2,579
Views
77
CrossRef citations to date
0
Altmetric
Reviews

Exploration of collagen recovered from animal by-products as a precursor of bioactive peptides: Successes and challenges

, , &
Pages 2011-2027 | Accepted 30 Jan 2018, Published online: 01 Mar 2018

References

  • Agyei, D., and M. K. Danquah. 2011. Industrial-scale manufacturing of pharmaceutical-grade bioactive peptides. Biotechnology Advances 29:272–77. doi:10.1016/j.biotechadv.2011.01.001.
  • Aito-Inoue, M., D. Lackeyram, M. Z. Fan, K. Sato, and Y. Mine. 2007. Transport of a tripeptide, Gly-Pro-Hyp, across the porcine intestinal brush‐border membrane. Journal of Peptide Science 13:468–74. doi:10.1002/psc.870.
  • Alao, B. O., A. B. Falowo, A. Chulayo, and V. Muchenje. 2017. The Potential of Animal By-Products in Food Systems: Production, Prospects and Challenges. Sustainability 9:1089. doi:10.3390/su9071089.
  • Alemán, A., B. Giménez, E. Pérez-Santin, M. C. Gómez-Guillén, and P. Montero. 2011. Contribution of Leu and Hyp residues to antioxidant and ACE-inhibitory activities of peptide sequences isolated from squid gelatin hydrolysate. Food Chemistry 125:334–41. doi:10.1016/j.foodchem.2010.08.058.
  • Alemán, A., and O. Martínez-Alvarez. 2013. Marine collagen as a source of bioactive molecules: A review. Natural Products Journal 3:105–14. doi:10.2174/2210315511303020005.
  • Alemán, A., M. C. Gómez-Guillén, and P. Montero. 2013. Identification of ace-inhibitory peptides from squid skin collagen after in vitro gastrointestinal digestion. Food Research International 54:790–95.
  • Aluko, R. E. 2015a. Antihypertensive peptides from food proteins. Annual Review of Food Science and Technology 6:235–62. doi:10.1146/annurev-food-022814-015520.
  • Aluko, R. E. 2015b. Structure and function of plant protein-derived antihypertensive peptides. Current Opinion in Food Science 4:44–50. doi:10.1016/j.cofs.2015.05.002.
  • Aubes-Dufau, I., J.-L. Seris, and D. Combes. 1995. Production of peptic hemoglobin hydrolyzates: Bitterness demonstration and characterization. Journal of Agricultural and Food Chemistry 43:1982–88. doi:10.1021/jf00056a005.
  • Banerjee, P., and C. Shanthi. 2016. Cryptic Peptides from Collagen: A critical review. Protein and Peptide Letters 23:664–72. doi:10.2174/0929866522666160512151313.
  • Bello, A. E., and S. Oesser. 2006. Collagen hydrolysate for the treatment of osteoarthritis and other joint disorders: a review of the literature. Current Medical Research and Opinion 22:2221–32. doi:10.1185/030079906X148373.
  • Bhat, Z. F., S. Kumar, and H. F. Bhat. 2015. Bioactive peptides of animal origin: a review. Journal of Food Science & Technology 52:5377–92. doi:10.1007/s13197-015-1731-5.
  • Bruyere, O., B. Zegels, L. Leonori, V. Rabenda, A. Janssen, C. Bourges, and J. Y. Reginster. 2012. Effect of collagen hydrolysate in articular pain: a 6-month randomized, double-blind, placebo controlled study. Complementary Therapies in Medicine 20:124–30. doi:10.1016/j.ctim.2011.12.007.
  • Cai, L., X. Wu, Y. Zhang, X. Li, S. Ma, and J. Li. 2015. Purification and characterization of three antioxidant peptides from protein hydrolysate of grass carp (Ctenopharyngodon idella) skin. Journal of Functional Foods 16:234–42. doi:10.1016/j.jff.2015.04.042.
  • Chai, H.-J., J.-H. Li, H.-N. Huang, T.-L. Li, Y.-L. Chan, C.-Y. Shiau, and C.-J. Wu. 2010. Effects of sizes and conformations of fish-scale collagen peptides on facial skin qualities and transdermal penetration efficiency. Journal of Biomedical Research 2010:757301.
  • Chen, H.-M., K. Muramoto, F. Yamauchi, K. Fujimoto, and K. Nokihara. 1998. Antioxidative properties of histidine-containing peptides designed from peptide fragments found in the digests of a soybean protein. Journal of Agricultural and Food Chemistry 46:49–53. doi:10.1021/jf970649w.
  • Chen, Q., O. Chen, I. M. Martins, H. Hou, X. Zhao, J. B. Blumberg, and B. Li. 2017a. Collagen peptides ameliorate intestinal epithelial barrier dysfunction in immunostimulatory Caco-2 cell monolayers via enhancing tight junctions. Food & Function 8:1144–51. doi:10.1039/C6FO01347C.
  • Chen, Q., L. Guo, F. Du, T. Chen, H. Hou, and B. Li. 2017b. The chelating peptide (GPAGPHGPPG) derived from Alaska pollock skin enhances calcium, zinc and iron transport in Caco-2 cells. International Journal of Food Science and Technology 52:1283–90. doi:10.1111/ijfs.13396.
  • Cheung, R. C., T. B. Ng, and J. H. Wong. 2015. Marine Peptides: Bioactivities and Applications. Marine Drugs 13:4006–43. doi:10.3390/md13074006.
  • Cho, M. J., N. Unklesbay, F.-H. Hsieh, and A. D. Clarke. 2004. Hydrophobicity of bitter peptides from soy protein hydrolysates. Journal of Agricultural and Food Chemistry 52:5895–901. doi:10.1021/jf0495035.
  • Choi, J. W., S. H. Kwon, C. H. Huh, K. C. Park, and S. W. Youn. 2013. The influences of skin visco-elasticity, hydration level and aging on the formation of wrinkles: a comprehensive and objective approach. Skin Research and Technology 19:e349–e355. doi:10.1111/j.1600-0846.2012.00650.x.
  • Choonpicharn, S., S. Tateing, S. Jaturasitha, N. Rakariyatham, N. Suree, and H. Niamsup. 2016. Identification of bioactive peptide from Oreochromis niloticus skin gelatin. Journal of Food Science & Technology 53:1222–29. doi:10.1007/s13197-015-2091-x.
  • Conigrave, A., E. Brown, and R. Rizzoli. 2008. Dietary protein and bone health: roles of amino acid–sensing receptors in the control of calcium metabolism and bone homeostasis. Annual Review of Nutrition 28:131–55. doi:10.1146/annurev.nutr.28.061807.155328.
  • Daneault, A., J. Prawitt, V. Fabien Soule, V. Coxam, and Y. Wittrant. 2017. Biological effect of hydrolyzed collagen on bone metabolism. Critical Reviews in Food Science and Nutrition 57:1922–37.
  • Davy, A., K. K. Thomsen, M. A. Juliano, L. C. Alves, I. Svendsen, and D. J. Simpson. 2000. Purification and characterization of barley dipeptidyl peptidase IV. Plant Physiol. 122:425–32. doi:10.1104/pp.122.2.425.
  • Dawson-Hughes, B., S. Harris, H. Rasmussen, and G. Dallal. 2007. Comparative effects of oral aromatic and branched-chain amino acids on urine calcium excretion in humans. Osteoporosis International 18:955–61. doi:10.1007/s00198-006-0320-x.
  • Dequeker, J., J. Aerssens, and F. P. Luyten. 2003. Osteoarthritis and osteoporosis: clinical and research evidence of inverse relationship. Aging Clinical and Experimental Research 15:426–39. doi:10.1007/BF03327364.
  • Doyen, A., L. Saucier, L. Beaulieu, Y. Pouliot, and L. Bazinet. 2012. Electroseparation of an antibacterial peptide fraction from snow crab by-products hydrolysate by electrodialysis with ultrafiltration membranes. Food Chemistry 132:1177–84. doi:10.1016/j.foodchem.2011.11.059.
  • EFSA Panel on Dietetic Products, Nutrition and Allergies. 2011. Scientific Opinion on the substantiation of a health claim related to isoleucyl-prolyl-proline (IPP) and valyl-prolyl-proline (VPP) and maintenance of normal blood pressure pursuant to Article 13(5) of Regulation (EC) No 1924/2006. EFSA Journal 9:1–18.
  • Elam, M. L., S. A. Johnson, S. Hooshmand, R. G. Feresin, M. E. Payton, J. Gu, and B. H. Arjmandi. 2015. A calcium-collagen chelate dietary supplement attenuates bone loss in postmenopausal women with osteopenia: a randomized controlled trial. Journal of Medicinal Food 18:324–31. doi:10.1089/jmf.2014.0100.
  • Escudero, E., L. Mora, P. D. Fraser, M. C. Aristoy, and F. Toldra. 2013. Identification of novel antioxidant peptides generated in Spanish dry-cured ham. Food Chemistry 138:1282–88.
  • Feng, M., and M. Betti. 2017. Transepithelial transport efficiency of bovine collagen hydrolysates in a human Caco-2 cell line model. Food Chemistry 224:242–50. doi:10.1016/j.foodchem.2016.12.044.
  • Ferraro, V., M. Anton, and V. Santé-Lhoutellier. 2016. The “sisters” α-helices of collagen, elastin and keratin recovered from animal by-products: Functionality, bioactivity and trends of application. Trends in Food Science & Technology 51:65–75. doi:10.1016/j.tifs.2016.03.006.
  • Flather, M. D., S. Yusuf, L. Køber, M. Pfeffer, A. Hall, G. Murray, C. Torp-Pedersen, S. Ball, J. Pogue, and L. Moyé. 2000. Long-term ACE-inhibitor therapy in patients with heart failure or left-ventricular dysfunction: a systematic overview of data from individual patients. Lancet 355:1575–81. doi:10.1016/S0140-6736(00)02212-1.
  • Foltz, M., P. C. van der Pijl, and G. S. Duchateau. 2010. Current in vitro testing of bioactive peptides is not valuable. Journal of Nutrition 140:117–18. doi:10.3945/jn.109.116228.
  • Fu, Y., A. M. Alashi, J. F. Young, M. Therkildsen, and R. E. Aluko. 2017a. Enzyme inhibition kinetics and molecular interactions of patatin peptides with angiotensin I-converting enzyme and renin. International Journal of Biological Macromolecules 101:207–13. doi:10.1016/j.ijbiomac.2017.03.054.
  • Fu, Y., J. F. Young, and M. Therkildsen. 2017b. Bioactive peptides in beef: Endogenous generation through postmortem aging. Meat Science 123:134–42. doi:10.1016/j.meatsci.2016.09.015.
  • Fu, Y., W. Wu, M. Zhu, and Z. Xiao. 2016a. In silico assessment of the potential of patatin as a precursor of bioactive peptides. Journal of Food Biochemistry 40:366–70. doi:10.1111/jfbc.12213.
  • Fu, Y., J. F. Young, M. M. Løkke, R. Lametsch, R. E. Aluko, and M. Therkildsen. 2016b. Revalorisation of bovine collagen as a potential precursor of angiotensin I-converting enzyme (ACE) inhibitory peptides based on in silico and in vitro protein digestions. Journal of Functional Foods 24:196–206. doi:10.1016/j.jff.2016.03.026.
  • Fu, Y., J. F. Young, M. K. Rasmussen, T. K. Dalsgaard, R. Lametsch, R. E. Aluko, and M. Therkildsen. 2016c. Angiotensin I–converting enzyme–inhibitory peptides from bovine collagen: insights into inhibitory mechanism and transepithelial transport. Food Research International 89:373–81. doi:10.1016/j.foodres.2016.08.037.
  • Fu, Y., J. F. Young, T. K. Dalsgaard, and M. Therkildsen. 2015. Separation of angiotensin I‐converting enzyme inhibitory peptides from bovine connective tissue and their stability towards temperature, pH and digestive enzymes. International Journal of Food Science & Technology 50:1234–43. doi:10.1111/ijfs.12771.
  • Fu, Y., and X.-H. Zhao. 2015. Utilization of chum salmon (Oncorhynchus keta) skin gelatin hydrolysates to attenuate hydrogen peroxide-induced oxidative injury in rat hepatocyte BRL cell model. Journal of Aquatic Food Product Technology 24:648–60. doi:10.1080/10498850.2013.804141.
  • Fu, Y., and X.-H. Zhao. 2013. In vitro responses of hFOB1. 19 cells towards chum salmon (Oncorhynchus keta) skin gelatin hydrolysates in cell proliferation, cycle progression and apoptosis. Journal of Functional Foods 5:279–88. doi:10.1016/j.jff.2012.10.017.
  • Gómez-Guillén, M. C., B. Giménez, M. E. López-Caballero, and M. P. Montero. 2011. Functional and bioactive properties of collagen and gelatin from alternative sources: A review. Food Hydrocolloid. 25:1813–27. doi:10.1016/j.foodhyd.2011.02.007.
  • Guillerminet, F., V. Fabien-Soulé, P. Even, D. Tomé, C.-L. Benhamou, C. Roux, and A. Blais. 2012. Hydrolyzed collagen improves bone status and prevents bone loss in ovariectomized C3H/HeN mice. Osteoporosis International 23:1909–19. doi:10.1007/s00198-011-1788-6.
  • Guo, L., P. A. Harnedy, L. Zhang, B. Li, Z. Zhang, H. Hou, X. Zhao, and R. J. FitzGerald. 2015. In vitro assessment of the multifunctional bioactive potential of Alaska pollock skin collagen following simulated gastrointestinal digestion. Journal of the Science of Food and Agriculture 95:1514–20.
  • Guo, L., P. A. Harnedy, M. B. O'Keeffe, L. Zhang, B. Li, H. Hou, and R. J. FitzGerald. 2015. Fractionation and identification of Alaska pollock skin collagen-derived mineral chelating peptides. Food Chemistry 173:536–42. doi:10.1016/j.foodchem.2014.10.055.
  • Han, X., Y. Xu, J. Wang, X. Pei, R. Yang, N. Li, and Y. Li. 2009. Effects of cod bone gelatin on bone metabolism and bone microarchitecture in ovariectomized rats. Bone. 44:942–47. doi:10.1016/j.bone.2008.12.005.
  • Hatanaka, T., K. Kawakami, and M. Uraji. 2014. Inhibitory effect of collagen-derived tripeptides on dipeptidylpeptidase-IV activity. Journal of Enzyme Inhibition and Medicinal Chemistry 29:823–28.
  • Hatanaka, T., K. Kawakami, and M. Uraji. 2014. Inhibitory effect of collagen-derived tripeptides on dipeptidylpeptidase-IV activity. Journal of Enzyme Inhibition and Medicinal Chemistry 29:823–28. doi:10.3109/14756366.2013.858143.
  • Haratake, A., D. Watase, T. Fujita, S. Setoguchi, K. Matsunaga, and J. Takata. 2015. Effects of oral administration of collagen peptides on skin collagen content and its underlying mechanism using a newly developed low collagen skin mice model. Journal of Functional Foods 16:174–82.
  • Hayes, M. 2011. Marine bioactive compounds: Sources, characterization and applications. New York: Springer Science & Business Media.
  • Henchion, M., M. McCarthy, and J. O'Callaghan. 2016. Transforming beef by-products into valuable ingredients: Which spell/recipe to use? Frontiers in Nutrition 3:53. doi:10.3389/fnut.2016.00053.
  • Herregods, G., J. Van Camp, N. Morel, B. Ghesquiere, K. Gevaert, L. Vercruysse, S. Dierckx, E. Quanten, and G. Smagghe. 2011. Angiotensin I-converting enzyme inhibitory activity of gelatin hydrolysates and identification of bioactive peptides. Journal of Agricultural and Food Chemistry 59:552–58. doi:10.1021/jf1037823.
  • Himaya, S. W., B. Ryu, D. H. Ngo, and S. K. Kim. 2012. Peptide isolated from Japanese flounder skin gelatin protects against cellular oxidative damage. Journal of Agricultural and Food Chemistry 60:9112–19. doi:10.1021/jf302161m.
  • Hooshmand, S., M. Elam, J. Browne, S. Campbell, and M. Payton. 2013. Evidence for bone reversal properties of a calcium-collagen chelate, a novel dietary supplement. Journal of Food & Nutritional Disorders 1:2.
  • Hsieh, C. H., T. Y. Wang, C. C. Hung, M. C. Chen, and K. C. Hsu. 2015. Improvement of glycemic control in streptozotocin-induced diabetic rats by Atlantic salmon skin gelatin hydrolysate as the dipeptidyl-peptidase IV inhibitor. Food & Function 6:1887–92. doi:10.1039/C5FO00124B.
  • Hsu, K.-C., Y.-S. Tung, S.-L. Huang, and C.-L. Jao. 2013. Dipeptidyl peptidase-IV inhibitory activity of peptides in porcine skin gelatin hydrolysates. Bioactive Food Peptides in Health and Disease (pp. Ch. 08). Rijeka: InTech.
  • Huang, S.-L., C.-C. Hung, C.-L. Jao, Y.-S. Tung, and K.-C. Hsu. 2014. Porcine skin gelatin hydrolysate as a dipeptidyl peptidase IV inhibitor improves glycemic control in streptozotocin-induced diabetic rats. Journal of Functional Foods 11:235–42. doi:10.1016/j.jff.2014.09.010.
  • Ichikawa, S., M. Morifuji, H. Ohara, H. Matsumoto, Y. Takeuchi, & K. Sato. 2010. Hydroxyproline-containing dipeptides and tripeptides quantified at high concentration in human blood after oral administration of gelatin hydrolysate. International Journal of Food Sciences and Nutrition 61(1)52–60.
  • Ichimura, T., A. Yamanaka, T. Otsuka, E. Yamashita, and S. Maruyama. 2009. Antihypertensive effect of enzymatic hydrolysate of collagen and Gly-Pro in spontaneously hypertensive rats. Bioscience, Biotechnology, and Biochemistry 73:2317–19. doi:10.1271/bbb.90197.
  • Inderjeeth, C. A., and K. E. Poland. 2010. Management of osteoporosis in older people. Journal of Pharmacy Practice and Research 40:229–34. doi:10.1002/j.2055-2335.2010.tb00545.x.
  • Iwai, K., Y. Zhang, T. Kouguchi, A. Saiga-Egusa, M. Shimizu, T. Ohmori, Y. Takahata, and F. Morimatsu. 2009. Blood concentration of food-derived peptides following oral intake of chicken collagen hydrolysate and its angiotensin-converting enzyme inhibitory activity in healthy volunteers. The Japanese Society For Food Science 56:326–30. doi:10.3136/nskkk.56.326.
  • Iwaniak, A., P. Minkiewicz, and M. Darewicz. 2014. Food-originating ACE inhibitors, including antihypertensive peptides, as preventive food components in blood pressure reduction. Comprehensive Reviews in Food Science and Food Safety 13:114–34. doi:10.1111/1541-4337.12051.
  • Jao, C. L., C. C. Hung, Y. S. Tung, P. Y. Lin, M. C. Chen, and K. C. Hsu. 2015. The development of bioactive peptides from dietary proteins as a dipeptidyl peptidase IV inhibitor for the management of type 2 diabetes. Biomed (Taipei). 5:14. doi:10.7603/s40681-015-0014-9.
  • Jiang, Z., L. Wang, W. Wu, and Y. Wang. 2013. Biological activities and physicochemical properties of Maillard reaction products in sugar–bovine casein peptide model systems. Food Chemistry 141:3837–45. doi:10.1016/j.foodchem.2013.06.041.
  • Jin, Y., J. Yan, Y. Yu, and Y. Qi. 2015. Screening and identification of DPP-IV inhibitory peptides from deer skin hydrolysates by an integrated approach of LC–MS/MS and in silico analysis. Journal of Functional Foods 18:344–57. doi:10.1016/j.jff.2015.07.015.
  • Karim, A. A., and R. Bhat. 2008. Gelatin alternatives for the food industry: recent developments, challenges and prospects. Trends in Food Science and Technology 19:644–56. doi:10.1016/j.tifs.2008.08.001.
  • Karim, A. A., and R. Bhat. 2009. Fish gelatin: properties, challenges, and prospects as an alternative to mammalian gelatins. Food Hydrocolloid. 23:563–76. doi:10.1016/j.foodhyd.2008.07.002.
  • Khiari, Z., D. Rico, A. B. Martin-Diana, and C. Barry-Ryan. 2014. Structure elucidation of ACE-inhibitory and antithrombotic peptides isolated from mackerel skin gelatine hydrolysates. Journal of the Science of Food Agriculture 94:1663–71.
  • Kim, H. K., M.-G. Kim, and K.-H. Leem. 2014. Collagen hydrolysates increased osteogenic gene expressions via a MAPK signaling pathway in MG-63 human osteoblasts. Food & Function 5:573–78. doi:10.1039/c3fo60509d.
  • Kitts, D. D., and K. Weiler. 2003. Bioactive proteins and peptides from food sources. Applications of bioprocesses used in isolation and recovery. Current Pharmaceutical Design 9:1309–23. doi:10.2174/1381612033454883.
  • Kumar, S., F. Sugihara, K. Suzuki, N. Inoue, and S. Venkateswarathirukumara. 2015. A double-blind, placebo-controlled, randomised, clinical study on the effectiveness of collagen peptide on osteoarthritis. Journal of the Science of Food and Agriculture 95:702–07. doi:10.1002/jsfa.6752.
  • Lacroix, I. M. E., and E. C. Y. Li-Chan. 2012. Evaluation of the potential of dietary proteins as precursors of dipeptidyl peptidase (DPP)-IV inhibitors by an in silico approach. Journal of Functional Foods 4:403–22. doi:10.1016/j.jff.2012.01.008.
  • Lacroix, I. M. E., and E. C. Y. Li-Chan. 2016. Food-derived dipeptidyl-peptidase IV inhibitors as a potential approach for glycemic regulation – Current knowledge and future research considerations. Trends in Food Science and Technology 54:1–16. doi:10.1016/j.tifs.2016.05.008.
  • Lafarga, T., and M. Hayes. 2014. Bioactive peptides from meat muscle and by-products: generation, functionality and application as functional ingredients. Meat Science 98:227–39. doi:10.1016/j.meatsci.2014.05.036.
  • Lafarga, T., and M. Hayes. 2016. Bioactive protein hydrolysates in the functional food ingredient industry: Overcoming current challenges. Food Reviews International 33:217–46. doi:10.1080/87559129.2016.1175013.
  • Lafarga, T., P. O'Connor, and M. Hayes. 2014. Identification of novel dipeptidyl peptidase-IV and angiotensin-I-converting enzyme inhibitory peptides from meat proteins using in silico analysis. Peptides 59:53–62. doi:10.1016/j.peptides.2014.07.005.
  • Lee, C. H., A. Singla, and Y. Lee. 2001. Biomedical applications of collagen. International Journal of Pharmaceutics 221:1–22. doi:10.1016/S0378-5173(01)00691-3.
  • Lee, J. K., J.-K. Jeon, and H.-G. Byun. 2011. Effect of angiotensin I converting enzyme inhibitory peptide purified from skate skin hydrolysate. Food Chemistry 125:495–99. doi:10.1016/j.foodchem.2010.09.039.
  • Lee, J. K., J.-K. Jeon, and H.-G. Byun. 2014. Antihypertensive effect of novel angiotensin I converting enzyme inhibitory peptide from chum salmon (Oncorhynchus keta) skin in spontaneously hypertensive rats. Journal of Functional Foods 7:381–89. doi:10.1016/j.jff.2014.01.021.
  • Lee, S.-J., Y.-S. Kim, J.-W. Hwang, E.-K. Kim, S.-H. Moon, B.-T. Jeon, Y.-J. Jeon, J. M. Kim, and P.-J. Park. 2012. Purification and characterization of a novel antioxidative peptide from duck skin by-products that protects liver against oxidative damage. Food Research International 49:285–95. doi:10.1016/j.foodres.2012.08.017.
  • Li-Chan, E. C., S. L. Hunag, C. L. Jao, K. P. Ho, and K. C. Hsu. 2012. Peptides derived from atlantic salmon skin gelatin as dipeptidyl-peptidase IV inhibitors. Journal of Agricultural and Food Chemistry 60:973–78. doi:10.1021/jf204720q.
  • Li-Chan, E. C. Y. 2015. Bioactive peptides and protein hydrolysates: research trends and challenges for application as nutraceuticals and functional food ingredients. Current Opinion in Food Science 1:28–37. doi:10.1016/j.cofs.2014.09.005.
  • Liang, Q., L. Wang, Y. He, Z. Wang, J. Xu, and H. Ma. 2014. Hydrolysis kinetics and antioxidant activity of collagen under simulated gastrointestinal digestion. Journal of Functional Foods 11:493–99.
  • Lima, C. A., J. F. Campos, J. L. Filho, A. Converti, M. G. da Cunha, and A. L. Porto. 2015. Antimicrobial and radical scavenging properties of bovine collagen hydrolysates produced by Penicillium aurantiogriseum URM 4622 collagenase. Journal of Food Science & Technology 52:4459–66. doi:10.1007/s13197-014-1463-y.
  • Lin, L., S. Lv, and B. Li. 2012. Angiotensin-I-converting enzyme (ACE)-inhibitory and antihypertensive properties of squid skin gelatin hydrolysates. Food Chemistry 131:225–30. doi:10.1016/j.foodchem.2011.08.064.
  • Liu, B.-Y., K.-X. Zhu, X.-N. Guo, W. Peng, and H.-M. Zhou. 2016. Changes in the enzyme-induced release of bitter peptides from wheat gluten hydrolysates. RSC Advances 6:102249–57. doi:10.1039/C6RA22155F.
  • Liu, D., M. Nikoo, G. Boran, P. Zhou, and J. M. Regenstein. 2015. Collagen and gelatin. Annual Review of Food Science and Technology 6:527–57. doi:10.1146/annurev-food-031414-111800.
  • Liu, J., B. Zhang, S. Song, M. Ma, S. Si, Y. Wang, B. Xu, K. Feng, J. Wu, and Y. Guo. 2014. Bovine collagen peptides compounds promote the proliferation and differentiation of MC3T3-E1 pre-osteoblasts. PloS one. 9:e99920. doi:10.1371/journal.pone.0099920.
  • López-Fandiño, R., J. Otte, and J. Van Camp. 2006. Physiological, chemical and technological aspects of milk-protein-derived peptides with antihypertensive and ACE-inhibitory activity. International Dairy Journal 16:1277–93. doi:10.1016/j.idairyj.2006.06.004.
  • Maehashi, K., and L. Huang. 2009. Bitter peptides and bitter taste receptors. Cellular and Molecular Life Sciences 66:1661–71. doi:10.1007/s00018-009-8755-9.
  • Martin-Bautista, E., M. Martin-Matillas, J. A. Martin-Lagos, M. T. Miranda-Leon, M. Muñoz-Torres, E. Ruiz-Requena, M. Rivero, J. Quer, I. Puigdueta, and C. Campoy. 2011. A nutritional intervention study with hydrolyzed collagen in pre-pubertal Spanish children: influence on bone modeling biomarkers. Journal of Pediatric Endocrinology and Metabolism 24:147–53. doi:10.1515/jpem.2011.009.
  • Martínez-Alvarez, O., S. Chamorro, and A. Brenes. 2015. Protein hydrolysates from animal processing by-products as a source of bioactive molecules with interest in animal feeding: a review. Food Research International 73:204–12. doi:10.1016/j.foodres.2015.04.005.
  • Matsuda, N., Y-i. Koyama, Y. Hosaka, H. Ueda, T. Watanabe, T. Araya, S. Irie, and K. Takehana. 2006. Effects of ingestion of collagen peptide on collagen fibrils and glycosaminoglycans in the dermis. Journal of Nutritional Science and Vitaminology 52:211–15. doi:10.3177/jnsv.52.211.
  • McAlindon, T. E., M. Nuite, N. Krishnan, R. Ruthazer, L. L. Price, D. Burstein, J. Griffith, and K. Flechsenhar. 2011. Change in knee osteoarthritis cartilage detected by delayed gadolinium enhanced magnetic resonance imaging following treatment with collagen hydrolysate: a pilot randomized controlled trial. Osteoarthritis Cartilage. 19:399–405. doi:10.1016/j.joca.2011.01.001.
  • Minaguchi, J., C. Tometsuka, Y-i. Koyama, M. Kusubata, A. Nagayasu, S. Sawaya, T. Shiga, H. Shima, T. Hara, and K. Takehana. 2012. Effects of collagen-derived oligopeptide prolylhydroxyproline on differentiation of mouse 3T3-L1 preadipocytes. Food Science and Technology Research 18:593–99. doi:10.3136/fstr.18.593.
  • Minkiewicz, P., J. Dziuba, and J. Michalska. 2011. Bovine meat proteins as potential precursors of biologically active peptides–a computational study based on the BIOPEP database. Food Science and Technology International 17:39–45. doi:10.1177/1082013210368461.
  • Mooney, C., N. J. Haslam, G. Pollastri, and D. C. Shields. 2012. Towards the improved discovery and design of functional peptides: common features of diverse classes permit generalized prediction of bioactivity. PloS One. 7:e45012. doi:10.1371/journal.pone.0045012.
  • Nakchum, L., and S. M. Kim. 2016. Preparation of squid skin collagen hydrolysate as an antihyaluronidase, antityrosinase, and antioxidant agent. Preparative Biochemistry & Biotechnology 46:123–30. doi:10.1080/10826068.2014.995808.
  • Ney, K. H. 1979. Bitterness of peptides: amino acid composition and chain length. ACS Symposium Series 115:149–73.
  • Ngo, D. H., K. H. Kang, B. Ryu, T. S. Vo, W. K. Jung, H. G. Byun, and S. K. Kim. 2015. Angiotensin-I converting enzyme inhibitory peptides from antihypertensive skate (Okamejei kenojei) skin gelatin hydrolysate in spontaneously hypertensive rats. Food Chemistry 174:37–43. doi:10.1016/j.foodchem.2014.11.013.
  • Ngo, D. H., B. Ryu, and S. K. Kim. 2014. Active peptides from skate (Okamejei kenojei) skin gelatin diminish angiotensin-I converting enzyme activity and intracellular free radical-mediated oxidation. Food Chemistry 143:246–55. doi:10.1016/j.foodchem.2013.07.067.
  • Ngo, D. H., B. Ryu, T. S. Vo, S. W. Himaya, I. Wijesekara, and S. K. Kim. 2011. Free radical scavenging and angiotensin-I converting enzyme inhibitory peptides from Pacific cod (Gadus macrocephalus) skin gelatin. International Journal of Biological Macromolecules 49:1110–16. doi:10.1016/j.ijbiomac.2011.09.009.
  • Nikoo, M., S. Benjakul, A. Ehsani, J. Li, F. Wu, N. Yang, B. Xu, Z. Jin, and X. Xu. 2014. Antioxidant and cryoprotective effects of a tetrapeptide isolated from Amur sturgeon skin gelatin. Journal of Functional Foods 7:609–20. doi:10.1016/j.jff.2013.12.024.
  • Niu, H., Z. Wang, H. Hou, Z. Zhang, and B. Li. 2016. Protective effect of cod (Gadus macrocephalus) skin collagen peptides on acetic acid-induced gastric ulcer in rats. Journal of Food Science 81:H1807–H1815. doi:10.1111/1750-3841.13332.
  • Nongonierma, A. B., and R. J. FitzGerald. 2013. Dipeptidyl peptidase IV inhibitory and antioxidative properties of milk protein-derived dipeptides and hydrolysates. Peptides 39:157–63. doi:10.1016/j.peptides.2012.11.016.
  • Nongonierma, A. B., and R. J. FitzGerald. 2014. An in silico model to predict the potential of dietary proteins as sources of dipeptidyl peptidase IV (DPP-IV) inhibitory peptides. Food Chemistry 165:489–98. doi:10.1016/j.foodchem.2014.05.090.
  • Nongonierma, A. B., and R. J. FitzGerald. 2016. Prospects for the management of type 2 diabetes using food protein-derived peptides with dipeptidyl peptidase IV (DPP-IV) inhibitory activity. Current Opinion in Food Science 8:19–24. doi:10.1016/j.cofs.2016.01.007.
  • Nongonierma, A. B., and R. J. FitzGerald. 2017. Strategies for the discovery and identification of food protein-derived biologically active peptides. Trends in Food Science and Technology doi:10.1016/j.tifs.2017.03.003.
  • Oesser, S., and J. Seifert. 2003. Stimulation of type II collagen biosynthesis and secretion in bovine chondrocytes cultured with degraded collagen. Cell and Tissue Research 311:393–99.
  • Ohara, H., S. Ichikawa, H. Matsumoto, M. Akiyama, N. Fujimoto, T. Kobayashi, and S. Tajima. 2010. Collagen‐derived dipeptide, proline-hydroxyproline, stimulates cell proliferation and hyaluronic acid synthesis in cultured human dermal fibroblasts. Journal of Dermatology 37:330–38. doi:10.1111/j.1346-8138.2010.00827.x.
  • Ohara, H., H. Matsumoto, K. Ito, K. Iwai, and K. Sato. 2007. Comparison of quantity and structures of hydroxyproline-containing peptides in human blood after oral ingestion of gelatin hydrolysates from different sources. Journal of Agricultural and Food Chemistry 55:1532–35. doi:10.1021/jf062834s.
  • World Health Organization. 2013. A global brief on hypertension: silent killer, global public health crisis World Health Day 2013.
  • Pal, G. K., and P. V. Suresh. 2016. Sustainable valorisation of seafood by-products: Recovery of collagen and development of collagen-based novel functional food ingredients. Innovative Food Science and Emerging 37:201–15. doi:10.1016/j.ifset.2016.03.015.
  • Patil, P., S. Mandal, S. K. Tomar, and S. Anand. 2015. Food protein-derived bioactive peptides in management of type 2 diabetes. European Journal of Nutrition 54:863–80. doi:10.1007/s00394-015-0974-2.
  • Pei, X., R. Yang, Z. Zhang, L. Gao, J. Wang, Y. Xu, M. Zhao, X. Han, Z. Liu, and Y. Li. 2010. Marine collagen peptide isolated from Chum Salmon (Oncorhynchus keta) skin facilitates learning and memory in aged C57BL/6J mice. Food Chemistry 118:333–40. doi:10.1016/j.foodchem.2009.04.120.
  • Perazella, M. A., and J. F. Setaro. 2003. Renin-angiotensin-aldosterone system: fundamental aspects and clinical implications in renal and cardiovascular disorders. Journal of Nuclear Cardiology 10:184–96. doi:10.1067/mnc.2003.392.
  • Porfírio, E., and G. B. Fanaro. 2016. Collagen supplementation as a complementary therapy for the prevention and treatment of osteoporosis and osteoarthritis: a systematic review. Revista Brasileira de Geriatria e Gerontologia 19:153–64. doi:10.1590/1809-9823.2016.14145.
  • Power, O., A. B. Nongonierma, P. Jakeman, and R. J. FitzGerald. 2014. Food protein hydrolysates as a source of dipeptidyl peptidase IV inhibitory peptides for the management of type 2 diabetes. Proceedings of the Nutrition Society 73:34–46. doi:10.1017/S0029665113003601.
  • Pripp, A. H., and Y. Ardö. 2007. Modelling relationship between angiotensin-(I)-converting enzyme inhibition and the bitter taste of peptides. Food Chemistry 102:880–88. doi:10.1016/j.foodchem.2006.06.026.
  • Proksch, E., D. Segger, J. Degwert, M. Schunck, V. Zague, and S. Oesser. 2014. Oral supplementation of specific collagen peptides has beneficial effects on human skin physiology: a double-blind, placebo-controlled study. Skin Pharmacology and Physiology 27:47–55. doi:10.1159/000351376.
  • Rao, Q., A. Klaassen Kamdar, and T. P. Labuza. 2016. Storage Stability of Food Protein Hydrolysates—A Review. Critical Reviews in Food Science and Nutrition 56:1169–92. doi:10.1080/10408398.2012.758085.
  • Rajendran, S. R. C. K., B. Mason, and C. C. Udenigwe. 2016. Peptidomics of peptic digest of selected potato tuber proteins: Post-translational modifications and limited cleavage specificity. Journal of Agricultural and Food Chemistry 64:2432–37. doi:10.1021/acs.jafc.6b00418.
  • Reddy, K. V. R., R. D. Yedery, and C. Aranha. 2004. Antimicrobial peptides: premises and promises. International Journal of Antimicrobial Agents 24:536–47. doi:10.1016/j.ijantimicag.2004.09.005.
  • Rodríguez, V., J. A. Asenjo, and B. A. Andrews. 2014. Design and implementation of a high yield production system for recombinant expression of peptides. Microbial Cell Factories 13:65. doi:10.1186/1475-2859-13-65.
  • Sae-leaw, T., Y. C. O'Callaghan, S. Benjakul, and N. M. O'Brien. 2016. Antioxidant, immunomodulatory and antiproliferative effects of gelatin hydrolysates from seabass (Lates calcarifer) skins. International Journal of Food Science & Technology 51:1545–51. doi:10.1111/ijfs.13123.
  • Saito, M., C. Kiyose, T. Higuchi, N. Uchida, and H. Suzuki. 2009. Effect of collagen hydrolysates from salmon and trout skins on the lipid profile in rats. Journal of Agricultural and Food Chemistry 57:10477–82. doi:10.1021/jf902355m.
  • Samaranayaka, A. G., and E. C. Li-Chan. 2011. Food-derived peptidic antioxidants: A review of their production, assessment, and potential applications. Journal of Functional Foods 3:229–54. doi:10.1016/j.jff.2011.05.006.
  • Sarmadi, B. H., and A. Ismail. 2010. Antioxidative peptides from food proteins: a review. Peptides. 31:1949–56. doi:10.1016/j.peptides.2010.06.020.
  • Sasaki, K., N. Takahashi, M. Satoh, M. Yamasaki, and N. Minamino. 2010. A peptidomics strategy for discovering endogenous bioactive peptides. Journal of Proteome Research 9:5047–52. doi:10.1021/pr1003455.
  • Schadow, S., V. S. Simons, G. Lochnit, J. Kordelle, Z. Gazova, H. C. Siebert, and J. Steinmeyer. 2017. Metabolic response of human osteoarthritic cartilage to biochemically characterized collagen hydrolysates. International Journal of Molecular Sciences 18:207. doi:10.3390/ijms18010207.
  • Schrieber, R., and H. Gareis. 2007. Gelatine handbook: theory and industrial practice. Weinheim: John Wiley & Sons.
  • Schwartz, S. R., and J. Park. 2012. Ingestion of BioCell Collagen®, a novel hydrolyzed chicken sternal cartilage extract; enhanced blood microcirculation and reduced facial aging signs. Clinical Interventions in Aging 7:267.
  • Shigemura, Y., S. Akaba, E. Kawashima, E. Y. Park, Y. Nakamura, and K. Sato. 2011. Identification of a novel food-derived collagen peptide, hydroxyprolyl-glycine, in human peripheral blood by pre-column derivatisation with phenyl isothiocyanate. Food Chemistry 129:1019–24. doi:10.1016/j.foodchem.2011.05.066.
  • Shigemura, Y., K. Iwai, F. Morimatsu, T. Iwamoto, T. Mori, C. Oda, T. Taira, E. Y. Park, Y. Nakamura, and K. Sato. 2009. Effect of prolyl-hydroxyproline (Pro-Hyp), a food-derived collagen peptide in human blood, on growth of fibroblasts from mouse skin. Journal of Agricultural and Food Chemistry 57:444–49. doi:10.1021/jf802785h.
  • Shigemura, Y., D. Kubomura, Y. Sato, and K. Sato. 2014. Dose-dependent changes in the levels of free and peptide forms of hydroxyproline in human plasma after collagen hydrolysate ingestion. Food Chemistry 159:328–32. doi:10.1016/j.foodchem.2014.02.091.
  • Shimizu, J., N. Asami, A. Kataoka, F. Sugihara, N. Inoue, Y. Kimira, M. Wada, and H. Mano. 2015. Oral collagen-derived dipeptides, prolyl-hydroxyproline and hydroxyprolyl-glycine, ameliorate skin barrier dysfunction and alter gene expression profiles in the skin. Biochemical and Biophysical Research Communications 456:626–30. doi:10.1016/j.bbrc.2014.12.006.
  • Sibilla, S., M. Godfrey, S. Brewer, A. Budh-Raja, and L. Genovese. 2015. An overview of the beneficial effects of hydrolysed collagen as a nutraceutical on skin properties: Scientific background and clinical studies. Open Nutraceuticals Journal 8:29–42. doi:10.2174/1876396001508010029.
  • Sila, A., O. Martinez-Alvarez, A. Haddar, M. C. Gomez-Guillen, M. Nasri, M. P. Montero, and A. Bougatef. 2015. Recovery, viscoelastic and functional properties of Barbel skin gelatine: investigation of anti-DPP-IV and anti-prolyl endopeptidase activities of generated gelatine polypeptides. Food Chemistry 168:478–86. doi:10.1016/j.foodchem.2014.07.086.
  • Singh, T. K., N. D. Young, M. Drake, and K. R. Cadwallader. 2005. Production and sensory characterization of a bitter peptide from β-casein. Journal of Agricultural and Food Chemistry 53:1185–89. doi:10.1021/jf049058d.
  • Sohaib, M., F. M. Anjum, A. Sahar, M. S. Arshad, U. U. Rahman, A. Imran, and S. Hussain. 2016. Antioxidant proteins and peptides to enhance the oxidative stability of meat and meat products: A comprehensive review. International Journal of Food Properties:1–13.
  • Sugihara, F., N. Inoue, M. Kuwamori, and M. Taniguchi. 2012. Quantification of hydroxyprolyl-glycine (Hyp-Gly) in human blood after ingestion of collagen hydrolysate. Journal of Bioscience and Bioengineering 113:202–03. doi:10.1016/j.jbiosc.2011.09.024.
  • Sun, L., Y. Zhang, and Y. Zhuang. 2013. Antiphotoaging effect and purification of an antioxidant peptide from tilapia (Oreochromis niloticus) gelatin peptides. Journal of Functional Foods 5:154–62. doi:10.1016/j.jff.2012.09.006.
  • Taga, Y., M. Kusubata, K. Ogawa-Goto, and S. Hattori. 2014. Highly accurate quantification of hydroxyproline-containing peptides in blood using a protease digest of stable isotope-labeled collagen. Journal of Agricultural and Food Chemistry 62:12096–102. doi:10.1021/jf5039597.
  • Taga, Y., M. Kusubata, K. Ogawa-Goto, and S. Hattori. 2016. Efficient Absorption of X-Hydroxyproline (Hyp)-Gly after Oral Administration of a Novel Gelatin Hydrolysate Prepared Using Ginger Protease. Journal of Agricultural and Food Chemistry 64:2962–70. doi:10.1021/acs.jafc.6b00609.
  • Temussi, P. A. 2012. The good taste of peptides. Journal of Peptide Science 18:73–82. doi:10.1002/psc.1428.
  • Toldrá, F., L. Mora, and M. Reig. 2016. New insights into meat by-product utilization. Meat Science 120:54–59.
  • Trč, T., and J. Bohmová. 2011. Efficacy and tolerance of enzymatic hydrolysed collagen (EHC) vs. glucosamine sulphate (GS) in the treatment of knee osteoarthritis (KOA). International Orthopaedics 35:341–48.
  • Tsuruoka, N., R. Yamato, Y. Sakai, Y. Yoshitake, and H. Yonekura. 2007. Promotion by collagen tripeptide of type I collagen gene expression in human osteoblastic cells and fracture healing of rat femur. Bioscience, Biotechnology, and Biochemistry. 71:2680–87.
  • Udenigwe, C. C. 2014. Bioinformatics approaches, prospects and challenges of food bioactive peptide research. Trends in Food Science and Technology 36:137–43.
  • Udenigwe, C. C., and R. E. Aluko. 2012. Food protein-derived bioactive peptides: production, processing, and potential health benefits. Journal of Food Science 77:R11–24.
  • Udenigwe, C. C., and V. Fogliano. 2017. Food matrix interaction and bioavailability of bioactive peptides: Two faces of the same coin? Journal of Functional Foods 35:9–12.
  • Udenigwe, C. C., M. Gong, and S. Wu. 2013. In silico analysis of the large and small subunits of cereal RuBisCO as precursors of cryptic bioactive peptides. Process Biochemistry 48:1794–99.
  • Udenigwe, C. C., and A. Mohan. 2014. Mechanisms of food protein-derived antihypertensive peptides other than ACE inhibition. Journal of Functional Foods 8:45–52.
  • Valko, M., C. Rhodes, J. Moncol, M. Izakovic, and M. Mazur. 2006. Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chemico-Biological Interactions 160:1–40.
  • Venkatesan, J., S. Anil, S. K. Kim, and M. S. Shim. 2017. Marine fish proteins and peptides for cosmeceuticals: A review. Marine Drugs 15:143.
  • Vo, T. S., D. H. Ngo, J. A. Kim, B. Ryu, and S. K. Kim. 2011. An antihypertensive peptide from tilapia gelatin diminishes free radical formation in murine microglial cells. Journal of Agricultural and Food Chemistry 59:12193–97.
  • Wang, B., Y.-M. Wang, C.-F. Chi, H.-Y. Luo, S.-G. Deng, and J.-Y. Ma. 2013. Isolation and characterization of collagen and antioxidant collagen peptides from scales of croceine croaker (Pseudosciaena crocea). Marine Drugs 11:4641–61.
  • Wang, T.-Y., C.-H. Hsieh, C.-C. Hung, C.-L. Jao, M.-C. Chen, and K.-C. Hsu. 2015. Fish skin gelatin hydrolysates as dipeptidyl peptidase IV inhibitors and glucagon-like peptide-1 stimulators improve glycaemic control in diabetic rats: a comparison between warm-and cold-water fish. Journal of Functional Foods 19:330–340.
  • Wang, J., M. Xu, R. Liang, M. Zhao, Z. Zhang, and Y. Li. 2015a. Oral administration of marine collagen peptides prepared from chum salmon (Oncorhynchus keta) improves wound healing following cesarean section in rats. Food & Nutrition Research 59:26411.
  • Wang, L., Q. Wang, Q. Liang, Y. He, Z. Wang, S. He, J. Xu, and H. Ma. 2015b. Determination of bioavailability and identification of collagen peptide in blood after oral ingestion of gelatin. Journal of the Science of Food and Agriculture 95:2712–17.
  • Wang, T. Y., C. H. Hsieh, C. C. Hung, C. L. Jao, P. Y. Lin, Y. L. Hsieh, and K. C. Hsu. 2017. A study to evaluate the potential of an in silico approach for predicting dipeptidyl peptidase-IV inhibitory activity in vitro of protein hydrolysates. Food Chemistry 234:431–38.
  • Watanabe-Kamiyama, M., M. Shimizu, S. Kamiyama, Y. Taguchi, H. Sone, F. Morimatsu, H. Shirakawa, Y. Furukawa, and M. Komai. 2010. Absorption and effectiveness of orally administered low molecular weight collagen hydrolysate in rats. Journal of Agricultural and Food Chemistry 58:835–41.
  • Weng, W., L. Tang, B. Wang, J. Chen, W. Su, K. Osako, and M. Tanaka. 2014. Antioxidant properties of fractions isolated from blue shark (Prionace glauca) skin gelatin hydrolysates. Journal of Functional Foods 11:342–51.
  • Wu, J., M. Fujioka, K. Sugimoto, G. Mu, and Y. Ishimi. 2004. Assessment of effectiveness of oral administration of collagen peptide on bone metabolism in growing and mature rats. Journal of Bone and Mineral Metabolism 22:547–53.
  • Wu, S., W. Qi, T. Li, D. Lu, R. Su, and Z. He. 2013. Simultaneous production of multi-functional peptides by pancreatic hydrolysis of bovine casein in an enzymatic membrane reactor via combinational chromatography. Food Chemistry 141:2944–51.
  • Xu, L., W. Dong, J. Zhao, and Y. Xu. 2015. Effect of Marine collagen peptides on physiological and neurobehavioral development of male rats with perinatal asphyxia. Marine Drugs 13:3653–71.
  • Yamada, S., H. Nagaoka, M. Terajima, N. Tsuda, Y. Hayashi, and M. Yamauchi. 2013. Effects of fish collagen peptides on collagen post-translational modifications and mineralization in an osteoblastic cell culture system. Dental Materials Journal 32:88–95.
  • Yamamoto, S., F. Hayasaka, K. Deguchi, T. Okudera, T. Furusawa, and Y. Sakai. 2015. Absorption and plasma kinetics of collagen tripeptide after peroral or intraperitoneal administration in rats. Bioscience, Biotechnology, and Biochemistry 79:2026–33.
  • Yazaki, M., Y. Ito, M. Yamada, S. Goulas, S. Teramoto, M. A. Nakaya, S. Ohno, and K. Yamaguchi. 2017. Oral ingestion of collagen hydrolysate leads to the transportation of highly concentrated Gly-Pro-Hyp and its hydrolyzed form of Pro-Hyp into the bloodstream and skin. Journal of Agricultural and Food Chemistry 65:2315–22.
  • Yu, Y., Y. Jin, F. Wang, J. Yan, Y. Qi, and M. Ye. 2017. Protein digestomic analysis reveals the bioactivity of deer antler velvet in simulated gastrointestinal digestion. Food Research International 96:182–90.
  • Zague, V. 2008. A new view concerning the effects of collagen hydrolysate intake on skin properties. Archives of Dermatological Research 300:479–83.
  • Zague, V., V. de Freitas, MdC. Rosa, G. Á. de Castro, R. G. Jaeger, and G. M. Machado-Santelli. 2011. Collagen hydrolysate intake increases skin collagen expression and suppresses matrix metalloproteinase 2 activity. Journal of Medicinal Food 14:618–24.
  • Zdzieblik, D., S. Oesser, A. Gollhofer, and D. Konig. 2017. Improvement of activity-related knee joint discomfort following supplementation of specific collagen peptides. Applied Physiology, Nutrition, and Metabolism 42:588–95.
  • Zhang, Y., R. Chen, X. Chen, Z. Zeng, H. Ma, and S. Chen. 2016. Dipeptidyl Peptidase IV-Inhibitory Peptides Derived from Silver Carp (Hypophthalmichthys molitrix Val.) Proteins. Journal of Agricultural and Food Chemistry 64:831–39.
  • Zhang, Y., X. Duan, and Y. Zhuang. 2012. Purification and characterization of novel antioxidant peptides from enzymatic hydrolysates of tilapia (Oreochromis niloticus) skin gelatin. Peptides 38:13–21.
  • Zhang, Y., T. Kouguchi, K. Shimizu, M. Sato, Y. Takahata, and F. Morimatsu. 2010. Chicken collagen hydrolysate reduces proinflammatory cytokine production in C57BL/6. KOR-ApoEshl mice. Journal of Nutritional Science and Vitaminology 56:208–10.
  • Zhang, Y., K. Olsen, A. Grossi, and J. Otte. 2013. Effect of pretreatment on enzymatic hydrolysis of bovine collagen and formation of ACE-inhibitory peptides. Food Chemistry 141:2343–54.
  • Zhang, Z., J. Wang, Y. Ding, X. Dai, and Y. Li. 2011. Oral administration of marine collagen peptides from Chum Salmon skin enhances cutaneous wound healing and angiogenesis in rats. Journal of the Science of Food and Agriculture 91:2173–79.
  • Zhu, C. F., G. Z. Li, H. B. Peng, F. Zhang, Y. Chen, and Y. Li. 2010. Treatment with marine collagen peptides modulates glucose and lipid metabolism in Chinese patients with type 2 diabetes mellitus. Applied Physiology, Nutrition, and Metabolism 35:797–804.
  • Zhuang, Y., X. Zhao, and B. Li. 2009. Optimization of antioxidant activity by response surface methodology in hydrolysates of jellyfish (Rhopilema esculentum) umbrella collagen. Journal of Zhejiang University Science B 10:572–79.
  • Zhuang, Y., L. Sun, and B. Li. 2010. Production of the angiotensin-I-converting enzyme (ACE)-inhibitory peptide from hydrolysates of jellyfish (Rhopilema esculentum) collagen. Food and Bioprocess Technology 5:1622–29.
  • Zhuang, Y., L. Sun, Y. Zhang, and G. Liu. 2012. Antihypertensive effect of long-term oral administration of jellyfish (Rhopilema esculentum) collagen peptides on renovascular hypertension. Marine Drugs 10:417–26.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.