himber, M. Gay, and M. L. Quilici. 2014. Occurrence of the three major Vibrio species pathogenic for human in seafood products consumed in France using real-time PCR. Int. J. Food Microbiol. 189:75–81.
  • Rosec, J. P., V. Causse, B. Cruz, J. Rauzier, and L. Carnat. 2012. The international standard ISO/TS 21872–1 to study the occurence of total and pathogenic Vibrio parahaemolyticus and Vibrio cholerae in seafood: ITS improvement by use of a chromogenic medium and PCR. Int. J. Food Microbiol. 157:189–94.
  • Sanjuán, E., F. González-Candelas, and C. Amaro. 2011. Polyphyletic origin of Vibrio vulnificus biotype 2 as revealed by sequence-based analysis. Appl. Environ. Microbiol. 77:688–95.
  • Sawabe, T., Y. Ogura, Y. Matsumura, et al. 2013. Updating the Vibrio clades defined by multilocus sequence phylogeny: proposal of eight new clades, and the description of Vibrio tritonius sp. nov. Front. Microbiol. 4:414.
  • Schurmann, D., N. Ebert, D. Kampf, B. Baumann, U. Frei, and N. Suttorp. 2002. Domestic cholera in Germany associated with fresh fish imported from Nigeria. Eur. J. Clin. Microbiol. Infect. Dis. 21:827–8.
  • Sha, Y., X. Zhang, W. Li, et al. 2016. A label-free multi-functionalized graphene oxide based electrochemiluminscence immunosensor for ultrasensitive and rapid detection of Vibrio parahaemolyticus in seawater and seafood. Talanta 147:220–5.
  • Shapiro, R., S. Altekruse, L. Hutwagner, et al. 1998. The role of Gulf Coast oysters harvested in warmer months in Vibrio vulnificus infections in the United States, 1988–1996. J. Infect. Dis. 178:752–9.
  • Skovgaard, N. 2012. Risk assessment of Vibrio parahaemolyticus in seafood. Interpretative summary and technical report, microbiological risk assessment series. Int. J. Food Microbiol. 154:215–6.
  • Srisuk, C., P. Chaivisuthangkura, S. Rukpratanporn, S. Longyant, P. Sridulyakul, and P. Sithigorngul. 2010. Rapid and sensitive detection of Vibrio cholerae by loop-mediated isothermal amplification targeted to the gene of outer membrane protein ompW. Lett. Appl. Microbiol. 50:36–42.
  • Suffredini, E., R. Mioni, R. Mazzette, et al. 2014. Detection and quantification of Vibrio parahaemolyticus in shellfish from Italian production areas. Int J Food Microbiol 184:14–20.
  • Surasilp, T., S. Longyant, S. Rukpratanporn, P. Sridulyakul, P. Sithigorngul, and P. Chaivisuthangkura. 2011. Rapid and sensitive detection of Vibrio vulnificus by loop-mediated isothermal amplification combined with lateral flow dipstick targeted to rpoS gene. Mol. Cell. Probes 25:158–63.
  • Taminiau, B., N. Korsak, C. Lemaire, V. Delcenserie, and G. Daube. 2014. Validation of real-time PCR for detection of six major pathogens in seafood products. Food Control 44:130–7.
  • Teh, C. S., K. H. Chua, and K. L. Thong. 2010. Simultaneous differential detection of human pathogenic and nonpathogenic Vibrio species using a multiplex PCR based on gyrB and pntA genes. J. Appl. Microbiol. 108:1940–45.
  • Velazquez-Roman, J., N. Leon-Sicairos, L. de Jesus Hernandez-Diaz, and A. Canizalez-Roman. 2014. Pandemic Vibrio parahaemolyticus O3:K6 on the American continent. Front. Cell. Infect. Microbiol. 3:110.
  • Vezzulli, L., R. R. Colwell, and C. Pruzzo. 2013. Ocean warming and spread of pathogenic Vibrios in the aquatic environment. Microb. Ecol. 65:817–25.
  • Wang, L., L. Shi, J. Su, Y. Ye, and Q. Zhong. 2013. Detection of Vibrio parahaemolyticus in food samples using in situ loop-mediated isothermal amplification method. Gene 515:421–5.
  • Wang, L., X. Zhao, J. Chu, et al. 2011. Application of an improved loop-mediated isothermal amplification detection of Vibrio parahaemolyticus from various seafood samples. African Journal of Microbiology Research 5:5765–71.
  • Wei, J., X. Zhou, D. Xing, and B. Wu. 2010. Rapid and sensitive detection of Vibrio parahaemolyticus in sea foods by electrochemiluminescence polymerase chain reaction method. Food Chem. 123:852–8.
  • Williams, T. C., B. Froelich, and J. D. Oliver. 2013. A new culture-based method for the improved identification of Vibrio vulnificus from environmental samples, reducing the need for molecular confirmation. J. Microbiol. Methods 93:277–83.
  • Organization, W. H. 2016. Weekly epidemiological record. Cholera, 2015. 91:433–40.
  • Xu, Y.-G., L.-M. Sun, Y.-S. Wang, P.-P. Chen, Z.-M. Liu, Y.-J. Li, and L.-J. Tang. 2017. Simultaneous detection of Vibrio cholerae, Vibrio alginolyticus, Vibrio parahaemolyticus and Vibrio vulnificus in seafood using dual priming oligonucleotide (DPO) system-based multiplex PCR assay. Food Control 71:64–70.
  • Yamazaki, W., Y. Kumeda, R. Uemura, and N. Misawa. 2011. Evaluation of a loop-mediated isothermal amplification assay for rapid and simple detection of Vibrio parahaemolyticus in naturally contaminated seafood samples. Food Microbiol. 28:1238–41.
  • Yi, M., L. Ling, S. B. Neogi, et al. 2014. Real time loop-mediated isothermal amplification using a portable fluorescence scanner for rapid and simple detection of Vibrio parahaemolyticus. Food Control 41:91–5.
  • Yu, L-p., Y-h. Hu, X-h. Zhang, and B-g. Sun. 2013. Development of a triplex loop-mediated isothermal amplification method for rapid on-site detection of three Vibrio species associated with fish diseases. Aquaculture 414–415:267–73.
  • Yu, S., W. Chen, D. Wang, X. He, X. Zhu, and X. Shi. 2010. Species-specific PCR detection of the food-borne pathogen Vibrio parahaemolyticus using the irgB gene identified by comparative genomic analysis. FEMS Microbiol. Lett. 307:65–71.
  • Zeng, J., H. Wei, L. Zhang, et al. 2014. Rapid detection of Vibrio parahaemolyticus in raw oysters using immunomagnetic separation combined with loop-mediated isothermal amplification. Int. J. Food Microbiol. 174:123–8.
  • Zhong, Q., J. Tian, B. Wang, and L. Wang. 2016. PMA based real-time fluorescent LAMP for detection of Vibrio parahaemolyticus in viable but nonculturable state. Food Control 63:230–8.
  • Zhu, R. G., T. P. Li, Y. F. Jia, and L. F. Song. 2012. Quantitative study of viable Vibrio parahaemolyticus cells in raw seafood using propidium monoazide in combination with quantitative PCR. J Microbiol Methods 90:262–6.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.