3,414
Views
168
CrossRef citations to date
0
Altmetric
Reviews

Application of different nanocarriers for encapsulation of curcumin

, , &
Pages 3468-3497 | Received 06 May 2018, Accepted 27 Jun 2018, Published online: 04 Oct 2018

References

  • Abaee, A., M. Mohammadian, and S. M. Jafari. 2017. Whey and soy protein-based hydrogels and nano-hydrogels as bioactive delivery systems. Trends in Food Science & Technology 70:69–81.
  • Abbasi, E., S. F. Aval, A. Akbarzadeh, M. Milani, H. T. Nasrabadi, S. W. Joo, Y. Hanifehpour, K. Nejati-Koshki, and R. Pashaei-Asl. 2014. Dendrimers: synthesis, applications, and properties. Nanoscale Research Letters 9(1):247.
  • Abderrezak, A., P. Bourassa, J.-S. Mandeville, R. Sedaghat-Herati, and H.-A. Tajmir-Riahi. 2012. Dendrimers bind antioxidant polyphenols and cisplatin drug. PLoS One 7(3):e33102
  • Acevedo-Guevara, L., L. Nieto-Suaza, L. T. Sanchez, M. I. Pinzon, and C. C. Villa. 2018. Development of native and modified banana starch nanoparticles as vehicles for curcumin. International Journal of Biological Macromolecules 111:498–504.
  • Aditya, N., G. Chimote, K. Gunalan, R. Banerjee, S. Patankar, and B. Madhusudhan. 2012. Curcuminoids-loaded liposomes in combination with arteether protects against Plasmodium berghei infection in mice. Experimental Parasitology 131(3):292–9.
  • Aditya, N., M. Shim, I. Lee, Y. Lee, M.-H. Im, and S. Ko. 2013. Curcumin and genistein coloaded nanostructured lipid carriers: in vitro digestion and antiprostate cancer activity. Journal of Agricultural and Food Chemistry 61(8):1878–83.
  • Ag Seleci, D., M. Seleci, J.-G. Walter, F. Stahl, and T. Scheper. 2016. Niosomes as nanoparticular drug carriers: fundamentals and recent applications. Journal of Nanomaterials 2016:1–3.
  • Aggarwal, B. B., and B. Sung. 2009. Pharmacological basis for the role of curcumin in chronic diseases: an age-old spice with modern targets. Trends in Pharmacological Sciences 30(2):85–94.
  • Aguilar, F., B. Dusemund, P. Galtier, J. Gilbert, D. Gott, S. Grilli, R. Gurtler, J. KöNIG, C. Lambre, and J. Larsen. 2010. Scientific opinion on the re-evaluation of curcumin (E 100) as a food additive. EFSA Journal 8(9):1–46.
  • Ahmed, K., Y. Li, D. J. Mcclements, and H. Xiao. 2012. Nanoemulsion- and emulsion-based delivery systems for curcumin: Encapsulation and release properties. Food Chemistry 132(2):799–807.
  • Akbarzadeh, A., R. Rezaei-Sadabady, S. Davaran, S. W. Joo, N. Zarghami, Y. Hanifehpour, M. Samiei, M. Kouhi, and K. Nejati-Koshki. 2013. Liposome: Classification, preparation, and applications. Nanoscale Research Letters 8(1):102.
  • Akhavan, S., E. Assadpour, I. Katouzian, and S. M. Jafari. 2018. Lipid nano scale cargos for the protection and delivery of food bioactive ingredients and nutraceuticals. Trends in Food Science & Technology 74:132–46.
  • Akhtar, F., M. M. A. Rizvi, and S. K. Kar. 2012. Oral delivery of curcumin bound to chitosan nanoparticles cured Plasmodium yoelii infected mice. Biotechnology Advances 30(1):310–20.
  • Alibolandi, M., M. Mohammadi, S. M. Taghdisi, K. Abnous, and M. Ramezani. 2017. Synthesis and preparation of biodegradable hybrid dextran hydrogel incorporated with biodegradable curcumin nanomicelles for full thickness wound healing. International Journal of Pharmaceutics 532(1):466–77.
  • Altunbas, A., S. J. Lee, S. A. Rajasekaran, J. P. Schneider, and D. J. Pochan. 2011. Encapsulation of curcumin in self-assembling peptide hydrogels as injectable drug delivery vehicles. Biomaterials 32(25):5906–14.
  • An, Y., X. Jiang, W. Bi, H. Chen, L. Jin, S. Zhang, C. Wang, and W. Zhang. 2012. Sensitive electrochemical immunosensor for α-synuclein based on dual signal amplification using PAMAM dendrimer-encapsulated Au and enhanced gold nanoparticle labels. Biosensors and Bioelectronics 32(1):224–30.
  • Anand, P., H. B. Nair, B. Sung, A. B. Kunnumakkara, V. R. Yadav, R. R. Tekmal, and B. B. Aggarwal. 2010. RETRACTED: Design of curcumin-loaded PLGA nanoparticles formulation with enhanced cellular uptake, and increased bioactivity in vitro and superior bioavailability in vivo. Biochemical Pharmacology 79(3):330–8.
  • Anbarasan, B., X. F. Grace, and S. Shanmuganathan. 2015. An overview of cubosomes—smart drug delivery system. Sri Ramachandra Journal of Medicine 8:1–4.
  • Anitha, A., V. G. Deepagan, V. V. Divya Rani, D. Menon, S. V. Nair, and R. Jayakumar. 2011. Preparation, characterization, in vitro drug release and biological studies of curcumin loaded dextran sulphate–chitosan nanoparticles. Carbohydrate Polymers 84(3):1158–64.
  • Anuchapreeda, S., Y. Fukumori, S. Okonogi, and H. Ichikawa. 2012. Preparation of lipid nanoemulsions incorporating curcumin for cancer therapy. Journal of Nanotechnology 2012:1–11.
  • Archana, A., K. Vijayasri, M. Madhurim, and C. Kumar. 2015. Curcumin loaded nano cubosomal hydrogel: preparation, in vitro characterization and antibacterial activity. Chemical Science Transaction 4:75–80.
  • Arpagaus, C., A. Collenberg, D. Rütti, E. Assadpour, and S. M. Jafari. 2018. Nano spray drying for encapsulation of pharmaceuticals. International Journal of Pharmaceutics 546(1–2):194–214.
  • Arya, N., S. Chakraborty, N. Dube, and D. S. Katti. 2009. Electrospraying: A facile technique for synthesis of chitosan‐based micro/nanospheres for drug delivery applications. Journal of Biomedical Materials Research Part B: Applied Biomaterials 88B(1):17–31.
  • Assadpour, E., Y. Maghsoudlou, S.-M. Jafari, M. Ghorbani, and M. Aalami. 2016. Optimization of folic acid nano-emulsification and encapsulation by maltodextrin-whey protein double emulsions. International Journal of Biological Macromolecules 86:197–207.
  • Assadpour, E., S. M. Jafari, and A. F. Esfanjani. 2017. Protection of phenolic compounds within nanocarriers. CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources 12(057):1–8.
  • Assadpour, E., and S. M. Jafari. 2018. A systematic review on nanoencapsulation of food bioactive ingredients and nutraceuticals by various nanocarriers. Critical Reviews in Food Science and Nutrition:1–47. (In Press)
  • Babaei, E., M. Sadeghizadeh, Z. M. Hassan, M. A. H. Feizi, F. Najafi, and S. M. Hashemi. 2012. Dendrosomal curcumin significantly suppresses cancer cell proliferation in vitro and in vivo. International Immunopharmacology 12(1):226–34.
  • Bazylińska, U., J. Kulbacka, J. Schmidt, Y. Talmon, and S. Murgia. 2018. Polymer-free cubosomes for simultaneous bioimaging and photodynamic action of photosensitizers in melanoma skin cancer cells. Journal of Colloid and Interface Science 522:163–73.
  • Benzaria, A., M. Maresca, N. Taieb, and E. Dumay. 2013. Interaction of curcumin with phosphocasein micelles processed or not by dynamic high-pressure. Food Chemistry 138(4):2327–37.
  • Bhunchu, S., P. Rojsitthisak, and P. Rojsitthisak. 2015. Effects of preparation parameters on the characteristics of chitosan–alginate nanoparticles containing curcumin diethyl disuccinate. Journal of Drug Delivery Science and Technology 28:64–72.
  • Biricova, V., and A. Laznickova. 2009. Dendrimers: Analytical characterization and applications. Bioorganic Chemistry 37(6):185–92.
  • Blanco-Padilla, A., A. LóPEZ-Rubio, G. Loarca-PIñA, L. G. GóMEZ-Mascaraque, and S. Mendoza. 2015. Characterization, release and antioxidant activity of curcumin-loaded amaranth-pullulan electrospun fibers. LWT-Food Science and Technology 63(2):1137–44.
  • Bollimpelli, V. S., P. Kumar, S. Kumari, and A. K. Kondapi. 2016. Neuroprotective effect of curcumin-loaded lactoferrin nano particles against rotenone induced neurotoxicity. Neurochemistry International 95:37–45.
  • Borrin, T. R., E. L. Georges, I. C. F. Moraes, and S. C. Pinho. 2016. Curcumin-loaded nanoemulsions produced by the emulsion inversion point (EIP) method: an evaluation of process parameters and physico-chemical stability. Journal of Food Engineering 169:1–9.
  • Brahatheeswaran, D., A. Mathew, R. G. Aswathy, Y. Nagaoka, K. Venugopal, Y. Yoshida, T. Maekawa, and D. Sakthikumar. 2012. Hybrid fluorescent curcumin loaded zein electrospun nanofibrous scaffold for biomedical applications. Biomedical Materials 7(4):045001.
  • Cao, J., H. Zhang, Y. Wang, J. Yang, and F. Jiang. 2013. Investigation on the interaction behavior between curcumin and PAMAM dendrimer by spectral and docking studies. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 108:251–5.
  • Caon, T., L. Mazzarino, C. M. O. SIMõES, E. L. Senna, and M. A. S. Silva. 2017. Lipid- and Polymer-based nanostructures for cutaneous delivery of curcumin. AAPS PharmSciTech 18(3):920–5.
  • Chakraborty, S., I.-C. Liao, A. Adler, and K. W. Leong. 2009. Electrohydrodynamics: a facile technique to fabricate drug delivery systems. Advanced Drug Delivery Reviews 61(12):1043–54.
  • Chanburee, S., and W. Tiyaboonchai. 2018. Enhanced intestinal absorption of curcumin in caco‐2 cell monolayer using mucoadhesive nanostructured lipid carriers. Journal of Biomedical Materials Research Part B: Applied Biomaterials 106(2):734–41.
  • Chang, C., T. Wang, Q. Hu, and Y. Luo. 2017. Caseinate-zein-polysaccharide complex nanoparticles as potential oral delivery vehicles for curcumin: Effect of polysaccharide type and chemical cross-linking. Food Hydrocolloids 72:254–62.
  • Chen, F.-P., B.-S. Li, and C.-H. Tang. 2015. Nanocomplexation between curcumin and soy protein isolate: Influence on curcumin stability/bioaccessibility and in vitro protein digestibility. Journal of Agricultural and Food Chemistry 63(13):3559–69.
  • Chen, F.-P., B.-S. Li, and C.-H. Tang. 2015. Nanocomplexation of soy protein isolate with curcumin: Influence of ultrasonic treatment. Food Research International (Ottawa, Ont.) 75:157–65.
  • Chen, H., J. Weiss, and F. Shahidi. 2006. Nanotechnology in nutraceuticals and functional foods. Food Technology 60:277–308.
  • Chen, P., H. Zhang, S. Cheng, G. Zhai, and C. Shen. 2016. Development of curcumin loaded nanostructured lipid carrier based thermosensitive in situ gel for dermal delivery. Colloids and Surfaces A: Physicochemical and Engineering Aspects 506:356–62.
  • Chen, X., L.-Q. Zou, J. Niu, W. Liu, S.-F. Peng, and C.-M. Liu. 2015. The stability, sustained release and cellular antioxidant activity of curcumin nanoliposomes. Molecules 20(8):14293–311.
  • Chen, Y., Q. Wu, Z. Zhang, L. Yuan, X. Liu, and L. Zhou. 2012. Preparation of curcumin-loaded liposomes and evaluation of their skin permeation and pharmacodynamics. Molecules (Basel, Switzerland) 17(5):5972–87.
  • Cheng, C., S. Peng, Z. Li, L. Zou, W. Liu, and C. Liu. 2017. Improved bioavailability of curcumin in liposomes prepared using a pH-driven, organic solvent-free, easily scalable process. RSC Advances 7(42):25978–86.
  • Chereddy, K. K., R. Coco, P. B. Memvanga, B. Ucakar, A. Des Rieux, G. Vandermeulen, and V. Preat. 2013. Combined effect of PLGA and curcumin on wound healing activity. Journal of Controlled Release 171(2):208–15.
  • Chu, Y., D. Li, Y.-F. Luo, X.-J. He, and M.-Y. Jiang. 2014. Preparation and in vitro evaluation of glycyrrhetinic acid-modified curcumin-loaded nanostructured lipid carriers. Molecules 19(2):2445–57.
  • Chuah, L. H., C. J. Roberts, N. Billa, S. Abdullah, and R. Rosli. 2014. Cellular uptake and anticancer effects of mucoadhesive curcumin-containing chitosan nanoparticles. Colloids and Surfaces B: Biointerfaces 116:228–36.
  • Couvreur, P., C. Dubernet, and F. Puisieux. 1995. Controlled drug delivery with nanoparticles: current possibilities and future trends. European Journal of Pharmaceutics and Biopharmaceutics 41:2–13.
  • Crespilho, F. N., F. C. Nart, O. N. Oliveira, and C. M. A. Brett. O. N. & BRETT, C. M. 2007. Oxygen reduction and diffusion in electroactive nanostructured membranes (ENM) using a layer-by-layer dendrimer-gold nanoparticle approach. Electrochimica Acta 52(14):4649–53.
  • Cuomo, F., M. Cofelice, F. Venditti, A. Ceglie, M. Miguel, B. Lindman, and F. Lopez. 2017. In-vitro digestion of curcumin loaded chitosan-coated liposomes. Colloids and Surfaces B: Biointerfaces
  • Dai, L., C. Sun, R. Li, L. Mao, F. Liu, and Y. Gao. 2017. Structural characterization, formation mechanism and stability of curcumin in zein-lecithin composite nanoparticles fabricated by antisolvent co-precipitation. Food Chemistry 237:1163–71.
  • Damodaran, S., and K. L. Parkin. 2017. Fennema’s food chemistry. Boca Raton: CRC Press.
  • DAS, R. K., N. Kasoju, and U. Bora. 2010. Encapsulation of curcumin in alginate-chitosan-pluronic composite nanoparticles for delivery to cancer cells. Nanomedicine: Nanotechnology, Biology and Medicine 6(1):153–60.
  • DE Souza SIMõES, L., D. A. Madalena, A. C. Pinheiro, J. A. Teixeira, A. A. Vicente, and Ó. L. Ramos. 2017. Micro-and nano bio-based delivery systems for food applications: in vitro behavior. Advances in Colloid and Interface Science 243:23–45.
  • Debnath, S., D. Saloum, S. Dolai, C. Sun, S. Averick, K. Raja, and J. E Fata. 2013. Dendrimer-curcumin conjugate: a water soluble and effective cytotoxic agent against breast cancer cell lines. Anti-Cancer Agents in Medicinal Chemistry 13(10):1531–9.
  • Delfiya, D. A., K. Thangavel, and D. Amirtham. 2016a. Preparation of curcumin loaded egg albumin nanoparticles using acetone and optimization of desolvation process. The Protein Journal 35:124–35.
  • Delfiya, D. A., K. Thangavel, N. Natarajan, and D. Amirtham. 2016b. Preparation of curcumin-loaded egg albumin nanoparticles using ethanol as desolvation agent. Asian Journal of Chemistry 28:1536.
  • Deman, J. 1997. Principle of food chemistry (terjemahan kosasih).New York: Van norstand reinhold. A Division of Wadswart, Inc.
  • Deng, L., X. Kang, Y. Liu, F. Feng, and H. Zhang. 2017. Effects of surfactants on the formation of gelatin nanofibres for controlled release of curcumin. Food Chemistry 231:70–7.
  • Devarakonda, B., N. Li, and M. M. DE Villiers. 2005. Effect of polyamidoamine (PAMAM) dendrimers on the in vitro release of water-insoluble nifedipine from aqueous gels. AAPS PharmSciTech 6(3):E504–12.
  • Drosou, C. G., M. K. Krokida, and C. G. Biliaderis. 2017. Encapsulation of bioactive compounds through electrospinning/electrospraying and spray drying: A comparative assessment of food-related applications. Drying Technology 35(2):139–62.
  • Duan, Y., X. Cai, H. Du, and G. Zhai. 2015. Novel in situ gel systems based on P123/TPGS mixed micelles and gellan gum for ophthalmic delivery of curcumin. Colloids and Surfaces. B, Biointerfaces 128:322–30.
  • Dutta, T., M. Garg, and N. K. Jain. 2008. Poly (propyleneimine) dendrimer and dendrosome mediated genetic immunization against hepatitis B. Vaccine 26(27–28):3389–94.
  • Elakkiya, T., G. Malarvizhi, S. Rajiv, and T. S. Natarajan. 2014. Curcumin loaded electrospun Bombyx mori silk nanofibers for drug delivery. Polymer International 63(1):100–5.
  • Emami, S., S. Azadmard-Damirchi, S. H. Peighambardoust, H. Valizadeh, and J. Hesari. 2016. Liposomes as carrier vehicles for functional compounds in food sector. Journal of Experimental Nanoscience 11(9):737–59.
  • Esfandiarpour-Boroujeni, S., S. Bagheri-Khoulenjani, H. Mirzadeh, and S. Amanpour. 2017. Fabrication and study of curcumin loaded nanoparticles based on folate-chitosan for breast cancer therapy application. Carbohydrate Polymers 168:14–21.
  • Esmaili, M., S. M. Ghaffari, Z. Moosavi-Movahedi, M. S. Atri, A. Sharifizadeh, M. Farhadi, R. Yousefi, J.-M. Chobert, T. Haertle, and A. A. Moosavi-Movahedi. 2011. Beta casein-micelle as a nano vehicle for solubility enhancement of curcumin; food industry application. LWT - Food Science and Technology 44(10):2166–72.
  • Esposito, E., N. Eblovi, S. Rasi, M. Drechsler, G. M. DI Gregorio, E. Menegatti, and R. Cortesi. 2003. Lipid-based supramolecular systems for topical application: A preformulatory study. AAPS PharmSci 5(4):62.
  • Esposito, E., L. Ravani, P. Mariani, C. Contado, M. Drechsler, C. Puglia, and R. Cortesi. 2013. Curcumin containing monoolein aqueous dispersions: a preformulative study. Materials Science and Engineering: C 33(8):4923–34.
  • Facchi, S. P., Scariot, D. B. Bueno, P. V. A. Souza, P. R. Figueiredo, L. C. Follmann, H. D. M. Nunes, C. S. Monteiro, J. P. Bonafe, E. G. Nakamura. C. V. et al., and A. F. 2016. Preparation and cytotoxicity of N-modified chitosan nanoparticles applied in curcumin delivery. International Journal of Biological Macromolecules 87:237–45.
  • Faridi Esfanjani, A., and S. M. Jafari. 2016. Biopolymer nano-particles and natural nano-carriers for nano-encapsulation of phenolic compounds. Colloids and Surfaces. B, Biointerfaces 146:532–43.
  • Faridi Esfanjani, A., E. Assadpour, and S. M. Jafari. 2018. Improving the bioavailability of phenolic compounds by loading them within lipid-based nanocarriers. Trends in Food Science & Technology 76:56–66.
  • Fathi, M., M.-R. Mozafari, and M. Mohebbi. 2012. Nanoencapsulation of food ingredients using lipid based delivery systems. Trends in Food Science & Technology 23(1):13–27.
  • Ganesan, P., and D. Narayanasamy. 2017. Lipid nanoparticles: Different preparation techniques, characterization, hurdles, and strategies for the production of solid lipid nanoparticles and nanostructured lipid carriers for oral drug delivery. Sustainable Chemistry and Pharmacy 6:37–56.
  • Garg, G., S. Saraf, and S. Saraf. 2007. Cubosomes: an overview. Biological & Pharmaceutical Bulletin 30(2):350–3.
  • Garti, N., D. Libster, and A. Aserin. 2012. Lipid polymorphism in lyotropic liquid crystals for triggered release of bioactives. Food & Function 3(7):700–13.
  • Geszke-Moritz, M., and M. Moritz. 2016. Solid lipid nanoparticles as attractive drug vehicles: Composition, properties and therapeutic strategies. Materials Science and Engineering: C 68:982–94.
  • Gharibzahedi, S. M. T., and S. M. Jafari. 2017. 7 - Nanocapsule formation by cyclodextrins. Nanoencapsulation technologies for the food and nutraceutical industries. San Diego: Academic Press.
  • Ghasemi, S., S. M. Jafari, E. Assadpour, and M. Khomeiri. 2017. Production of pectin-whey protein nano-complexes as carriers of orange peel oil. Carbohydrate Polymers 177:369–77.
  • Ghasemi, S., S. M. Jafari, E. Assadpour, and M. Khomeiri. 2018. Nanoencapsulation of d-limonene within nanocarriers produced by pectin-whey protein complexes. Food Hydrocolloids 77:152–62.
  • Ghorani, B., and N. Tucker. 2015. Fundamentals of electrospinning as a novel delivery vehicle for bioactive compounds in food nanotechnology. Food Hydrocolloids 51:227–40.
  • Ghorbanzade, T., S. M. Jafari, S. Akhavan, and R. Hadavi. 2017. Nano-encapsulation of fish oil in nano-liposomes and its application in fortification of yogurt. Food Chemistry 216:146–52.
  • Gong, C., Deng, S. Wu, Q. Xiang, M. Wei, X. Li, L. Gao, X. Wang, B. Sun, L. Chen. Y. et al., and Y. 2013. Improving antiangiogenesis and anti-tumor activity of curcumin by biodegradable polymeric micelles. Biomaterials 34:1413–32.
  • Gou, M., K. Men, H. Shi, M. Xiang, J. Zhang, J. Song, J. Long, Y. Wan, F. Luo, X. Zhao, and Z. Qian. 2011. Curcumin-loaded biodegradable polymeric micelles for Colon cancer therapy in vitro and in vivo. Nanoscale 3(4):1558–67.
  • Hasan, M., N. Belhaj, H. Benachour, M. Barberi-Heyob, C. Kahn, E. Jabbari, M. Linder, and E. Arab-Tehrany. 2014. Liposome encapsulation of curcumin: physico-chemical characterizations and effects on MCF7 cancer cell proliferation. International Journal of Pharmaceutics 461(1-2):519–28.
  • Hoare, T. R., and D. S. Kohane. 2008. Hydrogels in drug delivery: Progress and challenges. Polymer 49(8):1993–2007.
  • Hosseini, S. M. H., Z. Emam-Djomeh, P. Sabatino, and P. VAN DER Meeren. 2015. Nanocomplexes arising from protein-polysaccharide electrostatic interaction as a promising carrier for nutraceutical compounds. Food Hydrocolloids 50:16–26.
  • Hu, K., X. Huang, Y. Gao, X. Huang, H. Xiao, and D. J. Mcclements. 2015. Core–shell biopolymer nanoparticle delivery systems: Synthesis and characterization of curcumin fortified zein–pectin nanoparticles. Food Chemistry 182:275–81.
  • Huang, J., T. Peng, Y. Li, Z. Zhan, Y. Zeng, Y. Huang, X. Pan, C.-Y. Wu, and C. Wu. 2017. Ocular cubosome drug delivery system for timolol maleate: preparation, characterization, cytotoxicity, ex vivo, and in vivo evaluation. AAPS PharmSciTech 18(8):2919–26.
  • Huang, Z., X. Li, T. Zhang, Y. Song, Z. She, J. Li, and Y. Deng. 2014. Progress involving new techniques for liposome preparation. Asian Journal of Pharmaceutical Sciences 9(4):176–82.
  • Jafari, S. M., Y. He, and B. Bhandari. 2006. Nano-Emulsion Production by sonication and microfluidization—a comparison. International Journal of Food Properties 9(3):475–85.
  • Jafari, S. M. 2017a. Chapter 1—an introduction to nanoencapsulation techniques for the food bioactive ingredients. Nanoencapsulation of food bioactive ingredients. San Diego: Academic Press.
  • Jafari, S. M. 2017b. Nanoencapsulation technologies for the food and nutraceutical industries. San Diego: Academic Press.
  • Jafari, S. M. 2017c. Chapter 10—Nanocapsules Formation by nano spray drying. Nanoencapsulation technologies for the food and nutraceutical industries. San Diego: Academic Press.
  • Jafari, S. M., Y. He, and B. Bhandari. 2007. Optimization of nano-emulsions production by microfluidization. European Food Research and Technology 225(5–6):733–41.
  • Jafari, S. M., Y. He, and B. Bhandari. 2007. Production of Sub-micron emulsions by ultrasound and microfluidization techniques. Journal of Food Engineering 82(4):478–88.
  • Jafari, S. M., and D. J. Mcclements. 2017. Nanotechnology approaches for increasing nutrient bioavailability. Advances in food and nutrition research. San Diego: Academic Press.
  • Jafari, S. M., and D. J. Mcclements. 2018. Nanoemulsions. San Diego: Academic Press.
  • Jain, I. 2014. Crosslinking albumin for drug release from spray dried particles. Master Thesis, Electronic Thesis and Dissertations, Paper 674. University of Louisville, USA.
  • Jain, N. K., and U. Gupta. 2008. Application of dendrimer-drug complexation in the enhancement of drug solubility and bioavailability. Expert Opinion on Drug Metabolism &Amp; Toxicology 4(8):1035–52.
  • Jaworek, A., and A. Sobczyk. 2008. Electrospraying route to nanotechnology: An overview. Journal of Electrostatics 66(3–4):197–219.
  • Ji, H., J. Tang, M. Li, J. Ren, N. Zheng, and L. Wu. 2016. Curcumin-loaded solid lipid nanoparticles with Brij78 and TPGS improved in vivo oral bioavailability and in situ intestinal absorption of curcumin. Drug Delivery 23(2):459–70.
  • Jiang, H., L. Wang, and K. Zhu. 2014. Coaxial electrospinning for encapsulation and controlled release of fragile water-soluble bioactive agents. Journal of Controlled Release 193:296–303.
  • Jiao, J. 2008. Polyoxyethylated nonionic surfactants and their applications in topical ocular drug delivery. Advanced Drug Delivery Reviews 60(15):1663–73.
  • Jithan, A., K. Madhavi, M. Madhavi, and K. Prabhakar. 2011. Preparation and characterization of albumin nanoparticles encapsulating curcumin intended for the treatment of breast cancer. International Journal of Pharmaceutical Investigation 1(2):119–125.
  • Junyaprasert, V. B., V. Teeranachaideekul, and T. Supaperm. 2008. Effect of charged and non-ionic membrane additives on physicochemical properties and stability of niosomes. AAPS PharmSciTech 9(3):851–859.
  • Jyoti, K., R. S. Pandey, P. Kush, D. Kaushik, U. K. Jain, and J. Madan. 2017. Inhalable cationic niosomes of curcumin enhanced drug delivery and apoptosis in lung cancer cells. Indian Journal of Pharmaceutical Education and Research 98:50–S31.
  • Kakkar, V., S. Singh, D. Singla, and I. P. Kaur. 2011. Exploring solid lipid nanoparticles to enhance the oral bioavailability of curcumin. Molecular Nutrition & Food Research 55(3):495–503.
  • Karami, Z., and M. Hamidi. 2016. Cubosomes: Remarkable drug delivery potential. Drug Discovery Today 21(5):789–801.
  • Karewicz, A., D. Bielska, A. Loboda, B. Gzyl-Malcher, J. Bednar, A. Jozkowicz, J. Dulak, and M. Nowakowska. 2013. Curcumin-containing liposomes stabilized by thin layers of chitosan derivatives. Colloids and Surfaces B: Biointerfaces 109:307–16.
  • Katouzian, I., and S. M. Jafari. 2016. Nano-encapsulation as a promising approach for targeted delivery and controlled release of vitamins. Trends in Food Science & Technology 53:34–48.
  • Katouzian, I., A. F. Esfanjani, S. M. Jafari, and S. Akhavan. 2017. Formulation and application of a new generation of lipid nano-carriers for the food bioactive ingredients. Trends in Food Science & Technology 68:14–25.
  • Kaur, K., R. Kumar, and S. K. Mehta. 2015. Nanoemulsion: a new medium to study the interactions and stability of curcumin with bovine serum albumin. Journal of Molecular Liquids 209:62–70.
  • Kayaci, F., Y. Ertas, and T. Uyar. 2013. Enhanced thermal stability of eugenol by cyclodextrin inclusion complex encapsulated in electrospun polymeric nanofibers. Journal of Agricultural and Food Chemistry 61(34):8156–65.
  • Kazemi-Lomedasht, F., A. Rami, and N. Zarghami. 2013. Comparison of inhibitory effect of curcumin nanoparticles and free curcumin in human telomerase reverse transcriptase gene expression in breast cancer. Advanced Pharmaceutical Bulletin 3:127–30.
  • Kazi, K. M., A. S. Mandal, N. Biswas, A. Guha, S. Chatterjee, M. Behera, and K. Kuotsu. 2010. Niosome: a future of targeted drug delivery systems. Journal of Advanced Pharmaceutical Technology & Research 1(4):374.
  • Kesharwani, P., K. Jain, and N. K. Jain. 2014. Dendrimer as nanocarrier for drug delivery. Progress in Polymer Science 39(2):268–307.
  • Khan, M. A., M. Zafaryab, S. H. Mehdi, I. Ahmad, and M. M. A. Rizvi. 2016. Characterization and anti-proliferative activity of curcumin loaded chitosan nanoparticles in cervical cancer. International Journal of Biological Macromolecules 93:242–53.
  • Khan, R.,N., M. S Harun, A. Nawaz, N. Harjoh, and T. W Wong. 2015. Nanocarriers and their actions to improve skin permeability and transdermal drug delivery. Current Pharmaceutical Design 21(20):2848–66.
  • Khopade, A. J., F. Caruso, P. Tripathi, S. Nagaich, and N. K. Jain. 2002. Effect of dendrimer on entrapment and release of bioactive from liposomes. International Journal of Pharmaceutics 232(1–2):157–62.
  • Kim, T. H., H. H. Jiang, Y. S. Youn, C. W. Park, K. K. Tak, S. Lee, H. Kim, S. Jon, X. Chen, and K. C. Lee. 2011. Preparation and characterization of water-soluble albumin-bound curcumin nanoparticles with improved antitumor activity. International Journal of Pharmaceutics 403(1-2):285–91.
  • Klajnert, B., and M. Bryszewska. 2001. Dendrimers: properties and applications. Acta biochimica Polonica 48(1):199–208.
  • Krasteva, N., H. MöHWALD, and R. Krastev. 2009. Structural changes in stimuli-responsive nanoparticle/dendrimer composite films upon vapor sorption. Comptes Rendus Chimie 12(1-2):129–37.
  • Kulkarni, C. V., W. Wachter, G. Iglesias-Salto, S. Engelskirchen, and S. Ahualli. 2011. Monoolein: a magic lipid?. Physical Chemistry Chemical Physics: Pccp 13(8):3004–21.
  • Kumar, G. P., and P. Rajeshwarrao. 2011. Nonionic surfactant vesicular systems for effective drug delivery—an overview. Acta Pharmaceutica Sinica B 1(4):208–19.
  • Lakshmi, N., P. Yalavarthi, H. Vadlamudi, J. Thanniru, G. Yaga, and H. K. 2014. Cubosomes as targeted drug delivery systems-a biopharmaceutical approach. Current Drug Discovery Technologies 11(3):181–8.
  • Le, T. M. P., V. P. Pham, T. M. L. Dang, T. H. LA, T. H. Le, and Q. H. Le. 2013. Preparation of curcumin-loaded pluronic F127/chitosan nanoparticles for cancer therapy. Advances in Natural Sciences: Nanoscience and Nanotechnology 4(2):025001.
  • Lee, S. H., D. Heng, W. K. Ng, H.-K. Chan, and R. B. Tan. 2011. Nano spray drying: a novel method for preparing protein nanoparticles for protein therapy. International Journal of Pharmaceutics 403(1-2):192–200.
  • Li, J., I.-C. Hwang, X. Chen, and H. J. Park. 2016. Effects of chitosan coating on curcumin loaded nano-emulsion: Study on stability and in vitro digestibility. Food Hydrocolloids 60:138–47.
  • Li, J., G. H. Shin, I. W. Lee, X. Chen, and H. J. Park. 2016. Soluble starch formulated nanocomposite increases water solubility and stability of curcumin. Food Hydrocolloids 56:41–9.
  • Lin, C.-H., C.-H. Chen, Z.-C. Lin, and J.-Y. Fang. 2017. Recent advances in oral delivery of drugs and bioactive natural products using solid lipid nanoparticles as the carriers. Journal of Food and Drug Analysis 25(2):219–34.
  • Lin, Q., G. Jiang, and K. Tong. 2010. Dendrimers in drug-delivery applications. Designed Monomers and Polymers 13(4):301–24.
  • Lin, Y.-L., Y.-K. Liu, N.-M. Tsai, J.-H. Hsieh, C.-H. Chen, C.-M. Lin, and K.-W. Liao. 2012. A lipo-PEG-PEI complex for encapsulating curcumin that enhances its antitumor effects on curcumin-sensitive and curcumin-resistance cells. Nanomedicine: Nanotechnology, Biology and Medicine 8(3):318–27.
  • Liu, C., X. Yang, W. Wu, Z. Long, H. Xiao, F. Luo, Y. Shen, and Q. Lin. 2018. Elaboration of curcumin-loaded rice bran albumin nanoparticles formulation with increased in vitro bioactivity and in vivo bioavailability. Food Hydrocolloids 77:834–42.
  • Liu, F., D. Ma, X. Luo, Z. Zhang, L. He, Y. Gao, and D. J. Mcclements. 2018. Fabrication and characterization of protein-phenolic conjugate nanoparticles for co-delivery of curcumin and resveratrol. Food Hydrocolloids 79:450–61.
  • Mabberley, D. J. 1997. The plant-book: a portable dictionary of the vascular plants. Cambridge: Cambridge University Press.
  • Maherani, B., E. Arab-Tehrany, M. R Mozafari, C. Gaiani, and M. Linder. 2011. Liposomes: a review of manufacturing techniques and targeting strategies. Current Nanoscience 7(3):436–52.
  • Maheshwari, R. K., A. K. Singh, J. Gaddipati, and R. C. Srimal. 2006. Multiple biological activities of curcumin: a short review. Life Sciences 78(18):2081–7.
  • Trang Mai, T. T., T. T. Thuy Nguyen, Q. Duong Le, T. Ngoan Nguyen, T. Cham Ba, H. Binh Nguyen, T. B. Hoa Phan, D. Lam Tran, X. P. Nguyen, and J. Seo Park. 2012. A novel nanofiber cur-loaded polylactic acid constructed by electrospinning. Advances in Natural Sciences: Nanoscience and Nanotechnology 3(2):025014.
  • Mandal, S., C. Banerjee, S. Ghosh, J. Kuchlyan, and N. Sarkar. 2013. Modulation of the photophysical properties of curcumin in nonionic surfactant (tween-20) forming micelles and niosomes: A comparative study of different microenvironments. The Journal of Physical Chemistry B 117(23):6957–68.
  • Marianecci, C., L. DI Marzio, F. Rinaldi, C. Celia, D. Paolino, F. Alhaique, S. Esposito, and M. Carafa. 2014. Niosomes from 80s to present: The state of the art. Advances in Colloid and Interface Science 205:187–206.
  • Maruyama, K., O. Ishida, S. Kasaoka, T. Takizawa, N. Utoguchi, A. Shinohara, M. Chiba, H. Kobayashi, M. Eriguchi, and H. Yanagie. 2004. Intracellular targeting of sodium mercaptoundecahydrododecaborate (BSH) to solid tumors by transferrin-PEG liposomes, for boron neutron-capture therapy (BNCT). Journal of Controlled Release 98(2):195–207.
  • Mathew, A. T. Fukuda, Y. Nagaoka, T. Hasumura, H. Morimoto, Y. Yoshida, T. Maekawa, K. Venugopal, and D. S. Kumar. 2012. Curcumin loaded-PLGA nanoparticles conjugated with tet-1 peptide for potential use in alzheimer's disease. Plos ONE 7(3):e32616
  • Mcclements, D. J., and J. Rao. 2011. Food-grade nanoemulsions: Formulation, fabrication, properties, performance, biological fate, and potential toxicity. Critical Reviews in Food Science and Nutrition 51(4):285–330.
  • Mehanny, M., R. M. Hathout, A. S. Geneidi, and S. Mansour. 2016. Exploring the use of nanocarrier systems to deliver the magical molecule; curcumin and its derivatives. Journal of Controlled Release : Official Journal of the Controlled Release Society 225:1–30.
  • Mehranfar, F., A.-K. Bordbar, and R. A. Amiri. 2015. In vitro cytotoxic activity and binding properties of curcumin in the presence of β-Casein Micelle nanoparticles. Biomacromolecular Journal 1:69–79.
  • Mehrnia, M. A., S. M. Jafari, B. S. Makhmal-Zadeh, and Y. Maghsoudlou. 2016. Crocin loaded nano-emulsions: Factors affecting emulsion properties in spontaneous emulsification. International Journal of Biological Macromolecules 84:261–7.
  • Mendes, A. C., C. Gorzelanny, N. Halter, S. W. Schneider, and I. S. Chronakis. 2016. Hybrid electrospun chitosan-phospholipids nanofibers for transdermal drug delivery. International Journal of Pharmaceutics 510(1):48–56.
  • Meng, F., S. Asghar, Y. Xu, J. Wang, X. Jin, Z. Wang, J. Wang, Q. Ping, J. Zhou, and Y. Xiao. 2016. Design and evaluation of lipoprotein resembling curcumin-encapsulated protein-free nanostructured lipid carrier for brain targeting. International Journal of Pharmaceutics 506(1–2):46–56.
  • Meng, J., T.-T. Kang, H.-F. Wang, B.-B. Zhao, and R.-R. Lu. 2018. Physicochemical properties of casein-dextran nanoparticles prepared by controlled dry and wet heating. International Journal of Biological Macromolecules 107:2604–10.
  • Merrell, J. G., S. W. Mclaughlin, L. Tie, C. T. Laurencin, A. F. Chen, and L. S. Nair. 2009. Curcumin‐loaded poly (ε‐caprolactone) nanofibres: Diabetic wound dressing with anti‐oxidant and anti‐inflammatory properties. Clinical and Experimental Pharmacology and Physiology 36(12):1149–56.
  • Mirpoor, S. F., S. M. H. Hosseini, and G. H. Yousefi. 2017. Mixed biopolymer nanocomplexes conferred physicochemical stability and sustained release behavior to introduced curcumin. Food Hydrocolloids 71:216–24.
  • Moghassemi, S., and A. Hadjizadeh. 2014. Nano-niosomes as nanoscale drug delivery systems: an illustrated review. Journal of Controlled Release : Official Journal of the Controlled Release Society 185:22–36.
  • Mokhtari, S., S. M. Jafari, and E. Assadpour. 2017. Development of a nutraceutical nano-delivery system through emulsification/internal gelation of alginate. Food Chemistry 229:286–95.
  • Mollazade, M., K. Nejati-Koshki, A. Akbarzadeh, N. Zarghami, M. Nasiri, R. Jahanban-Esfahlan, and A. Alibakhshi. 2013. PAMAM dendrimers augment inhibitory effects of curcumin on cancer cell proliferation: Possible inhibition of telomerase. Asian Pacific Journal of Cancer Prevention 14(11):6925–8.
  • Montis, C., B. Castroflorio, M. Mendozza, A. Salvatore, D. Berti, and P. Baglioni. 2015. Magnetocubosomes for the delivery and controlled release of therapeutics. J Colloid Interface Sci 449:317–26.
  • Mozafari, R. M. 2005. Nanoliposomes: From fundamentals to recent developments. Oxford, UK: Trafford Pub. Ltd.
  • Mukerjee, A., and J. K. Vishwanatha. 2009. Formulation, characterization and evaluation of curcumin-loaded PLGA nanospheres for cancer therapy. Anticancer Research 29:3867–75.
  • Mulik, R., K. Mahadik, and A. Paradkar. 2009. Development of curcuminoids loaded poly(butyl) cyanoacrylate nanoparticles: Physicochemical characterization and stability study. European Journal of Pharmaceutical Sciences 37(3–4):395–404.
  • Mulik, R. S., J. MöNKKöNEN, R. O. Juvonen, K. R. Mahadik, and A. R. Paradkar. 2010. Transferrin mediated solid lipid nanoparticles containing curcumin: enhanced in vitro anticancer activity by induction of apoptosis. International Journal of Pharmaceutics 398(1-2):190–203.
  • Muller, R., M. Radtke, and S. Wissing. 2002. Nanostructured lipid matrices for improved microencapsulation of drugs. International Journal of Pharmaceutics 242(1-2):121–8.
  • Muller, R. H., M. Radtke, and S. A. Wissing. 2002. Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) in cosmetic and dermatological preparations. Advanced Drug Delivery Reviews 54:S131–S55.
  • Murgia, S., A. M. Falchi, V. Meli, K. Schillén, V. Lippolis, M. Monduzzi, A. Rosa, et al., 2015. Cubosome formulations stabilized by a dansyl-conjugated block copolymer for possible nanomedicine applications. Colloids and Surfaces B: Biointerfaces 129:87–94.
  • Nadzir, M. M., T. Fen, A. R. Mohamed, and S. F. Hisham. 2017. Size and stability of curcumin niosomes from combinations of tween 80 and span 80. Sains Malaysiana 46(12):2455–60.
  • Nanjwade, B. K., H. M. Bechra, G. K. Derkar, F. Manvi, and V. K. Nanjwade. 2009. Dendrimers: emerging polymers for drug-delivery systems. European Journal of Pharmaceutical Sciences 38(3):185–96.
  • Nayak, A. P., W. Tiyaboonchai, S. Patankar, B. Madhusudhan, and E. B. Souto. 2010. Curcuminoids-loaded lipid nanoparticles: Novel approach towards malaria treatment. Colloids and Surfaces B: Biointerfaces 81(1):263–73.
  • Nelson, K. M., J. L. Dahlin, J. Bisson, J. Graham, G. F. Pauli, and M. A. Walters. 2017. The essential medicinal chemistry of curcumin. Journal of Medicinal Chemistry 60(5):1620–37.
  • Ning, P., S. Lu, X. Bai, X. Wu, C. Gao, N. Wen, and M. Liu. 2018. High encapsulation and localized delivery of curcumin from an injectable hydrogel. Materials Science & Engineering. C, Materials for Biological Applications 83:121–9.
  • Nosrati, H., N. Sefidi, A. Sharafi, H. Danafar, and H. Kheiri Manjili. 2018. Bovine serum albumin (BSA) coated iron oxide magnetic nanoparticles as biocompatible carriers for curcumin-anticancer drug. Bioorganic Chemistry 76:501–9.
  • Nunes, S., A. R. Madureira, D. Campos, B. Sarmento, A. M. Gomes, M. Pintado, and F. Reis. 2017. Solid lipid nanoparticles as oral delivery systems of phenolic compounds: overcoming pharmacokinetic limitations for nutraceutical applications. Critical Reviews in Food Science and Nutrition 57(9):1863–1873.
  • O’Toole, M. G., R. M. Henderson, P. A. Soucy, B. H. Fasciotto, P. J. Hoblitzell, R. S. Keynton, W. D. Ehringer, and A. S. Gobin. 2012. Curcumin encapsulation in submicrometer spray-dried chitosan/tween 20 particles. Biomacromolecules 13(8):2309–14.
  • Pan, K., H. Chen, S. J. Baek, and Q. Zhong. 2018. Self-assembled curcumin-soluble soybean polysaccharide nanoparticles: Physicochemical properties and in vitro anti-proliferation activity against cancer cells. Food Chemistry 246:82–9.
  • Pan, K., Y. Luo, Y. Gan, S. J. Baek, and Q. Zhong. 2014. pH-driven encapsulation of curcumin in self-assembled casein nanoparticles for enhanced dispersibility and bioactivity. Soft Matter 10(35):6820–30.
  • Papagiannaros, A., K. Dimas, G. T. Papaioannou, and C. Demetzos. 2005. Doxorubicin–PAMAM dendrimer complex attached to liposomes: cytotoxic studies against human cancer cell lines. International Journal of Pharmaceutics 302(1-2):29–38.
  • Patel, A., Y. Hu, J. K. Tiwari, and K. P. Velikov. 2010. Synthesis and characterisation of zein-curcumin colloidal particles. Soft Matter 6(24):6192–9.
  • Pinheiro, A. C., M. A. Coimbra, and A. A. Vicente. 2016. In vitro behaviour of curcumin nanoemulsions stabilized by biopolymer emulsifiers–effect of interfacial composition. Food Hydrocolloids 52:460–7.
  • Pinheiro, A. C., M. Lad, H. D. Silva, M. A. Coimbra, M. Boland, and A. A. Vicente. 2013. Unravelling the behaviour of curcumin nanoemulsions during in vitro digestion: effect of the surface charge. Soft Matter 9(11):3147–54.
  • Puglia, C., V. Cardile, A. M. Panico, L. CRASCì, A. Offerta, S. Caggia, M. Drechsler, P. Mariani, R. Cortesi, and E. Esposito. 2013. Evaluation of monooleine aqueous dispersions as tools for topical administration of curcumin: characterization, in vitro and ex-vivo studies. Journal of Pharmaceutical Sciences 102(7):2349–61.
  • Purohit, G., T. Sakthivel, and A. T. Florence. 2001. Interaction of cationic partial dendrimers with charged and neutral liposomes. International Journal of Pharmaceutics 214(1–2):71–6.
  • Qin, W., K. Yang, H. Tang, L. Tan, Q. Xie, M. Ma, Y. Zhang, and S. Yao. 2011. Improved GFP gene transfection mediated by polyamidoamine dendrimer-functionalized multi-walled carbon nanotubes with high biocompatibility. Colloids and Surfaces B: Biointerfaces 84(1):206–13.
  • Rahman, M. H., M. Ramanathan, and V. Sankar. 2014. Preparation, characterization and in vitro cytotoxicity assay of curcumin loaded solid lipid nanoparticle in IMR32 neuroblastoma cell line. Pakistan Journal of Pharmaceutical Sciences 27
  • Ramalingam, N., T. Natarajan, and S. Rajiv. 2015. Preparation and characterization of electrospun curcumin loaded poly (2‐hydroxyethyl methacrylate) nanofiber—a biomaterial for multidrug resistant organisms. Journal of Biomedical Materials Research Part A 103(1):16–24.
  • Ramalingam, P., S. W. Yoo, and Y. T. Ko. 2016. Nanodelivery systems based on mucoadhesive polymer coated solid lipid nanoparticles to improve the oral intake of food curcumin. Food Research International 84:113–9.
  • Rarokar, N. R., and P. B. Khadekar. 2018. Cubosomes: a vehicle for delivery of various therapeutic agents. MedCrave online Journal of Toxicology 4:00083.
  • Ravindran, J., S. Prasad, and B. B. Aggarwal. 2009. Curcumin and cancer cells: how many ways can curry kill tumor cells selectively? The AAPS Journal 11(3):495–510.
  • Rezaei, A., A. Nasirpour, and M. Fathi. 2015. Application of cellulosic nanofibers in food science using electrospinning and its potential risk. Comprehensive Reviews in Food Science and Food Safety 14(3):269–84.
  • Righeschi, C., M. C. Bergonzi, B. Isacchi, C. Bazzicalupi, P. Gratteri, and A. R. Bilia. 2016. Enhanced curcumin permeability by SLN formulation: the PAMPA approach. LWT—Food Science and Technology 66:475–83.
  • Sadeghi, R., A. A. Moosavi-Movahedi, Z. Emam-Jomeh, A. Kalbasi, S. H. Razavi, M. Karimi, and J. Kokini. 2014. The effect of different desolvating agents on BSA nanoparticle properties and encapsulation of curcumin. Journal of Nanoparticle Research 16(9):2565.
  • Saengkrit, N., S. Saesoo, W. Srinuanchai, S. Phunpee, and U. R. Ruktanonchai. 2014. Influence of curcumin-loaded cationic liposome on anticancer activity for cervical cancer therapy. Colloids and Surfaces B: Biointerfaces 114:349–56.
  • Sahu, A., N. Kasoju, and U. Bora. 2008. Fluorescence study of the curcumin − casein micelle complexation and its application as a drug nanocarrier to cancer cells. Biomacromolecules 9(10):2905–12.
  • Sahu, A., N. Kasoju, P. Goswami, and U. Bora. 2011. Encapsulation of curcumin in pluronic block copolymer micelles for drug delivery applications. Journal of Biomaterials Applications 25(6):619–39.
  • Salvia-Trujillo, L., R. Soliva-Fortuny, M. A. Rojas-Grau, D. J. Mcclements, and O. MARTíN-Belloso. 2017. Edible nanoemulsions as carriers of active ingredients: A review. Annual Review of Food Science and Technology 8(1):439–66.
  • Sampath, M., R. Lakra, P. Korrapati, and B. Sengottuvelan. 2014. Curcumin loaded poly (lactic-co-glycolic) acid nanofiber for the treatment of carcinoma. Colloids and Surfaces. B, Biointerfaces 117:128–34.
  • Samrot, A. V., U. Burman, S. A. Philip, S. N, and K. Chandrasekaran. 2018. Synthesis of curcumin loaded polymeric nanoparticles from crab shell derived chitosan for drug delivery. Informatics in Medicine Unlocked 10:159–82.
  • Sankhyan, A., and P. Pawar. 2012. Recent trends in niosome as vesicular drug delivery system. Journal of Applied Pharmaceutical Science 2(6):20–32.
  • Sari, T. P., B. Mann, R. Kumar, R. R. B. Singh, R. Sharma, M. Bhardwaj, and S. Athira. 2015. Preparation and characterization of nanoemulsion encapsulating curcumin. Food Hydrocolloids 43:540–6.
  • Sarika, P. R., and N. R. James. 2016. Polyelectrolyte complex nanoparticles from cationised gelatin and sodium alginate for curcumin delivery. Carbohydrate Polymers 148:354–61.
  • Sawant, V. J., and S. R. Bamane. 2018. PEG-beta-cyclodextrin functionalized zinc oxide nanoparticles show cell imaging with high drug payload and sustained pH responsive delivery of curcumin in to MCF-7 cells. Journal of Drug Delivery Science and Technology 43:397–408.
  • Saxena, V., A. Hasan, S. Sharma, and L. M. Pandey. 2018. Edible oil nanoemulsion: An organic nanoantibiotic as a potential biomolecule delivery vehicle. International Journal of Polymeric Materials and Polymeric Biomaterials 67(7):410–9.
  • SCHRAUFSTäTTER, E., and H. Bernt. 1949. Antibacterial action of curcumin and related compounds. Nature 164(4167):456
  • Sen, R., R. Gupta, S. Singh, S. Mantry, and S. DAS. 2017. A review on cubosome and virosome: the novel drug delivery system. UJPSR, 3, 24–33.
  • Shababdoust, A., M. Ehsani, P. Shokrollahi, and M. Zandi. 2018. Fabrication of curcumin-loaded electrospun nanofiberous polyurethanes with anti-bacterial activity. Progress in Biomaterials 7(1):23–33.
  • Shahiwala, A., and A. Misra. 2002. Studies in topical application of niosomally entrapped nimesulide. Journal of Pharmacy & Pharmaceutical Sciences : APublication of the Canadian Society for Pharmaceutical Sciences, Societe Canadienne Des Sciences Pharmaceutiques 5(3):220–5.
  • Shaikh, J., D. D. Ankola, V. Beniwal, D. Singh, and M. N. V. R. Kumar. 2009. Nanoparticle encapsulation improves oral bioavailability of curcumin by at least 9-fold when compared to curcumin administered with piperine as absorption enhancer. European Journal of Pharmaceutical Sciences 37(3-4):223–30.
  • Sharma, V., S. Anandhakumar, and M. Sasidharan. 2015. Self-degrading niosomes for encapsulation of hydrophilic and hydrophobic drugs: an efficient carrier for cancer multi-drug delivery. Materials Science and Engineering: C 56:393–400.
  • Sheikhzadeh, S., M. Alizadeh, M. Rezazad, and H. Hamishehkar. 2015. Nanoencapsulation of curcumin. Agro FOOD Industry Hi Tech, 26(6):49–52.
  • Shi, W., S. Dolai, S. Rizk, A. Hussain, H. Tariq, S. Averick, W. L'Amoreaux, A. EL Idrissi, P. Banerjee, and K. Raja. 2007. Synthesis of monofunctional curcumin derivatives, clicked curcumin dimer, and a PAMAM dendrimer curcumin conjugate for therapeutic applications. Organic Letters 9(26):5461–4.
  • Singh, P., H. Ansari, and S. Dabre. 2016. Niosomes-a novel tool for anti-ageing cosmeceuticals. Journal of Pharmaceutical Research 6:6691–6703.
  • Sneharani, A. H., J. V. Karakkat, S. A. Singh, and A. G. A. Rao. 2010. Interaction of curcumin with β-lactoglobulin—stability, spectroscopic analysis, and molecular modeling of the complex. Journal of Agricultural and Food Chemistry 58(20):11130–9.
  • Song, L., Y. Shen, J. Hou, L. Lei, S. Guo, and C. Qian. 2011. Polymeric micelles for parenteral delivery of curcumin: Preparation, characterization and in vitro evaluation. Colloids and Surfaces A: Physicochemical and Engineering Aspects 390(1-3):25–32.
  • Sosnik, A., and K. P. Seremeta. 2015. Advantages and challenges of the spray-drying technology for the production of pure drug particles and drug-loaded polymeric carriers. Advances in Colloid and Interface Science 223:40–54.
  • Souguir, H., F. Salaun, P. Douillet, I. Vroman, and S. Chatterjee. 2013. Nanoencapsulation of curcumin in polyurethane and polyurea shells by an emulsion diffusion method. Chemical Engineering Journal 221:133–45.
  • Spicer, P. T. 2005. Progress in liquid crystalline dispersions: cubosomes. Current Opinion in Colloid & Interface Science 10(5–6):274–9.
  • Spicer, P. T., K. L. Hayden, M. L. Lynch, A. Ofori-Boateng, and J. L. Burns. 2001. Novel process for producing cubic liquid crystalline nanoparticles (cubosomes). Langmuir 17(19):5748–56.
  • Sun, X.-Z., G. R. Williams, X.-X. Hou, and L.-M. Zhu. 2013. Electrospun curcumin-loaded fibers with potential biomedical applications. Carbohydrate Polymers 94(1):147–53.
  • Suwannateep, N., W. Banlunara, S. P. Wanichwecharungruang, K. Chiablaem, K. Lirdprapamongkol, and J. Svasti. 2011. Mucoadhesive curcumin nanospheres: Biological activity, adhesion to stomach mucosa and release of curcumin into the circulation. Journal of Controlled Release 151(2):176–82.
  • Suwantong, O., P. Opanasopit, U. Ruktanonchai, and P. Supaphol. 2007. Electrospun cellulose acetate fiber mats containing curcumin and release characteristic of the herbal substance. Polymer 48(26):7546–57.
  • Tahmasebi Birgani, M., V. Erfani-Moghadam, E. Babaei, F. Najafi, M. Zamani, M. Shariati, S. Nazem, B. Farhangi, P. Motahari, and M. Sadeghizadeh. 2015. Dendrosomal nano-curcumin; the novel formulation to improve the anticancer properties of curcumin. Progress in Biological Sciences 5:143–58.
  • Tan, C., J. Xie, X. Zhang, J. Cai, and S. Xia. 2016. Polysaccharide-based nanoparticles by chitosan and gum arabic polyelectrolyte complexation as carriers for curcumin. Food Hydrocolloids 57:236–45.
  • Tang, L., Y. Zhu, X. Yang, and C. Li. 2007. An enhanced biosensor for glutamate based on self-assembled carbon nanotubes and dendrimer-encapsulated platinum nanobiocomposites-doped polypyrrole film. Analytica Chimica Acta 597(1):145–50.
  • Tavano, L., R. Muzzalupo, N. Picci, and B. DE Cindio. 2014. Co-encapsulation of antioxidants into niosomal carriers: gastrointestinal release studies for nutraceutical applications. Colloids and Surfaces B: Biointerfaces 114:82–8.
  • Taylor, T. M., J. Weiss, P. M. Davidson, and B. D. Bruce. 2005. Liposomal nanocapsules in food science and agriculture. Critical Reviews in Food Science and Nutrition 45(7–8):587–605.
  • Tayyem, R. F., D. D. Heath, W. K. Al-Delaimy, and C. L. Rock. 2006. Curcumin content of turmeric and curry powders. Nutrition and Cancer 55(2):126–31.
  • Tiyaboonchai, W., W. Tungpradit, and P. Plianbangchang. 2007. Formulation and characterization of curcuminoids loaded solid lipid nanoparticles. International Journal of Pharmaceutics 337(1–2):299–306.
  • Tsai, W.-C., and S. S. Rizvi. 2016. Liposomal microencapsulation using the conventional methods and novel supercritical fluid processes. Trends in Food Science & Technology 55:61–71.
  • Tsai, Y.-M., C.-F. Chien, L.-C. Lin, and T.-H. Tsai. 2011. Curcumin and its nano-formulation: the kinetics of tissue distribution and blood–brain barrier penetration. International Journal of Pharmaceutics 416(1):331–8.
  • Tu, Y., J. Fu, D. Sun, J. Zhang, N. Yao, D. Huang, and Z. Shi. 2014. Preparation, characterisation and evaluation of curcumin with piperine-loaded cubosome nanoparticles. Journal of Microencapsulation 31(6):551–9.
  • Uchegbu, I. F., and A. T. Florence. 1995. Non-ionic surfactant vesicles (niosomes): Physical and pharmaceutical chemistry. Advances in Colloid and Interface Science 58(1):1–55.
  • Vecchione, R., V. Quagliariello, D. Calabria, V. Calcagno, E. DE Luca, R. V. Iaffaioli, and P. A. Netti. 2016. Curcumin bioavailability from oil in water nano-emulsions: in vitro and in vivo study on the dimensional, compositional and interactional dependence. Journal of Controlled Release 233:88–100.
  • Verderio, P., P. Bonetti, M. Colombo, L. Pandolfi, and D. Prosperi. 2013. Intracellular drug release from curcumin-loaded PLGA nanoparticles induces G2/M block in breast cancer cells. Biomacromolecules 14(3):672–82.
  • Waddad, A. Y., S. Abbad, F. Yu, W. L. Munyendo, J. Wang, H. Lv, and J. Zhou. 2013. Formulation, characterization and pharmacokinetics of morin hydrate niosomes prepared from various non-ionic surfactants. International Journal of Pharmaceutics 456(2):446–58.
  • Wang, H., L. Hao, P. Wang, M. Chen, S. Jiang, and S. Jiang. 2017. Release kinetics and antibacterial activity of curcumin loaded zein fibers. Food Hydrocolloids 63:437–46.
  • Wang, L., P. Gulati, D. Santra, D. Rose, and Y. Zhang. 2018. Nanoparticles prepared by proso millet protein as novel curcumin delivery system. Food Chemistry 240:1039–46.
  • Wang, L., X. Xu, Y. Zhang, Y. Zhang, Y. Zhu, J. Shi, Y. Sun, and Q. Huang. 2013. Encapsulation of curcumin within poly (amidoamine) dendrimers for delivery to cancer cells. Journal of Materials Science: Materials in Medicine 24(9):2137–44.
  • Wang, W., R. Zhu, Q. Xie, A. Li, Y. Xiao, K. Li, H. Liu, D. Cui, Y. Chen, and S. Wang. 2012. Enhanced bioavailability and efficiency of curcumin for the treatment of asthma by its formulation in solid lipid nanoparticles. International Journal of Nanomedicine 7:3667–77.
  • Wang, X., Y. Jiang, Y.-W. Wang, M.-T. Huang, C.-T. Ho, and Q. Huang. 2008. Enhancing anti-inflammation activity of curcumin through O/W nanoemulsions. Food Chemistry 108(2):419–24.
  • Weiss, J., E. A. Decker, D. J. Mcclements, K. Kristbergsson, T. Helgason, and T. Awad. 2008. Solid lipid nanoparticles as delivery systems for bioactive food components. Food Biophysics 3(2):146–54.
  • Wen, P., M.-H. Zong, R. J. Linhardt, K. Feng, and H. Wu. 2017a. Electrospinning: a novel nano-encapsulation approach for bioactive compounds. Trends in Food Science & Technology
  • Xie, X., Q. Tao, Y. Zou, F. Zhang, M. Guo, Y. Wang, H. Wang, Q. Zhou, and S. Yu. 2011. PLGA nanoparticles improve the oral bioavailability of curcumin in rats: Characterizations and mechanisms. Journal of Agricultural and Food Chemistry 59(17):9280–9.
  • Xu, Y. Q., W. R. Chen, J. K. Tsosie, X. Xie, P. Li, J. B. Wan, C. W. He, and M. W. Chen. 2016. Niosome encapsulation of curcumin: characterization and cytotoxic effect on ovarian cancer cells. Journal of Nanomaterials 2016:1–9.
  • Yadav, A., V. Lomash, M. Samim, and S. J. S. Flora. 2012. Curcumin encapsulated in chitosan nanoparticles: a novel strategy for the treatment of arsenic toxicity. Chemico-Biological Interactions 199(1):49–61.
  • Yadav, P., G. Soni, A. Mahor, S. Alok, P. P. Singh, and A. Verma. 2014. Solid lipid nanoparticles: an effective and promising drug delivery system—a review. International Journal of Pharmaceutical Sciences and Research 5:1152.
  • Yallapu, M. M., B. K. Gupta, M. Jaggi, and S. C. Chauhan. 2010. Fabrication of curcumin encapsulated PLGA nanoparticles for improved therapeutic effects in metastatic cancer cells. Journal of Colloid and Interface Science 351(1):19–29.
  • Yallapu, M. M., M. Jaggi, and S. C. Chauhan. 2010. beta-Cyclodextrin-curcumin self-assembly enhances curcumin delivery in prostate cancer cells . Colloids and Surfaces. B, Biointerfaces 79(1):113–25.
  • Yang, H. 2016. Targeted nanosystems: Advances in targeted dendrimers for cancer therapy. Nanomedicine: Nanotechnology, Biology and Medicine 12(2):309–16.
  • Yao, K., W. Chen, F. Song, D. J. Mcclements, and K. Hu. 2018. Tailoring zein nanoparticle functionality using biopolymer coatings: Impact on curcumin bioaccessibility and antioxidant capacity under simulated gastrointestinal conditions. Food Hydrocolloids 79:262–72.
  • Yoon, I.-S., J.-H. Park, H. J. Kang, J. H. Choe, M. S. Goh, D.-D. Kim, and H.-J. Cho. 2015. Poly(d,l-lactic acid)-glycerol-based nanoparticles for curcumin delivery. International Journal of Pharmaceutics 488:70–7.
  • Yu, H., and Q. Huang. 2012. Improving the oral bioavailability of curcumin using novel organogel-based nanoemulsions. Journal of Agricultural and Food Chemistry 60(21):5373–9.
  • Zeng, Y.-L., Y.-F. Huang, J.-H. Jiang, X.-B. Zhang, C.-R. Tang, G.-L. Shen, and R.-Q. Yu. 2007. Functionalization of multi-walled carbon nanotubes with poly (amidoamine) dendrimer for mediator-free glucose biosensor. Electrochemistry Communications 9(1):185–90.
  • Zhen, G., T. M. Hinton, B. W. Muir, S. Shi, M. Tizard, K. M. Mclean, P. G. Hartley, and P. Gunatillake. 2012. Glycerol monooleate-based nanocarriers for siRNA delivery in vitro. Molecular Pharmaceutics 9(9):2450–7.
  • Zheng, Z., X. Zhang, D. Carbo, C. Clark, C.-A. Nathan, and Y. Lvov. 2010. Sonication-assisted synthesis of polyelectrolyte-coated curcumin nanoparticles. Langmuir 26(11):7679–81.
  • Zou, L., B. Zheng, R. Zhang, Z. Zhang, W. Liu, C. Liu, H. Xiao, and D. J. Mcclements. 2016. Food-grade nanoparticles for encapsulation, protection and delivery of curcumin: comparison of lipid, protein, and phospholipid nanoparticles under simulated gastrointestinal conditions. Rsc Advances 6(4):3126–36.
  • Zuidam, N. J., and E. Shimoni. 2010. Overview of microencapsulates for use in food products or processes and methods to make them. Encapsulation technologies for active food ingredients and food processing. New York, NY: Springer.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.