1,330
Views
46
CrossRef citations to date
0
Altmetric
Reviews

Nano- and micro-particles for delivery of catechins: Physical and biological performance

&

References

  • Adachi, S., H. Imaoka, Y. Hasegawa, and R. Matsuno. 2003. Preparation of a water-in-oil-in-water (W/O/W) type microcapsules by a single-droplet-drying method and change in encapsulation efficiency of a hydrophilic substance during storage. Bioscience, Biotechnology, and Biochemistry 67:1376–81.
  • Aditya, N. P., S. Aditya, H. Yang, H. W. Kim, S. O. Park, and S. Ko. 2015. Co-delivery of hydrophobic curcumin and hydrophilic catechin by a water-in-oil-in-water double emulsion. Food Chemistry 173:7–13.
  • Andres-Lacueva, C., M. Monagas, N. Khan, M. Izquierdo-Pulido, M. Urpi-Sarda, J. Permanyer, and R. M. Lamuela-Raventós. 2008. Flavanol and flavonol contents of cocoa powder products: influence of the manufacturing process. Journal of Agricultural and Food Chemistry 56:3111–7.
  • Arts, I. C. W., B. van de Putte, and P. C. H. Hollman. 2000. Catechin contents of foods commonly consumed in the Netherlands. 1. Fruits, vegetables, staple foods, and processed foods. Journal of Agricultural and Food Chemistry 48:1746–51.
  • Augustin, M. A., L. Sanguansri, and R. Head. 2005. GI tract delivery systems. World Patent WO2005/048998A1.
  • Augustin, M. A., and Y. Hemar. 2009. Nano- and micro-structured assemblies for encapsulation of food ingredients. Chemical Society Reviews 38:902–12.
  • Bhushani, J. A., P. Karthik, and C. Anandharamakrishnan. 2016. Nanoemulsion based delivery system for improved bioaccessibility and Caco-2 cell monolayer permeability of green tea catechins. Food Hydrocolloids 56:372–82.
  • Boschmann, M., and F. Thielecke. 2007. The effects of epigallocatechin-3-gallate on thermogenesis and fat oxidation in obese men: a pilot study. Journal of the American College of Nutrition 26:389S–95S.
  • Braicu, C., M. R. Ladomery, V. S. Chedea, A. Irimie, and I. Berindan-Neagoe. 2013. The relationship between the structure and biological actions of green tea catechins. Food Chemistry 141:3282–9.
  • Cai, Y., N. D. Anavy, and H. H. S. Chow. 2002. Contribution of presystemic hepatic extraction to the low oral bioavailability of green tea catechins in rats. Drug Metabolism and Disposition: The Biological Fate of Chemicals 30:1246–9.
  • Cabrera, C., R. Giménez, and M. C. López. 2003. Determination of tea components with antioxidant activity. Journal of Agricultural and Food Chemistry 51:4427–35.
  • Clifford, M. N., J. J. van der Hooft, and A. Crozier. 2013. Human studies on the absorption, distribution, metabolism, and excretion of tea polyphenols. American Journal of Clinical Nutrition 98 (suppl):1619S–30S.
  • Corstens, M. N., C. C. Berton-Carabin, R. de Vries, F. J. Troost, A. A. M. Masclee, and K. Schroën. 2017. Food-grade micro-encapsulation systems that may induce satiety via delayed lipolysis: A review. Critical Reviews in Food Science and Nutrition 57:2218–44.
  • de Villiers, M. M., D. P. Otto, S. J. Strydom, and Y. M. Lvov. 2011. Introduction to nanocoatings produced by layer-by-layer (LbL) self-assembly. Advanced Drug Delivery Reviews 63:701–15.
  • Del Rio, D., L. G. Costa, M. E. J. Lean, and A. Crozier. 2010. Polyphenols and health: What compounds are involved? Nutrition, Metabolism and Cardiovascular Diseases 20:1–6.
  • Dube, A., J. A. Nicolazzo, and I. Larson. 2010. Chitosan nanoparticles enhance the intestinal absorption of the green tea catechins (+)-catechin and (−)-epigallocatechin gallate. European Journal of Pharmaceutical Sciences 41:219–25.
  • Dube, A., J. A. Nicolazzo, and I. Larson. 2011. Chitosan nanoparticles enhance the plasma exposure of (−)-epigallocatechin gallate in mice through an enhancement in intestinal stability. European Journal of Pharmaceutical Sciences 44:422–6.
  • Ehrnhoefer, D. E., M. Duennwald, P. Markovic, J. L. Wacker, S. Engemann, M. Roark, J. Legleiter, J. L. Marsh, L. M. Thompson, S. Lindquist, et al. 2006. Green tea (−)-epigallocatechin-gallate modulates early events in huntingtin misfolding and reduces toxicity in huntington's disease models. Human Molecular Genetics 15:2743–51.
  • Fan, F. Y., M. Shi, Y. Nie, Y. Zhao, J. H. Ye, and Y. R. Liang. 2016. Differential behaviors of tea catechins under thermal processing: formation of non-enzymatic oligomers. Food Chemistry 196:347–54.
  • Fang, J. Y., W. R. Lee, S. C. Shen, and Y. L. Huang. 2006. Effect of liposome encapsulation of tea catechins on their accumulation in basal cell carcinomas. Journal of Dermatological Science 42:101–9.
  • Fang, Z., and B. Bhandari. 2010. Encapsulation of polyphenols – a review. Trends in Food Science & Technology 21:510–23.
  • Fangueiro, J. F., T. Andreani, L. Fernandes, M. L. Garcia, M. A. Egea, A. M. Silva, and E. B. Souto. 2014. Physicochemical characterization of epigallocatechin gallate lipid nanoparticles (EGCG-LNs) for ocular instillation. Colloids and Surfaces. B, Biointerfaces 123:452–60.
  • Ferruzzi, M. G., R. J. Green, C. M. Peters, A. P. Neilson, E. M. Janle, B. Patil, et al. 2009. The influence of food formulation on digestive behavior and bioavailability of catechin polyphenols. Acta Horticulturae 841:121–8.
  • Frias, I., A. R. Neves, M. Pinheiro, and S. Reis. 2016. Design, development, and characterization of lipid nanocarriers-based epigallocatechin gallate delivery system for preventive and therapeutic supplementation. Drug Design, Development and Therapy 10:3519–28.
  • Gómez-Mascaraque, L. G., J. M. Lagarón, and A. López-Rubio. 2015. Electrosprayed gelatin submicroparticles as edible carriers for the encapsulation of polyphenols of interest in functional foods. Food Hydrocolloids 49:42–52.
  • Gómez-Mascaraque, L. G., C. Soler, and A. López-Rubio. 2016a. Stability and bioaccessibility of EGCG within edible micro-hydrogels. chitosan vs. gelatin, a comparative study. Food Hydrocolloids 61:128–38.
  • Gómez-Mascaraque, L. G., G. Sanchez, and A. López-Rubio. 2016b. Impact of molecular weight on the formation of electrosprayed chitosan microcapsules as delivery vehicles for bioactive compounds. Carbohydrate Polymers 150:121–30.
  • Gonçalves, V., J. Poejo, A. Matias, S. Rodríguezrojo, M. J. Cocero, and C. Duarte. 2016. Using different natural origin carriers for development of epigallocatechin gallate (EGCG) solid formulations with improved antioxidant activity by PGSS-drying. RSC Advances 6:67599–609.
  • Gülseren, I., and M. Corredig. 2013. Storage stability and physical characteristics of tea-polyphenol-bearing nanoliposomes prepared with milk fat globule membrane phospholipids. Journal of Agricultural and Food Chemistry 61:3242–51.
  • Hara, Y. 2001. Green tea: health benefits and applications. Journal of the American College of Nutrition 20:656–656.
  • Haratifar, S., and M. Corredig. 2014. Interactions between tea catechins and casein micelles and their impact on renneting functionality. Food Chemistry 143:27–32.
  • Haratifar, S., K. A. Meckling, and M. Corredig. 2014a. Antiproliferative activity of tea catechins associated with casein micelles, using HT29 colon cancer cells. Journal of Dairy Science 97:672–8.
  • Haratifar, S., K. A. Meckling, and M. Corredig. 2014b. Bioefficacy of tea catechins encapsulated in casein micelles tested on a normal mouse cell line (4D/WT) and its cancerous counterpart (D/v-src) before and after in vitro digestion. Food & Funct 5:1160–6.
  • Harbowy, M. E., and D. A. Balentine. 1997. Tea chemistry. Critical Reviews in Plant Sciences 16:415–80.
  • Hashimoto, T., S. Kumazawa, F. Nanjo, Y. Hara, and T. Nakayama. 1999. Interaction of tea catechins with lipid bilayers investigated with liposome systems. Bioscience, Biotechnology, and Biochemistry 63:2252–5.
  • Hasni, I., P. Bourassa, S. Hamdani, G. Samson, R. Carpentier, and H. A. Tajmir-Riahi. 2011. Interaction of milk α- and β-caseins with tea polyphenols. Food Chemistry 126:630–9.
  • Hemar, Y., L. J. Cheng, C. M. Oliver, L. Sanguansri, and M. A. Augustin. 2010. Encapsulation of resveratrol using water-in-oil-in-water double emulsions. Food Biophysics 5:120–7.
  • Higdon, J. V., and B. Frei. 2003. Tea catechins and polyphenols: Health effects, metabolism, and antioxidant functions. Critical Reviews in Food Science and Nutrition 43:89–143.
  • Hong, J., H. Lu, X. Meng, J. H. Ryu, Y. Hara, and C. S. Yang. 2002. Stability, cellular uptake, biotransformation, and efflux of tea polyphenol (−)-epigallocatechin-3-gallate in HT-29 human colon adenocarcinoma cells. Cancer Research 62:7241–6.
  • Hong, Z., Y. Q. Xu, J. F. Yin, J. Jin, Y. Jiang, and Q. Du. 2014. Improving effectiveness of (−)-epigallocatechin gallate (EGCG) against rabbit atherosclerosis by EGCG-loaded nanoparticles prepared from chitosan and polyaspartic acid. Journal of Agricultural and Food Chemistry 62:12603–9.
  • Hu, B., Y. Ting, X. Yang, W. Tang, X. Zeng, and Q. Huang. 2012. Nanochemoprevention by encapsulation of (−)-epigallocatechin-3-gallate with bioactive peptides/chitosan nanoparticles for enhancement of its bioavailability. Chemical Communications 48:2421–3.
  • Hu, B., Y. Ting, X. Zeng, and Q. Huang. 2013. Bioactive peptides/chitosan nanoparticles enhance cellular antioxidant activity of (−)-epigallocatechin-3-gallate. Journal of Agricultural and Food Chemistry 61:875–81.
  • Huang, Y. B., M. J. Tsai, P. C. Wu, Y. H. Tsai, Y. H. Wu, and J. Y. Fang. 2011. Elastic liposomes as carriers for oral delivery and the brain distribution of (+)-catechin. J. Drug Target. 19:709–18.
  • Ishikawa, M., Y. Sueishi, N. Endo, S. Oowada, M. Shimmei, H. Fujii, and Y. Kotake. 2012. Cyclodextrin encapsulation of the functional group diminishes an antioxidant's free radical scavenging rates. International Journal of Chemical Kinetics 44:598–603.
  • Ishizu, T., H. Tsutsumi, H. Yamamoto, and K. Harano. 2009. NMR spectroscopic characterization of inclusion complexes comprising cyclodextrins and gallated catechins in aqueous solution: cavity size dependency. Magnetic Resonance in Chemistry 47:283–7.
  • Jullian, C., S. Miranda, G. Zapata-Torres, F. Mendizábal, and C. Olea-Azar. 2007. Studies of inclusion complexes of natural and modified cyclodextrin with (+) catechin by NMR and molecular modeling. Bioorganic & Medicinal Chemistry 15:3217–24.
  • Junior, O. V., J. H. Dantas, C. E. Barão, E. F. Zanoelo, L. Cardozo-Filho, and F. F. de Moraes. 2017. Formation of inclusion compounds of (+) catechin with β-cyclodextrin in different complexation media: spectral, thermal and antioxidant properties. Journal of Supercritical Fluids 121:10–18.
  • Kampa, M., A. P. Nifli, G. Notas, and E. Castanas. 2007. Polyphenols and cancer cell growth. Reviews of Physiology Biochemistry and Pharmacology 159:79–113.
  • Kanakis, C. D., I. Hasni, P. Bourassa, P. A. Tarantilis, M. G. Polissiou, and H. A. Tajmir-Riahi. 2011. Milk β-lactoglobulin complexes with tea polyphenols. Food Chemistry 127:1046–55.
  • Khalid, N., I. Kobayashi, M. A. Neves, K. Uemura, and M. Nakajima. 2013. Preparation and characterization of water-in-oil-in-water emulsions containing a high concentration of L-ascorbic acid. LWT - Food Science and Technology 51:448–54.
  • Khan, N., D. J. Bharali, V. M. Adhami, I. A. Siddiqui, H. Cui, S. M. Shabana, S. A. Mousa, and H. Mukhtar. 2014. Oral administration of naturally occurring chitosan-based nanoformulated green tea polyphenol EGCG effectively inhibits prostate cancer cell growth in a xenograft model. Carcinogenesis 35:415–23.
  • Khokhar, S., and S. G. M. Magnusdottir. 2002. Total phenol, catechin, and caffeine contents of teas commonly consumed in the United Kingdom. Journal of Agricultural and Food Chemistry 50:565–70.
  • Kim, E. S., J. S. Lee, and H. G. Lee. 2015. Microencapsulation of catechin with high loading and encapsulation efficiencies using soaking methods. Food Science and Biotechnology 24:1735–9.
  • Kim, E. S., J. S. Lee, and H. G. Lee. 2016. Calcium-alginate microparticles for sustained release of catechin prepared via an emulsion gelation technique. Food Science and Biotechnology 25:1337–43.
  • Kim, Y. J., S. J. Houng, J. H. Kim, Y. R. Kim, H. G. Ji, and S. J. Lee. 2012. Nanoemulsified green tea extract shows improved hypocholesterolemic effects in C57BL/6 mice. Journal of Nutritional Biochemistry 23:186–91.
  • Lee, J. S., H. W. Kim, D. Chung, and H. G. Lee. 2009. Catechin-loaded calcium pectinate microparticles reinforced with liposome and hydroxypropylmethylcellulose: Optimization and in vivo antioxidant activity. Food Hydrocolloids 23:2226–33.
  • Lestringant, P., A. Guri, I. Gülseren, P. Relkin, and M. Corredig. 2014. Effect of processing on physicochemical characteristics and bioefficacy of β-lactoglobulin-epigallocatechin-3-gallate complexes. Journal of Agricultural and Food Chemistry 62:8357–64.
  • Li, N., L. S. Taylor, M. G. Ferruzzi, and L. J. Mauer. 2012a. Kinetic study of catechin stability: effects of pH, concentration, and temperature. Journal of Agricultural and Food Chemistry 60:12531–9.
  • Li, B., W. Du, J. Jin, and Q. Du. 2012b. Preservation of (−)-epigallocatechin-3-gallate antioxidant properties loaded in heat treated β-lactoglobulin nanoparticles. Journal of Agricultural and Food Chemistry 60:3477–84.
  • Li, N., L. S. Taylor, and L. J. Mauer. 2011. Degradation kinetics of catechins in green tea powder: effects of temperature and relative humidity. Journal of Agricultural and Food Chemistry 59:6082–90.
  • Li, Y., L. T. Lim, and Y. Kakuda. 2009. Electrospun zein fibers as carriers to stabilize (−)-epigallocatechin gallate. Journal of Food Science 74:C233–240.
  • Li, C. Y., and L. Fu. 2015. Preparation method of folic acid-chitosan-epigallocatechin gallate (EGCG) nano particle. China patent CN 104983689 A.
  • Liang, J., H. Z. Yang, C. X. Gao, and X. C. Wan. 2015. EGCG chitosan/β-lactoglobulin composite nanoparticles and preparation method thereof. China patent CN 104605228 A.
  • Liang, J., L. Cao, L. Zhang, and X. C. Wan. 2014. Preparation, characterization, and in vitro antitumor activity of folate conjugated chitosan coated EGCG nanoparticles. Food Science and Biotechnology 23:569–75.
  • Liu, J., J. F. Lu, J. Kan, X. Y. Wen, and C. H. Jin. 2014. Synthesis, characterization and in vitro anti-diabetic activity of catechin grafted inulin. International Journal of Biological Macromolecules 64:76–83.
  • Livney, Y. D. 2010. Milk proteins as vehicles for bioactives. Current Opinion in Colloid and Interface Science 15:73–83.
  • Lu, Q., D. C. Li, and J. G. Jiang. 2011. Preparation of a tea polyphenol nanoliposome system and its physicochemical properties. Journal of Agricultural and Food Chemistry 59:13004–11.
  • Luo, X., R. Guan, X. Chen, M. Tao, J. Ma, and J. Zhao. 2014. Optimization on condition of epigallocatechin-3-gallate (EGCG) nanoliposomes by response surface methodology and cellular uptake studies in Caco-2 cells. Nanoscale Research Letters 9:291–9.
  • Manach, C., A. Scalbert, C. Morand, C. Rémésy, and L. Jiménez. 2004. Polyphenols: food sources and bioavailability. American Journal of Clinical Nutrition 79:727–47.
  • Mereles, D., and W. Hunstein. 2011. Epigallocatechin-3-gallate (EGCG) for Clinical Trials: More Pitfalls than Promises? International Journal of Molecular Science 12:5592–603.
  • Motilva, M. J., A. Macià, M. P. Romero, L. Rubió, M. Mercader, and C. González-Ferrero. 2016. Human bioavailability and metabolism of phenolic compounds from red wine enriched with free or nano-encapsulated phenolic extract. Journal of Functional Foods 25:80–93.
  • Oliveira, A., and M. Pintado. 2015. In vitro evaluation of the effects of protein-polyphenol-polysaccharide interactions on (+)-catechin and cyanidin-3-glucoside bioaccessibility. Food Function 6:3444–53.
  • Ottaviani, J. I., C. Kwik-Uribe, C. L. Keen, and H. Schroeter. 2012. Intake of dietary procyanidins does not contribute to the pool of circulating flavanols in humans. American Journal of Clinical Nutrition 95:851–8.
  • Ottaviani, J. I., G. Borges, T. Y. Momma, J. P. E. Spencer, C. L. Keen, A. Crozier, and H. Schroeter. 2016. The metabolome of [2-14C] (−)-epicatechin in humans: implications for the assessment of efficacy, safety, and mechanisms of action of polyphenolic bioactives. Scientific Reports 6:29034. doi:10.1038/srep29034.
  • Palma, M., P. García, G. Márquez-Ruiz, C. Vergara, and P. Robert. 2014. Release kinetics of flavonoids in methyl linoleate from microparticles designed with inulin and channelizing agent. Food Research International 64:99–105.
  • Peña, C., K. de la Caba, A. Eceiza, R. Ruseckaite, and I. Mondragon. 2010. Enhancing water repellence and mechanical properties of gelatin films by tannin addition. Bioresource Technology 101:6836–42.
  • Peres, I., S. Rocha, J. Gomes, S. Morais, M. C. Pereira, and M. Coelho. 2011. Preservation of catechin antioxidant properties loaded in carbohydrate nanoparticles. Carbohydrate Polymers 86:147–53.
  • Peres, I., S. Rocha, M. D. Pereira, M. Coelho, M. Rangel, and G. Ivanova. 2010. NMR structural analysis of epigallocatechin gallate loaded polysaccharide nanoparticles. Carbohydrate Polymers 82:861–6.
  • Porath, D., C. Riegger, J. Drewe, and J. Schwager. 2005. Epigallocatechin-3-gallate impairs chemokine production in human colon epithelial cell lines. Journal of Pharmacology and Experimental Therapeutics 315:1172–80.
  • Radhakrishnan, R., H. Kulhari, D. Pooja, S. Gudem, S. Bhargava, R. Shukla, and R. Sistla. 2016. Encapsulation of biophenolic phytochemical EGCG within lipid nanoparticles enhances its stability and cytotoxicity against cancer. Chemistry and Physics of Lipids 198:51–60.
  • Rocha, S., R. Generalov, C. Pereira Mdo, I. Peres, P. Juzenas, and M. A. Coelho. 2011. Epigallocatechin gallate-loaded polysaccharide nanoparticles for prostate cancer chemoprevention. Nanomedicine 6:79–87.
  • Roos, Y. H., and Y. D. Livney (Eds). 2017. Engineering foods for bioactives stability and delivery. New York, USA: Springer.
  • Roowi, S., A. Stalmach, W. Mullen, M. E. J. Lean, C. A. Edwards, and A. Crozier. 2010. Green tea flavan-3-ols: colonic degradation and urinary excretion of catabolites by humans. Journal of Agricultural and Food Chemistry 58:1296–304.
  • Senanayake, S. P. J. N. 2013. Green tea extract: chemistry, antioxidant properties and food applications – a review. Journal of Functional Foods 5:1529–41.
  • Sercombe, L., T. Veerati, F. Moheimani, S. Y. Wu, A. K. Sood, and S. Hua. 2015. Advances and challenges of liposome assisted drug delivery. Frontiers in Pharmacology 6:286. doi: Artn 286 10.3389/Fphar.2015.00286.
  • Shi, M., L. Y. Huang, N. Nie, J. H. Ye, X. Q. Zheng, J. L. Lu, and Y. R. Liang. 2017. Binding of tea catechins to rice bran protein isolate: interaction and protective effect during in vitro digestion. Food Research International 93:1–7.
  • Shim, S. M., S. H. Yoo, C. S. Ra, Y. K. Kim, J. O. Chung, and S. J. Lee. 2012. Digestive stability and absorption of green tea polyphenols: influence of acid and xylitol addition. Food Research International 45:204–10.
  • Shpigelman, A., Y. Cohen, and Y. D. Livney. 2012. Thermally-induced β-lactoglobulin-EGCG nanovehicles: Loading, stability, sensory and digestive-release study. Food Hydrocolloids 29:57–67.
  • Shpigelman, A., G. Israeli, and Y. D. Livney. 2010. Thermally-induced protein-polyphenol co-assemblies: beta lactoglobulin-based nanocomplexes as protective nanovehicles for EGCG. Food Hydrocolloids 24:735–43.
  • Shutava, T. G., S. S. Balkundi, and Y. M. Lvov. 2009a. (−)-epigallocatechin gallate/gelatin layer-by-layer assembled films and microcapsules. Journal of Colloid and Interface Science 330:276–83.
  • Shutava, T. G., S. S. Balkundi, P. Vangala, J. J. Steffan, R. L. Bigelow, J. A. Cardelli, D. P. O'Neal, and Y. M. Lvov. 2009b. Layer-by-layer-coated gelatin nanoparticles as a vehicle for delivery of natural polyphenols. ACS Nano 3:1877–85.
  • Siddiqui, I. A., D. J. Bharali, M. Nihal, V. M. Adhami, N. Khan, J. C. Chamcheu, M. I. Khan, S. Shabana, S. A. Mousa, and H. Mukhtar. 2014. Excellent anti-proliferative and pro-apoptotic effects of (−)-epigallocatechin-3-gallate encapsulated in chitosan nanoparticles on human melanoma cell growth both in vitro and in vivo. Nanomedicine: NBM. 10:1619–26.
  • Smith, A., B. Giunta, P. C. Bickford, M. Fountain, J. Tan, and R. D. Shytle. 2010. Nanolipidic particles improve the bioavailability and α-secretase inducing ability of epigallocatechin-3-gallate (EGCG) for the treatment of Alzheimer's disease. International Journal of Pharmaceutics 389:207–12.
  • Spizzirri, U. G., F. Iemma, F. Puoci, G. Cirillo, M. Curcio, O. I. Parisi, and N. Picci. 2009. Synthesis of antioxidant polymers by grafting of gallic acid and catechin on gelatin. Biomacromolecules 10:1923–30.
  • Stephens, R. H., J. Tanianis-Hughes, N. B. Higgs, M. Humphrey, and G. Warhurst. 2002. Region-dependent modulation of intestinal permeability by drug efflux transporters: in vitro studies in mdr1a(−/−) mouse intestine. Journal of Pharmacology and Experimental Therapeutics 303:1095–101.
  • Stuart, E. C., M. J. Scandlyn, and R. J. Rosengren. 2006. Role of epigallocatechin gallate (EGCG) in the treatment of breast and prostate cancer. Life Science 79:2329–36.
  • Tang, D. W., S. H. Yu, Y. C. Ho, B. Q. Huang, G. J. Tsai, H. Y. Hsieh, H. W. Sung, and F. L. Mi. 2013. Characterization of tea catechins-loaded nanoparticles prepared from chitosan and an edible polypeptide. Food Hydrocolloids 30:33–41.
  • Taylor, J., J. R. N. Taylor, P. S. Belton, and A. Minnaar. 2009. Kafirin microparticle encapsulation of catechin and sorghum condensed tannins. Journal of Agricultural and Food Chemistry 57:7523–8.
  • Taylor, T. M., P. M. Davidson, B. D. Bruce, and J. Weiss. 2005. Liposomal nanocapsules in food science and agriculture. Critical Reviews in Food Science and Nutrition 45:587–605.
  • Tsai, Y. J., and B. H. Chen. 2016. Preparation of catechin extracts and nanoemulsions from green tea leaf waste and their inhibition effect on prostate cancer cell PC-3. International Journal of Nanomedicine 11:1907–26.
  • Ubbink, J., and J. Kruger. 2006. Physical approaches for the delivery of active ingredients in foods. Trends in Food Science & Technology 17:244–54.
  • Ullmann, U., J. Haller, J. P. Decourt, N. Girault, J. Girault, A. S. Richard-Caudron, B. Pineau, and P. Weber. 2003. A single ascending dose study of epigallocatechin gallate in healthy volunteers. Journal of International Medical Research 31:88–101.
  • Waltner-Law, M. E., X. L. Wang, B. K. Law, R. K. Hall, M. Nawano, and D. K. Granner. 2002. Epigallocatechin gallate, a constituent of green tea, represses hepatic glucose production. Journal of Biological Chemistry 277:34933–40.
  • Warden, B. A., L. S. Smith, G. R. Beecher, D. A. Balentine, and B. A. Clevidence. 2001. Catechins are bioavailable in men and women drinking black tea throughout the day. Journal of Nutrition 131:1731–7.
  • Williams, D. 2008. The relationship between biomaterials and nanotechnology. Biomaterials 29:1737–8.
  • Wisuitiprot, W., A. Somsiri, K. Ingkaninan, and N. Waranuch. 2011. A novel technique for chitosan microparticle preparation using a water/silicone emulsion: green tea model. International Journal of Cosmetic Science 33:351–8.
  • Wolfram, S. 2007. Effects of green tea and EGCG on cardiovascular and metabolic health. Journal of the American College of Nutrition 26:373–88.
  • Wu, X. L., R. Dey, H. Wu, Z. G. Liu, Q. Q. He, and X. J. Zeng. 2013. Studies on the interaction of -epigallocatechin-3-gallate from green tea with bovine β-lactoglobulin by spectroscopic methods and docking. International Journal of Dairy Technology 65:7–13.
  • Wu, L., L. Sanguansri, and M. A. Augustin. 2014. Protection of epigallocatechin gallate against degradation during in vitro digestion using apple pomace as a carrier. Journal of Agricultural and Food Chemistry 62:12265–70.
  • Xu, J., T. Tan, J. C. Janson, L. Kenne, and C. Sandström. 2007. NMR studies on the interaction between (−)-epigallocatechin gallate and cyclodextrins, free and bonded to silica gels. Carbohydrate Research 342:843–50.
  • Yan, C., Z. Xiu, X. Li, and C. Hao. 2007. Molecular modeling study of β-cyclodextrin complexes with (+)-catechin and (−)-epicatechin. Journal of Molecular Graphics and Modelling 26:420–8.
  • Yang, H., R. Finaly, and D. H. Teitelbaum. 2003. Alteration in epithelial permeability and ion transport in a mouse model of total parenteral nutrition. Critical Care Medicine 31:1118–25.
  • Yang, W., C. Xu, F. Liu, C. Sun, F. Yuan, and Y. Gao. 2015. Fabrication mechanism and structural characteristics of the ternary aggregates by lactoferrin, pectin, and (−)-epigallocatechin gallate using multispectroscopic methods. Journal of Agricultural and Food Chemistry 63:5046–54.
  • Ye, J., F. Fan, X. Xu, and Y. Liang. 2013. Interactions of black and green tea polyphenols with whole milk. Food Research International 53:449–55.
  • Zhang, L., and S. L. Kosaraju. 2007. Biopolymeric delivery system for controlled release of polyphenolic antioxidants. European Polymer Journal 43:2956–66.
  • Zhang, J., S. Nie, and S. Wang. 2013. Nanoencapsulation enhances epigallocatechin-3-gallate stability and its anti-atherogenic bioactivities in macrophages. Journal of Agricultural and Food Chemistry 61:9200–9.
  • Zhang, H., J. Jung, and Y. Zhao. 2016a. Preparation, characterization and evaluation of antibacterial activity of catechins and catechins-Zn complex loaded β-chitosan nanoparticles of different particle sizes. Carbohydrate Polymers 137:82–91.
  • Zhang, J., S. Nie, R. Martinez-Zaguilan, S. R. Sennoune, and S. Wang. 2016b. Formulation, characteristics and antiatherogenic bioactivities of CD36-targeted epigallocatechin gallate (EGCG)-loaded nanoparticles. Journal of Nutritional Biochemistry 30:14–23.
  • Zhang, L., A. Dudhani, L. Lundin, and S. L. Kosaraju. 2009. Macromolecular conjugate based particulates: Preparation, characterisation and evaluation of controlled release properties. European Polymer Journal 45:1960–9.
  • Zhang, H., and Y. Zhao. 2015. Preparation, characterization and evaluation of tea polyphenol-Zn complex loaded β-chitosan nanoparticles. Food Hydrocolloids 48:260–73.
  • Zhang, L., Y. Zheng, M. S. S. Chow, and Z. Zuo. 2004. Investigation of intestinal absorption and disposition of green tea catechins by Caco-2 monolayer model. International Journal of Pharmaceutics 287:1–12.
  • Zhao, G. Y., H. J. Diao, and W. Zong. 2013. Nature of pectin-protein-catechin interactions in model systems: pectin-protein-catechin interactions. Food Science and Technology International 19:153–65.
  • Zhong, Y., Y. S. Chiou, M. H. Pan, and F. Shahidi. 2012. Anti-inflammatory activity of lipophilic epigallocatechin gallate (EGCG) derivatives in LPS-stimulated murine macrophages. Food Chemistry 134:742–8.
  • Zhu, Q. Y., A. Q. Zhang, D. Tsang, Y. Huang, and Z. Y. Chen. 1997. Stability of green tea catechins. Journal of Agricultural and Food Chemistry 45:4624–8.
  • Zokti, J. A., B. Sham Baharin, A. S. Mohammed, and F. Abas. 2016. Green tea leaves extract: Microencapsulation, physicochemical and storage stability study. Molecules 21:940. doi:10.3390/molecules21080940.
  • Zorilla, R., L. Liang, G. Remondetto, and M. Subirade. 2011. Interaction of epigallocatechin-3-gallate with β-lactoglobulin: molecular characterization and biological implication. Dairy Science & Technology 91:629–44.
  • Zou, L. Q., S. F. Peng, W. Liu, L. Gan, W. L. Liu, R. H. Liang, C. M. Liu, J. Niu, Y. L. Cao, Z. Liu, et al. 2014. Improved in vitro digestion stability of (−)-epigallocatechin gallate through nanoliposome encapsulation. Food Research International 64:492–9.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.