1,696
Views
55
CrossRef citations to date
0
Altmetric
Reviews

Bioactive edible films for food applications:Influence of the bioactive compounds on film structure and properties

, & ORCID Icon

References

  • Acevedo-Fani, A., L. Salvia-Trujillo, M. A. Rojas-Graü, and O. Martín-Belloso. 2015. Edible films from essential-oil-loaded nanoemulsions: Physicochemical characterization and antimicrobial properties. Food Hydrocolloids 47:168–177. https://doi.org/10.1016/j.foodhyd.2015.01.032.
  • Arabestani, A., M. Kadivar, M. Shahedi, S. A. H. Goli, and R. Porta. 2016. The effect of oxidized ferulic acid on physicochemical properties of bitter vetch (Vicia ervilia) protein-based films. Journal of Applied Polymer Science 133. https://doi.org/10.1002/app.42894.
  • Araghi, M., Z. Moslehi, A. Mohammadi Nafchi, A. Mostahsan, N. Salamat, and A. Daraei Garmakhany. 2015. Cold water fish gelatin modification by a natural phenolic cross-linker (ferulic acid and caffeic acid). Food Science & Nutrition 3:370–375. https://doi.org/10.1002/fsn3.230.
  • Arcan, I., and A. Yemenicioğlu. 2011. Incorporating phenolic compounds opens a new perspective to use zein films as flexible bioactive packaging materials. Food Research International 44:550–556. https://doi.org/10.1016/j.foodres.2010.11.034.
  • Arifin, D. Y., L. Y. Lee, and C.-H. Wang. 2006. Mathematical modeling and simulation of drug release from microspheres: Implications to drug delivery systems. Advanced Drug Delivery Reviews 58:1274–1325. https://doi.org/10.1016/j.addr.2006.09.007.
  • Atarés, L., C. De Jesús, P. Talens, and A. Chiralt. 2010. Characterization of SPI-based edible films incorporated with cinnamon or ginger essential oils. Journal of Food Engineering 99:384–391. https://doi.org/10.1016/j.jfoodeng.2010.03.004.
  • Bahram, S., M. Rezaei, M. Soltani, A. Kamali, S. M. Ojagh, and M. Abdollahi. (2014). Whey protein concentrate edible film activated with cinnamon essential oil. Journal of Food Processing and Preservation 38:1251–1258. https://doi.org/10.1111/jfpp.12086.
  • Basch, C. Y., R. J. Jagus, and S. K. Flores. 2013. Physical and antimicrobial properties of tapioca starch-HPMC edible films incorporated with nisin and/or potassium sorbate. Food and Bioprocess Technology 6:2419–2428. https://doi.org/10.1007/11947-012-0860-3.
  • Benbettaïeb, N., O. Chambin, A. Assifaoui, S. Al-Assaf, T. Karbowiak, and F. Debeaufort. 2016. Release of coumarin incorporated into chitosan-gelatin irradiated films. Food Hydrocolloids 56:266–276. https://doi.org/10.1016/j.foodhyd.2015.12.026.
  • Benbettaïeb, N., F. Debeaufort, and T. Karbowiak. 2017. Bio-active edible films for food applications – Part 1: mechanisms of antimicrobial and antioxidant activities. Trends in Food Science & Technology.
  • Benbettaïeb, N., T. Karbowiak, A. Assifaoui, F. Debeaufort, and O. Chambin. 2015a. Controlled release of tyrosol and ferulic acid encapsulated in chitosan-gelatin films after electron beam irradiation. Journal of Radiation Physics and Chemistry 118:81–86. https://doi.org/10.1016/j.radphyschem.2015.01.035.
  • Benbettaïeb, N., T. Karbowiak, C.-H. Brachais, and F. Debeaufort. 2015b. Coupling tyrosol, quercetin or ferulic acid and electron beam irradiation to cross-link chitosan–gelatin films: A structure–function approach. European Polymer Journal 67:113–127. https://doi.org/10.1016/j.eurpolymj.2015.03.060.
  • Benbettaïeb, N., C. Tanner, P. Cayot, T. Karbowiak, and F. Debeaufort. 2018. Impact of functional properties and release kinetics on antioxidant activity of biopolymer active films and coatings. Food Chemistry 242:369–377. https://doi.org/10.1016/j.foodchem.2017.09.065.
  • Berger, J., M. Reist, J. M. Mayer, O. Felt, N. Peppas, and R. Gurny. 2004. Structure and interactions in covalently and ionically crosslinked chitosan hydrogels for biomedical applications. European Journal of Pharmaceutics and Biopharmaceutics 57:19–34. https://doi.org/10.1016/S0939-6411(03)00161-9.
  • Bonilla, J., and P. J. A. Sobral. 2016. Investigation of the physicochemical, antimicrobial and antioxidant properties of gelatin-chitosan edible film mixed with plant ethanolic extracts. Food Bioscience 16:17–25.
  • Bonilla, J., L. Atarés, M. Vargas, and A. Chiralt. 2012. Effect of essential oils and homogenization conditions on properties of chitosan-based films. Food Hydrocolloids 26:9–16. https://doi.org/10.1016/j.foodhyd.2011.03.015.
  • Brayden, D. J. 2003. Controlled release technologies for drug delivery. Drug Discovery Today 8:976–978. https://doi.org/10.1016/S1359-6446(03)02874-5.
  • Brudzynski, K., and L. Maldonado-Alvarez. 2015. Polyphenol-protein complexes and their consequences for the redox activity, structure and function of honey. A current view and new hypothesis – a Review, Polish Journal of Food and Nutrition Sciences 6 (2): 71–80.
  • Buonocore, G. G., A. Conte, M. R. Corbo, M. Sinigaglia, and M. A. Del Nobile. 2005. Mono- and multilayer active films containing lysozyme as antimicrobial agent. Innovative Food Science & Emerging Technologies 6:459–464. https://doi.org/10.1016/j.ifset.2005.05.006.
  • Caillet, S., S. Salmiéri, and M. Lacroix. 2006. Evaluation of free radical-scavenging properties of commercial grape phenol extracts by a fast colorimetric method. Food Chemistry 95:1–8. https://doi.org/10.1016/j.foodchem.2004.12.011.
  • Campos, C. A., L. N. Gerschenson, and S. K. Flores. 2011. Development of edible films and coatings with antimicrobial activity. Food and Bioprocess Technology 4:849–875. https://doi.org/10.1007/s11947-010-0434-1.
  • Cao, N., Y. Fu, and J. He. 2007a. Mechanical properties of gelatin films cross-linked, respectively, by ferulic acid and tannin acid. Food Hydrocolloids 21:575–584. https://doi.org/10.1016/j.foodhyd.2006.07.001.
  • Cao, N., Y. Fu, and J. He. 2007b. Preparation and physical properties of soy protein isolate and gelatin composite films. Food Hydrocolloids 21:1153–1162. https://doi.org/10.1016/j.foodhyd.2006.09.001.
  • Cao, N., X. Yang, and Y. Fu. 2009. Effects of various plasticizers on mechanical and water vapor barrier properties of gelatin films. Food Hydrocolloids 23:729–735. https://doi.org/10.1016/j.foodhyd.2008.07.017.
  • Cha, D. S., J. H. Choi, M. S. Chinnan, and H. J. Park. 2002. Antimicrobial films based on Na-alginate and κ-carrageenan. LWT-Food Science and Technology 35:715–719. https://doi.org/10.1006/fstl.2002.0928.
  • Charlton, A. J., N. J. Baxter, M. L. Khan, A. J. Moir, E. Haslam, A. P. Davies, and M. P. Williamson. 2002. Polyphenol/peptide binding and precipitation. Journal of Agricultural and Food Chemistry 50:1593–1601. https://doi.org/10.1021/jf010897z.
  • Chen, L., G. Remondetto, M. Rouabhia, and M. Subirade. 2008. Kinetics of the breakdown of cross-linked soy protein films for drug delivery. Biomaterials 29:3750–3756. https://doi.org/10.1016/j.biomaterials.2008.05.025.
  • Cheng, S.-Y., B.-J. Wang, and Y.-M. Weng. 2015. Antioxidant and antimicrobial edible zein/chitosan composite films fabricated by incorporation of phenolic compounds and dicarboxylic acids. LWT – Food Science and Technology 63:115–121. https://doi.org/10.1016/j.lwt.2015.03.030.
  • Choi, I., Y. Chang, S.-H. Shin, E. Joo, H. Song, H. Eom, and J. Han. 2017. Development of biopolymer composite films using a microfluidization technique for carboxymethylcellulose and apple skin particles. International Journal of Molecular Sciences 18:1278.https://doi.org/10.3390/ijms18061278.
  • Ciannamea, E. M., P. M. Stefani, and R. A. Ruseckaite. 2016. Properties and antioxidant activity of soy protein concentrate films incorporated with red grape extract processed by casting and compression molding. LWT – Food Science and Technology 74:353–362. https://doi.org/10.1016/j.lwt.2016.07.073.
  • Da Róz, A. L., P. Veiga-Santos, A. M. Ferreira, T. C. R. Antunes, F. d. L. Leite, F. M. Yamaji, and A. J. F. de Carvalho. 2016. Water susceptibility and mechanical properties of thermoplastic starch pectin blends reactively extruded with edible citric acid. Materials Research 19:138–142.
  • Debeaufort, F., J.-A. Quezada-Gallo, and A. Voilley. 1998. Edible films and coatings: Tomorrow's Packagings: A Review. Critical Reviews in Food Science and Nutrition 38:299–313. https://doi.org/10.1080/10408699891274219.
  • Du, W. X., C. W. Olsen, R. J. Avena-Bustillos, T. H. McHugh, C. E. Levin, and M. Friedman. 2008. Storage stability and antibacterial activity against Escherichia coli O157:H7 of carvacrol in edible apple films made by two different casting methods. Journal of Agricultural and Food Chemistry 56:3082–3088. https://doi.org/10.1021/jf703629s.
  • Du, W. X., C. W. Olsen, R. J. Avena-Bustillos, T. H. McHugh, C. E. Levin, and M. Friedman. 2009. Effects of allspice, cinnamon, and clove bud essential oils in edible apple films on physical properties and antimicrobial activities. Journal of Food Sciences 74:1750–3841. https://doi.org/10.1111/j.1750-3841.2009.01282.x.
  • Elsabee, M. Z., and E. S. Abdou. 2013. Chitosan based edible films and coatings: A review. Materials Science and Engineering: C 33:1819–1841. https://doi.org/10.1016/j.msec.2013.01.010.
  • Emmambux, M., M. Stading, and J. Taylor. 2004. Sorghum kafirin film property modification with hydrolysable and condensed tannins. Journal of Cereal Science 40:127–135. https://doi.org/10.1016/j.jcs.2004.08.005.
  • Espitia, P. J. P., R. J. Avena-Bustillos, W.-X. Du, B.-S. Chiou, T. G. Williams, D. Wood, T. H. McHugh, and N. F. F. Soares. 2014. Physical and antibacterial properties of açaí edible films formulated with thyme essential oil and apple skin polyphenols. Journal of Food Science 79:M903–M910. https://doi.org/10.1111/1750-3841.12432.
  • Espitia, P. J. P., N. D. F. F. Soares, L. C. M. Botti, and W. A. Silva. 2011. Effect of essential oils in the properties of cellulosic active packaging. Macromolecular Symposia 299–300:199–205. https://doi.org/10.1002/masy.200900124.
  • Fabra, M. J., A. Hambleton, P. Talens, F. Debeaufort, and A. Chiralt. 2011. Effect of ferulic acid and α-tocopherol antioxidants on properties of sodium caseinate edible films. Food Hydrocolloids 25:1441–1447. https://doi.org/10.1016/j.foodhyd.2011.01.012.
  • Flores, S. K., L. N. Gerschenson, J. Rosa, and K. J. Sanjurjo. 2011. Strategies for extending shelf life of foods using antimicrobial edible films. In: Focus in food engineering. pp 69–99. B. Siegler Ed., Nova Science Publishers, New York.
  • Friesen, K., C. Chang, and M. Nickerson. 2015. Incorporation of phenolic compounds, rutin and epicatechin, into soy protein isolate films: Mechanical, barrier and cross-linking properties. Food Chemistry 172:18–23. https://doi.org/10.1016/j.foodchem.2014.08.128.
  • Gómez-Estaca, J., P. Montero, F. Fernández-Martín, A. Alemán, and M. C. Gómez-Guillén. 2009. Physical and chemical properties of tuna-skin and bovine-hide gelatin films with added aqueous oregano and rosemary extracts. Food Hydrocolloids 23:1334–1341. https://doi.org/10.1016/j.foodhyd.2008.09.013.
  • Gómez-Guillén, M. C., M. Ihl, V. Bifani, A. Silva, and P. Montero. 2007. Edible films made from tuna-fish gelatin with antioxidant extracts of two different murta ecotypes leaves (Ugni molinae Turcz). Food Hydrocolloids 21:1133–1143. https://doi.org/10.1016/j.foodhyd.2006.08.006.
  • Guilbert, S., N. Gontard, and B. Cuq. 1995. Technology and applications of edible protective films. Packaging Technology and Science 8:339–346. https://doi.org/10.1002/pts.2770080607.
  • Han, J. H., and J. D. Floros. 1998. Simulating diffusion model and determining diffusivity of potassium sorbate through plastics to develop antimicrobial packaging films. Journal of Food Processing and Preservation 22:107–122. https://doi.org/10.1111/j.1745-4549.1998.tb00808.x.
  • Hoque, M. S., S. Benjakul, and T. Prodpran. 2011. Properties of film from cuttlefish (Sepia pharaonis) skin gelatin incorporated with cinnamon, clove and star anise extracts. Food Hydrocolloids 25:1085–1097. https://doi.org/10.1016/j.foodhyd.2010.10.005.
  • Imran, M., S. El-Fahmy, A.-M. Revol-Junelles, and S. Desobry. 2010. Cellulose derivative based active coatings: Effects of nisin and plasticizer on physico-chemical and antimicrobial properties of hydroxypropyl methylcellulose films. Carbohydrate Polymers 81:219–225. https://doi.org/10.1016/j.carbpol.2010.02.021.
  • Jahed, E., M. A. Khaledabad, M. R. Bari, and H. Almasi. 2017. Effect of cellulose and lignocellulose nanofibers on the properties of Origanum vulgare ssp. gracile essential oil-loaded chitosan films. Reactive and Functional Polymers 117:70–80. https://doi.org/10.1016/j.reactfunctpolym.2017.06.008.
  • Kaewprachu, P., K. Osako, N. Rungraeng, and S. Rawdkuen. 2017. Characterization of fish myofibrillar protein film incorporated with catechin-Kradon extract. International Journal of Biological Macromolecules, in press. https://doi.org/10.1016/j.ijbiomac.2017.10.011.
  • Kamper, S. L., and O. Fennema. 1985. Use of an edible film to maintain water vapor gradients in foods. Journal of Food Science 50:382–384. https://doi.org/10.1111/j.1365-2621.1985.tb13408.x.
  • Kavoosi, G., A. Rahmatollahi, S. Mohammad Mahdi Dadfar, and A. Mohammadi Purfard. 2014. Effects of essential oil on the water binding capacity, physico-mechanical properties, antioxidant and antibacterial activity of gelatin films. LWT – Food Science and Technology 57:556–561. https://doi.org/10.1016/j.lwt.2014.02.008.
  • Khwaldia, K., C. Perez, S. Banon, S. Desobry, and J. Hardy. 2004. Milk proteins for edible films and coatings. Critical Reviews in Food Science and Nutrition 44:239–251. https://doi.org/10.1080/10408690490464906.
  • Kim, S., M. E. Nimni, Z. Yang, and B. Han. 2005. Chitosan/gelatin–based films crosslinked by proanthocyanidin. Journal of Biomedical Materials Research Part B: Applied Biomaterials 75:442–450.
  • Klaenhammer, T. R. 1993. Genetics of bacteriocins produced by lactic acid bacteria*. FEMS Microbiology Reviews 12:39–85. https://doi.org/10.1111/j.1574-6976.1993.tb00012.x.
  • Klangmuang, P., and R. Sothornvit. 2016. Barrier properties, mechanical properties and antimicrobial activity of hydroxypropyl methylcellulose-based nanocomposite films incorporated with Thai essential oils. Food Hydrocolloids 61:609–616. https://doi.org/10.1016/j.foodhyd.2016.06.018.
  • Ko, S., M. E. Janes, N. S. Hettiarachchy, and M. G. Johnson. 2001. Physical and chemical properties of edible films containing nisin and their action against Listeria monocytogenes. Journal of Food Science 66:1006–1011. https://doi.org/10.1111/j.1365-2621.2001.tb08226.x.
  • Krochta, J. M., E. A. Baldwin, and M. O. Nisperos-Carriedo. 1994. Edible coatings and films to improve food quality. Technomic Publ. Co., Boca Raton PA.
  • Lacroix, M., T. C. Le, B. Ouattara, H. Yu, M. Letendre, S. F. Sabato, M. A. Mateescu, and G. Patterson. 2002. Use of γ-irradiation to produce films from whey, casein and soya proteins: structure and functionals characteristics. Radiation Physics and Chemistry 63:827–832. https://doi.org/10.1016/S0969-806X(01)00574-6.
  • Latha, M. S., and A. Jayakrishnan. 1994. Glutaraldehyde cross-linked bovine casein microspheres as a matrix for the controlled release of theophylline: In-vitro studies. Journal of Pharmacy and Pharmacology 46:8–13. https://doi.org/10.1111/j.2042-7158.1994.tb03711.x.
  • Lee, S. J., and M. Rosenberg. 1999. Preparation and properties of glutaraldehyde cross-linked whey protein-based microcapsules containing theophylline. Journal of Controlled Release 61:123–136. https://doi.org/10.1016/S0168-3659(99)00108-X.
  • Limpisophon, K., and G. Schleining. 2017. Use of gallic acid to enhance the antioxidant and mechanical properties of active fish gelatin film. Journal of Food Science 82:80–89. https://doi.org/10.1111/1750-3841.13578.
  • Manab, A., M. E. Sawitri, K. U. Al Awwaly, A. S. Widati, and Y. S. Haniyah. 2016. Antibacterial and physical properties of composite edible film containing modified lysozyme and sodium cyanoborohydrate. International Journal of CemTech Research 9 (4):421–429.
  • Masamba, K., Y. Li, H. Sharif, J. Ma, and F. Zhong. 2016. Mechanical and water barrier properties of zein–corn starch composite films as affected by gallic acid treatment. International Journal Food Engineering 12 (8): 773–781.
  • Mathew, S., and T. E. Abraham. 2008. Characterisation of ferulic acid incorporated starch–chitosan blend films. Food Hydrocolloids 22:826–835. https://doi.org/10.1016/j.foodhyd.2007.03.012.
  • Moreno, O., L. Atarés, and A. Chiralt. 2015. Effect of the incorporation of antimicrobial/antioxidant proteins on the properties of potato starch films. Carbohydrate Polymers 133:353–364.
  • Nagarajan, M., T. Prodpran, S. Benjakul, and P. Songtipya. 2017. Properties and characteristics of multi-layered films from tilapia skin gelatin and poly(lactic acid). Food Biophysics 12:222–233. https://doi.org/10.1007/s11483-017-9478-3.
  • Nie, X., Y. Gong, N. Wang, and X. Meng. 2015. Preparation and characterization of edible myofibrillar protein-based film incorporated with grape seed procyanidins and green tea polyphenol. LWT – Food Science and Technology 64:1042–1046. https://doi.org/10.1016/j.lwt.2015.07.006.
  • Nisperos-Carriedo, M. 1994. Edible coatings and films based on polysaccharides. In Edible Coatings and Films to Improve Food Quality, pp 305–330. Krochta J. M., Baldwin E. A. and Nisperos-Carriedo M. O. (Eds.). Technomic Publishing Co., Boca Raton PA.
  • Nuthong, P., S. Benjakul, and T. Prodpran. 2009. Effect of phenolic compounds on the properties of porcine plasma protein-based film. Food Hydrocolloids 23:736–741. https://doi.org/10.1016/j.foodhyd.2008.08.003.
  • Ojagh, S. M., M. Rezaei, S. H. Razavi, and S. M. H. Hosseini. 2010. Development and evaluation of a novel biodegradable film made from chitosan and cinnamon essential oil with low affinity toward water. Food Chemistry 122:161–166. https://doi.org/10.1016/j.foodchem.2010.02.033.
  • Otoni, C. G., R. J. Avena-Bustillos, C. W. Olsen, C. Bilbao-Sáinz, and T. H. McHugh. 2016. Mechanical and water barrier properties of isolated soy protein composite edible films as affected by carvacrol and cinnamaldehyde micro and nanoemulsions. Food Hydrocolloids 57:72–79. https://doi.org/10.1016/j.foodhyd.2016.01.012.
  • Otoni, C. G., M. R. d. Moura, F. A. Aouada, G. P. Camilloto, R. S. Cruz, M. V. Lorevice, N. d. F. F. Soares, and L. H. C. Mattoso. 2014a. Antimicrobial and physical-mechanical properties of pectin/papaya puree/cinnamaldehyde nanoemulsion edible composite films. Food Hydrocolloids 41:188–194. https://doi.org/10.1016/j.foodhyd.2014.04.013.
  • Otoni, C. G., S. F. O. Pontes, E. A. A. Medeiros, and NdF. F. Soares. 2014b. Edible films from methylcellulose and nanoemulsions of clove bud (Syzygium aromaticum) and oregano (Origanum vulgare) essential oils as shelf life extenders for sliced bread. Journal of Agricultural and Food Chemistry 62:5214–5219. https://doi.org/10.1021/jf501055f.
  • Ou, S., Y. Wang, S. Tang, C. Huang, and M. G. Jackson. 2005. Role of ferulic acid in preparing edible films from soy protein isolate. Journal of Food Engineering 70:205–210. https://doi.org/10.1016/j.jfoodeng.2004.09.025.
  • Oussalah, M., S. Caillet, S. Stéphane, L. Saucier, and M. Lacroix. 2006. Antimicrobial effects of alginate-based film containing essential oils for the preservation of whole beef muscle. Journal of Food Protection 69:2364–2369. https://doi.org/10.4315/0362-028X-69.10.2364.
  • Ozdal, T., E. Capanoglu, and F. Altay. 2013. A review on protein–phenolic interactions and associated changes. Food Research International 51:954–970. https://doi.org/10.1016/j.foodres.2013.02.009.
  • Ozdemir, M., and J. Floros. 2003. Film composition effects on diffusion of potassium sorbate through whey protein films. Journal of Food Science. 68: 511–516. https://doi.org/10.1111/j.1365-2621.2003.tb05703.x.
  • Park, S., M. Daeschel, and Y. Zhao. (2004). Functional properties of antimicrobial lysozyme-chitosan composite films. Journal of Food Science 69:M215–M221. https://doi.org/10.1111/j.1365-2621.2004.tb09890.x.
  • Park, S. Y., B. I. Lee, S. T. Jung, and H. J. Park. 2001. Biopolymer composite films based on κ-carrageenan and chitosan. Materials Research Bulletin 36:511–519. https://doi.org/10.1016/S0025-5408(01)00545-1.
  • Pattanayaiying, R., A. H-Kittikun, and C. N. Cutter. 2015. Optimization of formulations for pullulan films containing lauric arginate and nisin Z. LWT - Food Science and Technology 63:1110–1120. https://doi.org/10.1016/j.carbpol.2007.08.002.
  • Pelissari, F. M., M. V. E. Grossmann, F. Yamashita, and E. A. G. Pineda. 2009. Antimicrobial, mechanical, and barrier properties of cassava starch−chitosan films incorporated with oregano essential oil. Journal of Agricultural and Food Chemistry 57:7499–7504. https://doi.org/10.1021/jf9002363.
  • Peña, C., K. de la Caba, A. Eceiza, R. Ruseckaite, and I. Mondragon. 2010. Enhancing water repellence and mechanical properties of gelatin films by tannin addition. Bioresource Technology 101:6836–6842. https://doi.org/10.1016/j.biortech.2010.03.112.
  • Peng, Y., and Y. Li. 2014. Combined effects of two kinds of essential oils on physical, mechanical and structural properties of chitosan films. Food Hydrocolloids 36:287–293. https://doi.org/10.1016/j.foodhyd.2013.10.013.
  • Peretto, G., W.-X. Du, R. J. Avena-Bustillos, S. B. L. Sarreal, S. S. T. Hua, P. Sambo, and T. H. McHugh. 2014. Increasing strawberry shelf-life with carvacrol and methyl cinnamate antimicrobial vapors released from edible films. Postharvest Biology and Technology 89:11–18. https://doi.org/10.1016/j.postharvbio.2013.11.003.
  • Pranoto, Y., S. K. Rakshit, and V. M. Salokhe. 2005a. Enhancing antimicrobial activity of chitosan films by incorporating garlic oil, potassium sorbate and nisin. LWT – Food Science and Technology 38:859–865. https://doi.org/10.1016/j.lwt.2004.09.014.
  • Pranoto, Y., V. M. Salokhe, and S. K. Rakshit. 2005b. Physical and antibacte rial properties of alginate-based edible film incorporated with garlic oil. Food Research International 38:267–272. https://doi.org/10.1016/j.foodres.2004.04.009.
  • Prodpran, T., S. Benjakul, and S. Phatcharat. 2012. Effect of phenolic compounds on protein cross-linking and properties of film from fish myofibrillar protein. International Journal of Biological Macromolecules 51:774–782. https://doi.org/10.1016/j.ijbiomac.2012.07.010.
  • Rattaya, S., S. Benjakul, and T. Prodpran. 2009. Properties of fish skin gelatin film incorporated with seaweed extract. Journal of Food Engineering 95:151–157. https://doi.org/10.1016/j.jfoodeng.2009.04.022.
  • Rivero, S., M. García, and A. Pinotti. 2010. Crosslinking capacity of tannic acid in plasticized chitosan films. Carbohydrate Polymers. 82:270–276. https://doi.org/10.1016/j.carbpol.2010.04.048.
  • Sánchez-González, L., M. Vargas, C. González-Martínez, A. Chiralt, and M. Cháfer. 2011. Use of essential oils in bioactive edible coatings: A Review. Food Engineering Reviews 3:1–16. https://doi.org/10.1007/s12393-010-9031-3.
  • Sebti, I., E. Chollet, P. Degraeve, C. Noel, and E. Peyrol. 2007. Water sensitivity, antimicrobial, and physicochemical analyses of edible films based on HPMC and/or chitosan. Journal of Agricultural and Food Chemistry 55:693–699. https://doi.org/10.1021/jf062013n.
  • Siepmann, J., and N. A. Peppas. 2012. Modeling of drug release from delivery systems based on hydroxypropyl methylcellulose (HPMC). Advanced Drug Delivery Reviews 64:163–174. https://doi.org/10.1016/j.addr.2012.09.028.
  • Silva-Weiss, A., M. Ihl, P. J. A. Sobral, M. C. Gómez-Guillén, and V. Bifani. 2013. Natural additives in bioactive edible films and coatings: functionality and applications in foods. Food Engineering Reviews 5:200–216. https://doi.org/10.1007/s12393-013-9072-5.
  • Sun, X., Z. Wang, H. Kadouh, and K. Zhou. 2014. The antimicrobial, mechanical, physical and structural properties of chitosan–gallic acid films. LWT – Food Science and Technology 57:83–89. https://doi.org/10.1016/j.lwt.2013.11.037.
  • Sun, Y., Y. Liu, Y. Li, M. Lv, P. Li, H. Xu, and L. Wang. 2011. Preparation and characterization of novel curdlan/chitosan blending membranes for antibacterial applications. Carbohydrate Polymers 84:952–959. https://doi.org/10.1016/j.carbpol.2010.12.055.
  • Talón, E., K. T. Trifkovic, V. A. Nedovic, B. M. Bugarski, M. Vargas, A. Chiralt, and C. González-Martínez. 2017. Antioxidant edible films based on chitosan and starch containing polyphenols from thyme extracts. Carbohydrate Polymers 157:1153–1161. https://doi.org/10.1016/j.carbpol.2016.10.080.
  • Tammineni, N., B. Rasco, J. Powers, C. Nindo, and G. Ünlü. 2014. Bovine and fish gelatin coatings incorporating tannins: effect on physical properties and oxidative stability of salmon fillets. Journal of Food Chemistry and Nutrition 2:10.
  • Ulbin-Figlewicz, N., A. Zimoch-Korzycka, and A. Jarmoluk. 2014. Antibacterial activity and physical properties of edible chitosan films exposed to low-pressure plasma. Food and Bioprocess Technology 7:3646–3654. https://doi.org/10.1007/s11947-014-1379-6.
  • Vachon, C., H. L. Yu, R. Yefsah, R. Alain, D. St-Gelais, and M. Lacroix. 2000. Mechanical and structural properties of milk protein edible films cross-linked by heating and γ-irradiation. Journal of Agricultural and Food Chemistry 48:3202–3209. https://doi.org/10.1021/jf991055r.
  • Vate, N. K., S. Benjakul, and T. Prodpran. 2017. Improvement of properties of sardine myofibrillar protein films using squid Ink tyrosinasein combination with tannic acid. Turkish Journal of Fisheries and Aquatic Sciences 17:853–861. https://doi.org/10.4194/1303-2712-v17_5_01.
  • Wong, T. W., and S. Nurjaya. 2008. Drug release property of chitosan–pectinate beads and its changes under the influence of microwave. European Journal of Pharmaceutics and Biopharmaceutics 69:176–188. https://doi.org/10.1016/j.ejpb.2007.09.015.
  • Wu, J., S. Chen, S. Ge, J. Miao, J. Li, and Q. Zhang. 2013. Preparation, properties and antioxidant activity of an active film from silver carp (Hypophthalmichthys molitrix) skin gelatin incorporated with green tea extract. Food Hydrocolloids 32:42–51. https://doi.org/10.1016/j.foodhyd.2012.11.029.
  • Yoon, S.-D. 2014. Cross-linked potato starch-based blend films using ascorbic acid as a plasticizer. Journal of Agricultural and Food Chemistry 62:1755–1764. https://doi.org/10.1021/jf4024855.
  • Yoon, S. D., S. H. Chough, and H. R. Park. 2006. Effects of additives with different functional groups on the physical properties of starch/PVA blend film. Journal of Applied Polymer Science 100:3733–3740. https://doi.org/10.1002/app.23303.
  • Zimoch-Korzycka, A., A. Rouilly, L. Bobak, A. Jarmoluk, and M. Korzycki. 2015. Chitosan and cystatin/lysozyme preparation as protective edible films components. International Journal of Polymer Science 2015:10.https://doi.org/10.1155/2015/139617.
  • Zivanovic, S., S. Chi, and A. F. Draughon. 2005. Antimicrobial activity of chitosan films enriched with essential oils. Journal of Food Science. 70:M45–M51. https://doi.org/10.1111/j.1365-2621.2005.tb09045.x.
  • Zuniga, R. N., O. Skurtys, F. Osorio, J. M. Aguilera, and F. Pedreschi. 2012. Physical properties of emulsion-based hydroxypropyl methylcellulose films: effect of their microstructure. Carbohydrate Polymers. 90:1147–1158. https://doi.org/10.1016/j.carbpol.2012.06.066.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.